#### we'll start @ 11:47 lecture ends: 1:25

• Get out your notes

As you get settled...

• Get out a place to do today's ICA (4)

Now playing: "3 nights", Pominic Fike "4 ar struck", Yearst Years

• Topics we'll start with: dot products, writing solutions as vectors

### Can you see this text?



CS 2810: Mathematics of Data Models, Section 1

Spring 2022 — Felix Muzny

## **Vectors and Machine Learning**



#### Visualizing our solutions space (many solutions)



 $\begin{bmatrix} a \\ b \\ c \\ a \\ e \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 2 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ -7 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\$ 

#### **Machine Learning**

![](_page_4_Figure_1.jpeg)

#### **Visualizing Linear Machine Learning Algorithms**

![](_page_5_Figure_1.jpeg)

#### Machine Learning - from data to features

• Some of the data that we model in the real world is **numeric**, some is not. not numeric Numeric Femperature vaccination rohe Stocks housing ## tood descriptions word-based height/age • In all cases, we need to **featurize** our datasets: DOS WORDS MEA WORDS label feature1 feature3 featureN feature2 ..... 11,11 D contains an D category wère trying to predict

#### Machine Learning - from data to features

ICA Question 2: suppose that you are given the following data. **Featurize** the data by choosing two features and filling in the table. Make sure that your features **are numeric**!

Data:

![](_page_7_Picture_3.jpeg)

![](_page_7_Picture_4.jpeg)

| abel | feature1 | feature2 |
|------|----------|----------|
| cat  |          |          |
| cat  |          |          |
| dog  |          |          |
| dog  |          |          |
| dog  |          |          |
|      |          | I        |
|      |          |          |
|      |          |          |
|      |          |          |

### Visualizing Linear Machine Learning Algorithms

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

#### What are different contexts that we can think of where ML is used or likely used in real life?

Machine Learning & Ethics

break until : 12:59

• What is a stereotype?

Lo a generalization of a group based on <u>one example / identity / cultural assumptions</u>

- What is a **stereotype**?
  - Generalization
  - Culturally shared or widespread
  - Negative, neutral, or positive
  - Concerns: types of people, groups, ways of being, cultures, cultural products, intellectual products

• How can stereotypes be harmful?

Lo devial of survices ble of stereotype Lo alienate people Lo lead to discrimination in hiring Lo make accessing health came more difficult

#### **Representational vs. Allocative Bias**

• A **representational** bias is when a system detract from the representation of certain groups and their identities

• A **allocation/allocative** bias is when a system unfairly allocates resources to certain groups over others

# Representational bias ICA en grade scope!

ICA Question 3: you are working for Northeastern University. Suppose that you are given an ML model that helps you review applications.

- 1) Choose 3 numeric features that you might use to featurize an applicant.
- Identify 3 places where an ML model reviewing applicants (regardless of features) might produce bias. Label each instance of bias as Representational (R) or Allocative (A).
- 3) If you finish, do some research online—do you find evidence that college applications are being automatically reviewed with ML models? What about job applications?

- Since machine learning algorithms "learn" from data and data is not produced in a vacuum...
  - Where does the data come from?
  - How was it labeled?
  - What is the behavior of our model in the real world?

by is it biased?

#### Admin Stuff

- When you post on piazza, please include HW #, Q #, and topic in the title (when applicable), and use follow-ups to expand on a question that another student has asked!
  - (this will help keep piazza most useful to you all!)

 Please use my Calendly office hours for higher-level "let's talk about this math/etc topic questions" and khoury office hours for HW questions (I have OH in both places).

#### Admin Stuff

- Where are you on HW 1?
  - A. I haven't looked at it
  - B. I've glanced at the problems
  - C. I've gotten started but I'm not very far
  - D. I'm probably half way through
  - E. I'm finished/almost finished

#### Schedule

| Turn in ICA 4<br><b>We are remo</b>                                  | on Gradescope<br><b>te until Feb 5th.</b> | wow, so many<br>office hours now!<br>khouryofficehours.com |                                                                                        |     |     |     |
|----------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|-----|-----|
| Mon                                                                  | Tue                                       | Wed                                                        | Thu                                                                                    | Fri | Sat | Sun |
| <b>January 2.4th</b><br>Lecture 3 -<br>Matrices &<br>vector geometry | Felix OH Calendly                         |                                                            | Lecture 4 - ML,<br>linear perceptron<br>Felix OH Khoury<br>Office Hours                |     |     |     |
| <b>January 31st</b><br>Lecture 5 -<br>Linear<br>Perceptron           | Felix OH Calendly                         | HW 1 due @<br>11:59pm                                      | Lecture 4 - matrix<br>multiplication,<br>transforms<br>Felix OH Khoury<br>Office Hours |     |     |     |