I'll and you a note later today about this but... L via canvas $\xrightarrow{I} \longrightarrow$ April $4^{\text {th }}$

Lo your late pass count is up to date through HW 6
Lo you have 9 total $H W_{s}$ in this class
Ls Canvas grades are up to date through: Test 2, HW 5, ICA 16
LDTBD -late passes + mini -project
chi-square tests, multiple comparisons

What is a scenario where we might want to do a two-tailed t-test at a significance level $\alpha=$.2?
Love looked at.1or . 05 checking a diff, rather before, $\rightarrow 90 \%+95 \%$ confidence then $<$ or $>$ 480% in this case

$$
H_{1}: \mu_{1} \neq \mu_{2}
$$

t-tests - summary

- Do "morning people" and "night people" have differences in how long they sleep?
- two-tailed test
- observe a sample from each population of how many hours they sleep a day
- Does tire A last longer than tire B ?
- one-tailed
- measure tire treads for tire A vs. tire B at the same time (e.g. after one year)
- could do multiple t-tests (see end of lecture)
t-tests
- When do we use a t-test?

LD compare two groups*

$$
\longrightarrow
$$

variances of thegroups are similar
to the observations ane indep.
them are other kind s of t-tests \rightarrow future stats

- These are limited circumstances -there are other kinds of tests for other scenarios
Lochi-squared

Reading t-tables

$$
\begin{aligned}
& d f=4 \quad \alpha=0.05 \\
& \text { t value }=1.72 \quad \alpha=\text { two-tailed }
\end{aligned}
$$

- Let's do a t-tables example (because you'll often see these referenced for other statistics as well, and it's good to know a way to tell this w/o python/excel)

$$
\begin{aligned}
& \text { s. wo } \\
& 1.72 .776 ?
\end{aligned}
$$

$0.2 \leqslant p \leqslant 0.1$
t-test table

t-value -> p-value

- How is the p-value really being calculated though?
- (the answer beyond "we asked the t-test function" or "we looked it up in the t -table")
specific p-value:

1) TTEST in excel/spread sheet
2) python $+c d f$ function

- what 7% of the way through the t-val dist. am I?

Chi-squared tests

- When do we use a chi-squared test?
- want to ask whether a certain variable follows an expected distribution
- test if heights follows a norm dist - test if a riv. follows a poisson dist

Chi-squared tests

- Formula!

. $\chi^{2}=\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$

$$
\longrightarrow t \text { value }
$$

- Where
- O_{i} is the observed values
- E_{i} is the expected values

Chi-squared tests

- This is the test that we would use to answer the question:
- "Hey! Is that a loaded die???"
- "Hey! Is that an unfair coin???"
- Data:
- Observations about a single random variable/attribute

Chi-squared tests

- Things that weill have again:
- degrees of freedom: number of outcomes that you could have minus 1 UD t-test: d of free $n-2$
- critical value (this like the t-values in t-tests needed for a certain p-value): what \# for χ^{2} do we need to have a certain p-value (threshold)?
- For the fins example. If we were flipping a coin:
- degrees of freedom: 1 (heads, tails) $=2-1=1$
- critical value: we'll pick 0.05 - we want to be 95% sure that the coin actually is unfair before calling the casino cops C_{D} corresponding x^{\vee} value $\operatorname{lr} \alpha=0.05$

Chi-squared tests

- Data:
- 50 flips
- 28 heads, 22 tails - observed values
- Null hypothesis: no significant difference between the observed and expected values

Chi-squared tests

- Data:
- 50 flips
- 28 heads, 22 tails - observed values
- 25 heads, 25 tails - expected values
. $\chi^{2}=\sum_{i} \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}}->i$ will be heads then tails

Chi-squared tests

- Data:
- 50 flips
- 28 heads, 22 tails - observed values
- 25 heads, 25 tails - expected values \rightarrow because we as some the coin is fair
$. \chi^{2}=\sum_{i} \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}}-\frac{(28-25)^{2}}{25}+\frac{(22-25)^{2}}{25}=\frac{18}{25}=0.72$
- That's our chi-squared value!

Chi-squared tests

$$
\begin{array}{lr}
. \chi^{2}=\sum_{i} \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}}> & 0.72>3.841 ? \\
\frac{(28-25)^{2}}{25}+\frac{(22-25)^{2}}{25}=\frac{9}{25}+\frac{9}{25}=\frac{18}{25}=0.72 & \text { reject } H_{0}
\end{array}
$$

- That's our chi-squared value! Is our number higher than our critical value?

$$
d f=2-1=1 \quad \alpha=0.05
$$

Chi-squared tests

- For the flips example:
- degrees of freedom: 1
- Why 1 degree of freedom? $\rightarrow 2$ options $-1=1$
- critical value: we'll pick $\alpha=0.05$ - we want to be 95% sure that the coin actually is unfair before calling the casino cops, so this is the corresponding chi-squared value (3.841)
- Threshold to reject the null hypothesis

Chi-squared tests

- Data:
- 100 flips
- 64 heads, 36 tails - observed values
- So heads, 50 tails - expected values
. $\chi^{2}=\sum_{i} \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}} \rightarrow \frac{(64-50)^{2}}{50}+\frac{(36-50)^{2}}{50}=\frac{392}{50}=7.84$
- That's our chi-squared value!
reject H_{0} if $p^{<\alpha}$, corresponding Chi-squared tests to $X^{2}>$ the value associated ω / α
- Data:
- 100 flips
reject H_{0}, this is an unfair coin
- 64 heads, 3 tails - observed values
- 50 heads, 50 tails - expected values
P between $0.01 t$ 0.005

$$
\text { . } \chi^{2}=\sum_{i} \frac{\left(o_{i}-E_{i}\right)^{2}}{E_{i}}->\frac{(64-50)^{2}}{50}+\frac{(36-50)^{2}}{50}=\frac{196}{50}+\frac{196}{50}=\frac{392}{50}=7.84
$$

ICA Question 2: chi-squared

$$
\begin{aligned}
& \text { Say you have } 36 \text { 4-sided dice. } \\
& \text { import random } \\
& \text { rolls }=[\text { random.randint }(1,4) \text { for i in range (36)] }
\end{aligned}
$$

Fill in the following table, then calculate your chi-squared value:

	1	2	3	4
Expected	9	9	9	9
Observed	9	8	9	10

ICA Question 2: chi-squared

Say you have 364 -sided dice.
If our chi-squared value is: $12.32 \rightarrow$ reject ld. of $=3$ If our chi-squared value is: $0.2245 \rightarrow$ don't reject! If our chi-squared value is: $11.333 \rightarrow$ don't reject!

Do we reject the null hypothesis? (if $\alpha=0.01$)

Chi-square (x^{2}) Distribution Table

Calculating Chi-squared in python

- What are we actually calculating here?
- The percentage of the way that we are through a chi-square distribution
- (just like in a t-test we calculate the \% of the way that you are through a t-value distribution)

Chi-squared and some "real world" (non casino) data

- Where are chi-squared tests used in the real world?
- There is equal number of riders ride the Orange Line each weekday.
- The relative species distribution for 3 sub-species of bees in Massachusetts is $x \%, y \%, z \%$.
- The number of honks that Felix hears on their way to work follows a poisson distribution.

Lo you do need to be able to eval. categories Lotranslate into buckets

Chi-squared and some "real world" (non casino) data

- Where are chi-squared tests used in the real world?
- There is equal number of riders ride the Orange Line each weekday.
- The relative species distribution for 3 sub-species of bees in Massachusetts is $\mathrm{x} \%, \mathrm{y} \%, \mathrm{z} \%$.
- The number of honks that Felix hears on their way to work follows a poisson distribution.
- (we can also use a slightly different chi-squared test to determine if two variables are independent)

Amount of data needed

- Chi-squared
- ~30 data points
- T-tests
- No minimum sample size
- When you get >40 samples, other tests become more appropriate

ICA Question 3: Chi-squared tests

Say we want to know if the number of goals scored in a game of soccer follows a Poisson distribution where $\lambda=1$ (number of goals/game).

You observe the following total goal counts for 5 games: $1,1,2,0,1$.

How would you do a chi-squared test to calculate the p-value for games with 0,1 , and 2 goals scored?

$$
p(x=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

ICA Question 3: Chi-squared tests
You observe the following total goal counts for 5 games: $1,1,2,0,1$.

cats	0	1	2	$3+$
Observed	1	3	1	0 value x^{2}
Expected	$p(x=0) \times 5$			a for fable tate
$x^{2}>4.605$				

$P(X=0) \rightarrow$ prob that on onganes gave has 0 total goals $\alpha=.1$, deg. of freedom $=4-\frac{1}{1}-\frac{1}{2}$ cestemination λ ${ }^{2} L_{D}=2$ total d. of.

Multiple Comparisons (Bonferonni Correction)

- Family-wise error (for t-tests): probability of making one or more false positives (type 1 errors) when performing multiple t-tests
- We want to know whether or not using a certain fertilizer increases our crop yield on our spinach farm.
- Each week, we measure the crops in two fields and perform a t-test to determine whether no fertilizer or fertilizer is better.
- We'd like to control the Family-Wise Error rate to be under 0.1

Multiple Comparisons (Bonferonni Correction)

- We'd like to control the Family-Wise Error rate to be under 0.1 and we have 13 weeks of data
- If each week's t-test has a p-value that is under our chosen threshold of 0.1 , what is the probability that we've made at least one type 1 error?

$$
\text { . 1-(1-prob of ty pele error) }{ }^{10} \text { of tests }=1-(1-1)^{13}=0.746
$$

- Now, we'll adjust our weekly p-value cutoff so that we can guarantee that the family-wise error rate is not above . 1

$$
\text { - desived f-werror rate } \frac{0.1}{13}=0.0077
$$

Bonferonni correction

Multiple Comparisons (Bonferonni Correction)

- In summary:
- When doing multiple significance tests, to guarantee a Family Wise Error rate at a certain level, we need to increase the threshold of confidence on each individual test
- $\alpha_{\text {bonferonni }}=\frac{\alpha_{\text {orginal }}}{n}$
- Where α are the significance levels needed and n is the number of tests that will be happening

Admin

- Four weeks in the semester left (schedule on next page)
- Test 4: will be May 4th, 1-3pm, in this room (this is during your final exam period scheduled by the university registrar)
- Change: this test will not be cumulative, it will only* cover HW 7-9
- *don't be surprised if previous topics are referenced or built-upon, but there won't be questions that focus specifically on the HW 1-6 material
- This week would be a *great week* to get your mini-project done

LD gap in HOs this week

Mini project questions

- This week would be a *great week* to get your mini-project done
- Mini-project question:
- Talk to a group by you-what are they thinking of doing for their mini project?

ICA passcode: "chi"

Schedule HW8 will be released on Thursday
Turn in ICA 19 on Canvas (make sure that this is submitted by $2 \mathrm{pm}!$) - passcode is "chi" Test 4 is May $4^{\text {th }}$ O 1-3 pm in Swell Eng. 108

More recommended resources on these topics

- Chi-squared Test: YouTube, Bozeman Science | Chi-squared Test
- Family-Wise Error Rate \& Bonferonni Correction:
- https://riffyn.com/blog/family-wise-error-rate
- https://www.statology.org/family-wise-error-rate/
- Amount of data for a t-test: https://stats.stackexchange.com/questions/ 37993/is-there-a-minimum-sample-size-required-for-the-t-test-to-be-valid
- t-table: https://cdn1.byjus.com/wp-content/uploads/2020/04/T-table.png

