## Admin

- ICA grades: all available, on Canvas -> ICA 22 (except for ICA 17)
- Test grades: all available, on Canvas
- HW grades: on Canvas through HW 6; HW 7 will get transferred early next week
- HW 8 grades: expect these early next week on Gradescope
- Canvas: Section 1 can see your current grade (w/o HW 7, ICA 17) now, including letter grade
- Please double check these and reach out to me with any questions!
-Rounding - no rounding II

Bayes Nets, part 2
With your neighbor, what are the differences) between a Bayes Net and a Markov Chain?
O OBN: representing conditional prob.
different relation ships /dependres,
R MC: showing how states change (transition probabilities)
$M C$

$B N$
(41)

cycles? $\rightarrow$ no, we worit allow thes

## Taking a step back: Bayes Rule

- Another way to view conditional probabilities is as the probability of a hypothesis given the evidence:
. $P(H \mid E)=\frac{P(H, E)}{P(E)}$
- Bayes' Rule, written this way is $P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
- When to use Bayes' Rule?
- When we know: $P(E \mid H)$
- And can know or calculate: $P(H)+P(E)$
- But don't know: $\nabla(H, E)$
P(H|E)
$P(E \mid H)$
$P(H, E)$
$P(H)$
$P(E)$


## Bayes nets

- So, in the real world, we often want to incorporate more information than one random variable.
- BUT this often leads to very complex joint probability distributions
- A Bayes Net (also known as a graphical model) is a way to encode conditional interdependencies and simplify the logic behind what's happening
- e.g. I want to compute P(illness | symptoms) or P(illness1,illness2,illness3| symptoms)


## Bayes nets

- A more complex ("real world") example:



## Taking a step back: independence

- So far, we've had two notions of independence for random variables:
- "regular" independence:
- If $A$ and $B$ are independent, then $P(A, B)=P(A) P(B)$
- example: $A$ is the result of flipping a coin and $B$ is a die roll
- conditional independence:
- If $A$ and $B$ are conditionally independent, then $P(A \mid B, C)=P(A \mid C)$
- example: $A$ is the flu, $B$ is a broken ankle, $C$ is a fever

ICA 1: independence \& conditional independence
Does independence imply conditional independence?
Are $W$ and $T$ independent for this graph? $p(\omega, T)=P(\omega) P(T)$
$\rightarrow$ yes!
Are $W$ and $T$ conditionally independent? $P(W \mid L, T)=P(W \mid L) ? \rightarrow$ No! Transport LDrecommendation: pick sour example valves

$$
\begin{aligned}
P\left(\omega_{r} \mid L_{y}, T_{t}\right)=\frac{P\left(\omega_{r}, L_{y}, T_{t}\right)}{P\left(L_{y}, T_{t}\right)} & =\frac{0.108}{\sum_{\omega} P\left(\omega, L_{y}, T_{t}\right.} \text { weather } \\
& =\frac{0.108}{0.108+0.084}=.56
\end{aligned}
$$

(link: https://bit.ly/sec1bayes) "on time" sheet

$$
\begin{aligned}
P\left(\omega_{r} \mid L_{y}\right) & =\frac{P\left(\omega_{r}, L_{y}\right)}{P\left(L_{y}\right)} \\
& =\frac{\sum_{T}\left(\omega_{r}, L_{y}, T\right) \leftarrow 2 \# s}{\sum_{\omega, T} P\left(\omega, L_{y}, T\right) \oplus 4 \# s} \\
& =\frac{\text { not } .56}{\hat{\imath}} \\
& =.676 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& P(L \mid \omega, T) \\
& P(L, \omega, T) \rightarrow P(L \mid \omega, T) P(\omega, T)
\end{aligned}
$$ $\stackrel{\downarrow}{P(\omega) P(T)}$

To do: add slide clarifying/linking marathon example
Marathon:
(Wealth)

independences
"regular"
Low ,s
conditionally:
LD none!
Loupdatek to
lee 22
thanks!

## Taking a step back: independence

- So what independence is encoded in Bayes Nets?
- Nodes are dependent only on their parents:
- $P(L \mid T, A)=P(L \mid T)$
- $L$ is conditionally independent of $A$ (larm)


Bayes nets

- Computing with Bayes Nets
- Algebraically
$L D$ write expressions for sums needed $P\left(X_{1}, \ldots X_{n}\right)$

$$
P\left(x_{i} \mid x_{1} \ldots x_{n}\right)
$$

- Spreadsheet (by "hand")

LD enumerate all possibilities, let the spread sheet do the math

- Programming
- Examples on piazza: https://piazza.com/class/ky1oss9wck43uh?cid=443


## Last time: we were here....

Given the following Bayes Net, write the algebraic expression to calculate the probability Felix is not late $\left(L_{n}\right)$.


## Last time: we were here... (spreadsheet-wise)

| A | в | c | D | E | F | G | H | 1 | J | k | L | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| weather |  | transport |  | weather | transport | $\mathrm{P}(\mathrm{w}, \mathrm{t})$ | late | weather | transport | $\mathrm{P}(\mathrm{l}, \mathrm{w}, \mathrm{t})$ |  |  |
| rain | 0.6 | bike | 0.7 | rain | bike | 0.42 | yes | rain | bike | 0.126 | <- G2 *. 3 | <- P(L_y\|w, t)P(w,t) |
| clear | 0.4 | T | 0.3 | rain | T | 0.18 | yes | rain | T | 0.108 | <-G3*. 6 |  |
| Sanity check | 1 | Sanity check | 1 | clear | bike | 0.28 | yes | clear | bike | 0.028 |  |  |
|  |  |  |  | clear | T | 0.12 | yes | clear | T | 0.084 |  |  |
|  |  |  |  |  | Sanity check | 1 | no | rain | bike | 0.294 |  |  |
|  |  |  |  |  |  |  | no | rain | T | 0.072 |  |  |
|  |  |  |  |  |  |  | no | clear | bike | 0.252 |  |  |
|  |  |  |  |  |  |  | no | clear | T | 0.036 |  |  |
|  |  |  |  |  |  |  |  |  | Sanity Check | 1 |  |  |
|  |  |  |  |  |  |  |  |  | Prob that I'll be late: | 0.346 |  |  |
|  |  |  |  |  |  |  |  |  | Prob that I won't be late | 0.654 |  |  |

## ICA 2: T_bike

Given the following Bayes Net, use a spreadsheet to calculate the probability Felix is not late $\left(L_{n}\right)$. Start by updating our calculations for $T$. What is the probability of $T_{b i k e}$ ?


|  | T_bike | T_t |
| :---: | :---: | :---: |
| W_r | 0.2 | 0.8 |
| W_c | 0.9 | 0.1 |

## ICA 3: L no

Given the following Bayes Net, use a spreadsheet to calculate the probability Felix is not late $\left(L_{n}\right)$. Now that we have our calculations for $T$, is $L_{n}$ lower or higher than it was before we added this dependency? (it was 0.654 before)


ICA 4: given L_no

$$
\begin{aligned}
P\left(\omega, T \mid L_{n}\right) & =\frac{P\left(\omega, T, L_{n}\right)}{P\left(L_{n}\right)} \\
& =\frac{P\left(\omega, T, L_{n}\right)}{\sum_{w, t} P\left(\omega, T, L_{n}\right)} \\
P\left(\omega, T_{b} \mid L_{n}\right) & =\frac{P\left(U_{n}, T, L_{n}\right)}{\sum_{\omega t} P\left(\omega, T, L_{n}\right)}
\end{aligned}
$$

## Link to spreadsheet computations for these Bayes Nets!

- https://bit.ly/sec1bayes
- (we added the previous example to this sheet in real time :D )


## Summary: Bayes Rule

- Bayes Rule:
- Bayes' rule denotes the relationship between $P(A \mid B)$ and $P(B \mid A)$
- $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
- When calculating $P(B)$ for the denominator, it's often useful to calculate this as the sum of $\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)$
- On HW 9/Test 4: yes


## Summary: Naïve Bayes Classifiers

- Naïve Bayes Classifiers:
- Why: grounding Bayes' Rule in a real-world example
- Main idea: leverage Bayes' Rule to decide on the class of an unknown data point
- On HW 9/Test 4: not explicitly


## Summary: Bayes Nets

- Bayes Nets
- Why: models much more complex relationships/dependencies
- Main idea: use conditional probabilities and conditional independences to make computations tractable when many factors are given
- On HW 9/Test 4: yes


## Break time!

- Go do ICA 23. Passcode is "secret"
- While you are waiting $->$ give Felix your mini-project questions
mini-projects @ 1:07

Mini-projects Questions
format:
Lo can I include pictures? yes!
prob/stats:
LD ok if som recommendations pertain to different components of the system? yes!

MW 9 questions
P1: ticket class - lower is better

$$
[1, \ldots 5]
$$

## Schedule

4/25: Review (yes, there will be an ICA on the 25th)
Mini-project: must email Felix to request an extension (by default no late passes).
Test 4: May 4th, 1 - 3pm, Snell Engineering 108, you'll have 90 minutes for this test (expect it to be about the same length as Test 3 though).

Test 4 review: April 29th (Friday) @ 10am w/ Prof. Higger (will be recorded)

| Mon | Tue | Wed | Thu | Fri | Sat Sun |
| :---: | :---: | :---: | :---: | :---: | :---: |
| April 18th <br> No lecture - Patriot's Day | Felix OH Calendly | Felix OH Calendly | Felix OH Calendly Lecture 23 - Bayes Nets, part 2 mini-project work day |  |  |
| April 25th Lecture 24 - review Mini-project due @ 11:45am |  | Felix OH Calendly HW 9 due @ 11:59pm |  | $\begin{gathered} \text { Review @ } \\ \text { 10am } \\ \text { (zoom) } \end{gathered}$ |  |
| May 2nd | Felix OH | Test 4, 1-3pm, Snell Eng 108 |  |  |  |

## More recommended resources on these topics

- YouTube: Berkeley AI, Section 5: Probability, Bayes Nets
- UW CSE 473, Bayes' Nets: https://courses.cs.washington.edu/courses/ cse473/19sp/slides/cse473sp19-BayesNets.pdf
- Does independence imply conditional independence? https:// stats.stackexchange.com/questions/51322/does-independence-imply-conditional-independence

