## As you get settled...

- Get out your notes
- Get out a place to do today's ICA (7)
- Please remember to write your name, my name, the ICA \#, and the date!

$$
\begin{aligned}
& \text { Warm-up 0: do the matrix multiply defined below } \\
& A=\left[\begin{array}{ccc}
0 & 3 & 2 \\
1 & 4 & -1
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & -1 \\
2 & -2 \\
0 & 4
\end{array}\right] A B=\left[\begin{array}{ccc}
0+6+0 & 0 & -6+8 \\
1+8+0 & -1 & -8-4
\end{array}\right]=\left[\begin{array}{cc}
6 \\
2 \times 2 & -18
\end{array}\right]
\end{aligned}
$$

## Vector spaces

ICA Question 1: build a matrix transform in $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}$ that...
a) halves the magnitude of $x_{0}$
b) rotates $x_{1}$ clockwise by $\pi \longrightarrow$ yes, this is an odd concept, but To solve this: will let us practice move! Il

1) draw a picture of the domain and the codomain with at least two points showing their original and transformed locations
2) solve the equations for the column vectors of $A$

ICA Question 1: build a matrix transform in $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}$ that...
a) halves the magnitude of $x_{0}$
b) rotates $x_{1}$ clockwise by $\pi$

$$
A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
a_{0} & a_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=a_{0}
$$



$$
A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$


a bout rotation BEnd of Pec b for all the detains

## What is a vector space?



## Basis vectors

- The basis vectors of a vector space are the vectors that "define it"
- For example, in the x y coordinate system:


- We can reach any coordinate with a scaled combination of $\hat{i}$ and $\hat{j}$


## Linear combinations

- We looked at this definition last time: A linear combination of $x_{0}, x_{1}, x_{2} \ldots$ is $\alpha_{8} x_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2} \ldots$
- What if we ground this in geometry?
- A linear combination can be viewed as any time that you scale and add



Basis vectors

- Every time that we choose to describe a vector as coordinates, we've made a choice of the basis vectors.
- Implicitly, this is $\hat{i}$ and $\hat{j}$.

$$
\left[\begin{array}{l}
3 \\
4
\end{array}\right]=3 \imath+4 \hat{\jmath}\left[\begin{array}{c}
-4271 \\
501
\end{array}\right]=-4271 \imath+501 \hat{\jmath}
$$

- ... but, what if it wasn't?

ICA Questions: what coordinates can you reach in two dimensions by scaling and adding the following two vectors?
Can you reach $\left[\begin{array}{l}1 \\ 1\end{array}\right] ?\left[\begin{array}{l}0 \\ 2\end{array}\right]$ ? $\left[\begin{array}{c}-32 \\ 2\end{array}\right]$ ?

$$
\begin{aligned}
& {\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \quad\left[\frac{1}{1}\right] \quad\left[\frac{1}{1}\right]=\vec{V}+\vec{w}} \\
& \underset{\vec{v}}{\vec{w}}\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& {\left[\begin{array}{l}
0 \\
2
\end{array}\right]=2 \vec{\omega}+\vec{v}} \\
& {\left[\begin{array}{c}
-32 \\
2
\end{array}\right]=2 \vec{\omega}+-15 \vec{v}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right]-\left[\begin{array}{c}
30 \\
0
\end{array}\right]}
\end{aligned}
$$

Basis vectors
ICA Question 2: what is the equivalent linear combination of $\hat{i}$ and $\hat{j}$ to ....

$$
\begin{aligned}
& 37 \vec{v}+23 \vec{\omega}=37\left[\begin{array}{l}
2 \\
0
\end{array}\right]+23\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& b \\
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] }=\left[\begin{array}{ll}
5 & 1 \\
2 & 3
\end{array}\right] \\
&(-\hat{\imath}+\hat{\jmath})=51 \hat{\imath}+23 \hat{\jmath}
\end{aligned}
$$

$$
\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
5 & 1 \\
2 & 3
\end{array}\right]
$$

Linear combinations - fix one vector

describes aline

## Linear combinations - fix one vector



Linear combinations - fix no vectors

a plane

a plane

## Spans

- The span of set of vectors is the set of all possible vectors that you can reach with a linear combination of those vectors.

$$
\frac{\text { vectors. }}{t \rightarrow t h e} 1^{\text {st }} \text { set }
$$

- For example, in two dimensions, the span of vectors $\vec{v}$ and $\vec{w}$ is all vectors that we can define with the equation $\alpha \vec{v}+\beta \vec{w}$


Spans work until 12:46 (break + think)
$\left.\begin{array}{|ll|}\hline \text { ICA Question } 3 \text { : what is the span of } \vec{v} \text { and } \vec{w} \text { ? } & 2 \text { minutes! } \\ & 1 \text { minute! } \\ & 10 \text { seconds } \\ \stackrel{y}{1 / 2} \\ 31 / 2\end{array}\right]$

## Spans

ICA Question 4: Give an example of two vectors, ( $\vec{v}$ and $\vec{w})$ whose span is a line.
challenge: 2 vectors w/ no $\mathrm{Os}_{s}$

## Spans

- The span of set of vectors is the set of all possible vectors that you can reach with a linear combination of those vectors.
- In general, we have three cases for the span of any set of 2-d vectors:
- Every point in the plane
- A line passing through the ovigín
- the origin




## Spans in 3 dimensions

- What are the assumed basis vectors of 3 dimensions?

$$
\hat{\imath}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \hat{\jmath}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \hat{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Spans in 3 dimensions

- Building up a set of three vectors in 3 dimensions-how does this change the span?

span: a line,


Span: x-y plane

sana: $3 d$ space
(infinitely expanding
(ubs)

Spans in 3 dimensions

- Building up a set of three vectors in 3 dimensions-how does this change the span?
span: line,


Span: a plane,


## Spans in N dimensions

- The span of set of vectors is the set of all possible vectors that you can reach with a linear combination of those vectors.
- In general, we have three cases for the span of any set of vectors:
- Every point in the n-dimensional space
- A reduced dimensionality space, passing through origin
- the origin

Linear dependence

- A set of vectors is linearly dependent if one of the vectors is a linear combination of the others
- (You can think of this as one of the vectors doesn't add a dimension to the span of the set)



## Linear Independence

－A set of vectors is linearly INdependent if each vector adds a new dimension to the span

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{l}
? \\
\text { Sonething non-zero }
\end{array}\right]} \\
& \text { 趐四 }
\end{aligned}
$$

－Returning to basis vectors－these are a set of linearly independent
vectors that Gpan the full space

## Orthogonality

- Vectors are orthogonal if all angles between them are 90 degrees




## Orthogonality

ICA Question 5: Give an example of a set of vectors in 2 or more dimensions that fare orthogonal and have no coordinate values of 0 .

## Orthogonality

- Vectors are orthogonal if all angles between them are 90 degrees
- Vectors are orthogonal if their dot product is





## Schedule

## Quir 1 details on Thurs: Mon

| Turn in ICA 7 on Gradescope |
| :--- | :--- | :--- | :--- | :--- | :--- |
| HW 2 is due next Sunday |

