```
CS 3800, Spring 2016 (Clinger's section)
Homework 1 (60 points)
Assigned: Friday, 15 January 2016
Corrected: Wednesday, 20 January 2016 (problem 7)
Due: Friday, 22 January 2016
```

1. [5 pts] For each of the following set operations, specify the result by listing its elements inside curly braces.
(a) $\{1,3\} \cup\{2,3,4\}=$
(b) $\{1,3\} \cap\{2,3,4\}=$
(c) $\{1,3\}-\{2,3,4\}=$
(d) $\{2,3,4\}-\{1,2\}=$
(e) $\{1,3\} \times\{2,3,4\}=$
2. [6 pts] Write out each of the following power sets by listing their elements inside curly braces.
(a) $\mathcal{P}(\emptyset)=$
(b) $\mathcal{P}(\{5\})=$
(c) $\mathcal{P}(\{5,6,7\})=$
3. [6 pts] If S is any set, then we use the notation $|S|$ to indicate the number of elements in S. Suppose A, B, and C are sets with $|A|=6,|B|=4$, and $|C|=3$. Compute the number of elements in each of the following sets.
(a) $|A \times A|=$
(b) $|B \times C|=$
(c) $|A \times B \times C|=$
(d) $|\mathcal{P}(A)|=$
(e) $|\mathcal{P}(A \times B)|=$
(f) $|\mathcal{P}(A \times C)|=$
4. [5 pts$]$ Do Problem 0.11 in the textbook (both parts).
5. [5 pts] Do Problem 0.12 in the textbook.
6. [5 pts] Write down the formal (5-tuple) description of the DFA pictured in Exercise 1.21(b) on page 86 of the textbook.
7. [5 pts] Draw the state transition diagram for the DFA whose formal description is

$$
\left(\left\{q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \delta, q_{1},\left\{q_{1}, q_{2}\right\}\right)
$$

where δ is the function listed within the following table:

	a	b
q_{1}	q_{2}	q_{3}
q_{2}	q_{2}	q_{1}
q_{3}	q_{3}	q_{3}

8. [4 pts] Describe the language recognized by the DFA whose formal description was given above.
9. [14 pts] For each of the following languages, draw the state transition diagram for a DFA with alphabet $\{0,1\}$ that recognizes the language.
(a) $\}$
(b) $\{\epsilon\}$
(c) $\{01,10\}$
(d) $\{w \mid w$ starts with 0 and ends with 0$\}$
(e) $\{w \mid w$ contains an odd number of 0 s and an even number of 1 s$\}$
(f) $\{w \mid w$ is a binary numeral divisible by 3$\}$
(g) $\{w \mid$ there exist strings x and y such that $w=x 111 y\}$
10. [5 pts] Do problem 1.32 in the textbook.
