CS 3800, Spring 2016
Homework 4 (70 points)
Assigned: Friday, 5 February 2016
Due: Friday, 12 February 2016
Unless stated otherwise, all languages are over the alphabet $\{0,1\}$.

1. [4 pts] Do exercise 2.2 in the textbook (both parts).
2. [8 pts] The following grammar is ambiguous:

$$
\begin{array}{llll}
E & \rightarrow & \mathrm{a} \\
E & \rightarrow & & \\
E &) \\
E & \rightarrow & E & \# \\
E & & \\
E & & E & E \\
E & \rightarrow & E & \%
\end{array} \quad E
$$

Give an equivalent CFG that is unambiguous and also says the \& operator has highest precedence and associates to the right, the \% operator has middle precedence and associates to the left, and the \# operator has lowest precedence and associates to the left.
3. [24 pts] Give state diagrams for pushdown automata that generate the following languages over the alphabet $\{0,1\}$.
(a) $\left\{0^{i} 10^{j} 10^{k} \mid i=j+k\right\}$
(b) $\left\{0^{i} 0^{j} 0^{k} 1^{k} \mid i=j+k\right\}$
(c) $\{w \mid w$ contains three times as many 1 s as 0 s$\}$
(d) $\left\{0^{i} 1^{j} 0^{k} \mid i<j\right.$ and $\left.k=j-i\right\}$
4. [15 points] For each of the following languages, decide whether the language is regular. If it is, then construct a regular expression that describes the language. If it isn't, construct a CFG that generates the language.
(a) $\{w \mid w$ contains at least as many 0 s as 1 s$\}$
(b) $\{w \mid w$ is a binary numeral divisible by 3$\}$
(c) $\{w \mid w$ contains an even number of 0 s$\}$
(d) $\{w \mid w$ contains at least two 1 s$\}$
(e) $\{w \mid w$ does not contain three consecutive 0 s$\}$
5. [10 points] For each of the following languages, state whether the language is regular, context-free but not regular, or not context-free.
(a) $\{w \mid w$ contains more 0 s than 1 s$\}$
(b) $\left\{0^{n} 1^{n} \mid n\right.$ is a positive integer $\}$
(c) $\{w \mid$ the length of w is a prime number $\}$
(d) $\{w \mid w$ contains exactly three times as many 0 s as 1 s$\}$
(e) $\left\{w^{\mathcal{R}} w \mid w\right.$ is non-empty $\}$
(f) $\{w \mid w$ is a binary numeral representing a multiple of 47$\}$
(g) $\{w \mid w($ as a binary numeral) is congruent to $5 \bmod 17\}$
(h) $\left\{0^{n} 1^{n} 0^{n} \mid n\right.$ is a positive integer $\}$
(i) $\left\{1^{n} 1^{n} 1^{n} \mid n\right.$ is a positive integer $\}$
(j) $\left\{1^{m} 1^{n} \mid m\right.$ is prime but n is not prime $\}$
6. [4 points] Which of the following grammars generates a language that is not regular?
(a) $S \rightarrow 1 \mid 11 S$
(b) $S \rightarrow 0 \mid 1 S 1$
(c) $S \rightarrow 0|1| S S$
(d) $S \rightarrow 0|1 S| 0 S$
(e) $S \rightarrow 1 \mid 1 S 1$
7. [5 points] Construct a PDA that recognizes the language generated by

$$
\begin{aligned}
& S \rightarrow A \\
& A \rightarrow \epsilon|0 B| 1 C \\
& B \rightarrow A 2 A \\
& C \rightarrow A 3 A
\end{aligned}
$$

