Now playing: well start @ 11:47
CAKE," Short Skirt long Jacket"
Maroon 5, "Harder to Breathe"
AC/DC, "Back in Black"
yes, were enjoying the early 2000s today. "I (mostly)
Get out:

- your notes
- a place to do your ICA for today (thin is I (A3)

Matrices and Vector Geometry

Felix has 2 cats and rates themself at 1 happiness
Krishna has 1 dog and 2 cats and rates herself at 2 happiness
Lase has no dogs and 1 parakeet and rates herself at 0 happiness
$\left[\begin{array}{lll|l}2 & 0 & 0 & 1 \\ 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}1 & 0 & 0 & 1 / 2 \\ 2 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0\end{array}\right]$

How happy do you think that Felix will be if they get 2 more cats? $\rightarrow 4$?

Choux

Solving linear systems
ICA Question 1: for each matrix, write down the following:
a) is it in RREF?
breakout rooms:
b) if no, identify a specific reason why not

- camera
c) if yes, identify whether the system has:
- talk to one
- no solutions another
- one unique solution $\nabla^{r_{0}^{\prime}}=r_{0}-2 r_{1}$
D)

A $\left[\begin{array}{ll|l}1 & 2 & 3 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{ll|l}1 & 2 & 7 \\ 0 & 1 & 8\end{array}\right]\left[\begin{array}{lll|l}1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 6\end{array}\right]\left[\begin{array}{ll|l}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right]$
\rightarrow no solutions \rightarrow inconsisent $_{\rightarrow 0}$
to many solutions

RREF -zero rows at bottom

- leading coeffirencts ane \&
- above/ below the leading coed, ane zero

Matrices \& Vectors

- A matrix is an array of scalars
- Matrices have shapes row a by columns

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 6 & 8
\end{array}\right] 2 \times 3
$$

- A vector is a matrix with 1 row or 1 column column vector row vector

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { shape: } 3 \times 1 \quad\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
\text { shape: } & 5 \times 5
\end{array}\right]
$$

Notation and convention (a bit)

- scalars - lowercase, not bold (e.g. $x=2$ \qquad
- vectors - lowercase, bold (if typing) (e.g. \mathbf{x}), arrow hat (if typing or by hand)
\qquad

$$
\vec{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

- "truly 2 dimensional" matrix - uppercase (e.g. A)

Io neither dim. is 1

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 6 & 9
\end{array}\right]
$$

$A \in \mathbb{R}^{2 \times 3}$
Lo has shape 2×3 and the values ave real nu mbers

Matrix operations

$$
C=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]
$$

- Matrix addition: $A+B+C$

$$
\begin{aligned}
& \text { - Matrix addition: } \left.\begin{array}{ll}
\frac{2}{4} & \frac{2}{6}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{3} & -\frac{1}{5}
\end{array}\right]=\left[\begin{array}{ll}
\frac{3}{7} & 1 \\
7 & 11
\end{array}\right] \\
& \text { - Add corresponding entries of two matrices }
\end{aligned}
$$

- A and B (sometimes silways)never) have the same shape

Matrix operations

- Scalar multiplication

$$
\frac{\text { Scalar multiplication }}{\left[\begin{array}{ll}
2 & 2 \\
4 & 6
\end{array}\right] * 3}=\left[\begin{array}{cc}
6 & 6 \\
12 & 18
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
2
\end{array}\right] *-1.5=\left[\begin{array}{c}
-1.5 \\
-3
\end{array}\right]
$$

- Multiply every entry of the matrix by some scalar
- A (sometimes, always, never) is a vector
\triangle there is no relationship between the shape of A - and whether or not you can

Matrix operations

$$
\begin{aligned}
& \cdot\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & 7 \\
10 & 11
\end{array}\right]=? \\
& {\left[\begin{array}{l}
5 \\
6
\end{array}\right]=? } \\
& {\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=? }
\end{aligned}
$$

Vectors

- common, but not universal convention is that \mathbb{R}^{n} is a column vector (rather than a row vector)
L assume $\mathbb{R}^{n \times(x)}$ is a column vector

$$
\begin{aligned}
& \vec{x} \in \mathbb{R}^{u} \quad \vec{x}=\left[\begin{array}{l}
\xi \\
\xi \\
\xi \\
\varepsilon
\end{array}\right] \\
& y \in \mathbb{R}^{3} \quad y=\left[\begin{array}{l}
\xi \\
\xi \\
\xi
\end{array}\right]
\end{aligned}
$$

Vector addition

$$
\vec{a}+\vec{b}=\vec{c}
$$

Vector addition

$$
2 a-2 b=?
$$

-take Z"" steps" then Z "b steps" back wards

Expressing system solutions via vector

- If our system has one solution, the RREF looks like....

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right] \Rightarrow \begin{aligned}
& x=5 \\
& y=2 \\
& z=3
\end{aligned} \rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right]
$$

Expressing system solutions via vector

- If our system has many solutions, the RREF looks like....

$$
x=3-z
$$

$$
\Rightarrow \quad y=4-2 z
$$

$$
z=0+z
$$

$\left.\begin{array}{l}\text { - for every } 0 \text { on the diagonal, } \\ \text { add corves sponding reflexive } \\ z\end{array}\right]=\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]+\left[\begin{array}{c}-1 \\ -2 \\ -z\end{array}\right.$ identity equality

Visualizing our solutions space (many solutions)
what are $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that satisfy:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right] z
$$

starting "adding" z

$$
z=0\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right] \quad z=1\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right]+\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]
$$

Visualizing our solutions space (many solutions)

ICA Question 2: come up with a system of 3 linear equations for which the solution space is a plane. Write this system down as an augmented matrix.
hints: think of previous ex. as having I "degrees of freedon", you want 2!

Will return to this as warm-up on thurs

Visualizing our solutions space (many solutions)

- In general, solutions spaces are N -dimensional if there are N "free parameters"

$$
\begin{gathered}
\begin{array}{c}
\text { parameters" } \\
L z=z \\
y=y \\
{\left[\begin{array}{l}
v \\
a \\
b \\
i \\
b \\
b \\
e \\
s
\end{array}\right]=\left[\begin{array}{l}
s \\
t \\
a \\
r \\
t \\
\hline
\end{array}\right]+\left[\begin{array}{l}
l \\
0 \\
e \\
f \\
v \\
e \\
c
\end{array}\right] \quad f_{1} \ldots} \\
\text { for all free variables }
\end{array}
\end{gathered}
$$

Homogenous Systems

- A system is homogenous if the augment is all zeroes

$$
\left[\begin{array}{ll|l}
1 & 2 & 0 \\
3 & 4 & 0
\end{array}\right]
$$

- The corresponding homogenous system to any linear system is:

$$
\left[\begin{array}{ll|c}
1 & 2 & 7 \\
3 & 4 & 10
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l}
1 & 2 & 0 \\
3 & 4 & 0
\end{array}\right]
$$

Vector Geometry: Length
The length of a vector is: $\|\vec{x}\|=\sqrt{\sum_{i} x_{i}^{2}}=\sqrt{\left(3^{2}+4^{2}\right)}$

$$
\begin{aligned}
& =\sqrt{25} \\
& =5
\end{aligned}
$$

Vector Geometry: dot product

- written as $\vec{x} \cdot \vec{y}$ and answers the question "how much of \vec{x} is in the direction of \vec{y} ?"

$$
\begin{aligned}
& =\text { comp. of } \vec{x} \text { in } *\|\vec{y}\| \\
& \text { the dir. of } \| \vec{y} \\
& =\|\vec{x}\| \cos \theta *\|\vec{y}\| \\
& =3 * 7 \\
& =21
\end{aligned}
$$

Vector Geometry: dot product
. Also (more commonly) written as: $\vec{x} \cdot \vec{y}=\sum_{i} x_{i}{ }^{*} y_{i}$
ult. corresponding elements and sum them

$$
\begin{aligned}
& =\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
7 \\
0
\end{array}\right] \\
& =3 * 7+4 * 0 \\
& =21
\end{aligned}
$$

Vector Geometry: dot product
. $\vec{x} \cdot \vec{y}=\sum_{i} x_{i}{ }^{*} y_{i}=\|\vec{x}\| *\|\vec{y}\| \cos \theta$

- What is the angle between \vec{x} and \vec{y} here?

$$
90^{\circ}
$$

- What about the cosine of this angle?

- dot product $\rightarrow 0$

Vector Geometry: dot product

- Wait, so why do we care about dot products?
- Extends intuition of angles to more (and less) than 2D/3D space
- Allows us to identify vectors at right angles with one another
- Alert! A dot product give us a Scalar!

Vector Geometry: dot product

- Side note: in modern Natural Language Processing, we use dot products to measure how semantically similar two words are.
- How close is "dog" to "cat" what about to "bumblebee"?

Other vocab

- A system is inconsistent if it has no solutions

Schedule

IRAs graded on effort

