I'll <u>send</u> you a note later today about this but... Lo via canvas !! > April 4th Lo your late pass count is up to date through HWG Lo you have 9 total HWs in this class Lo Canvas grades are up to date through: Test 2, HW 5, ICA 16 LOTBD-late passes + mini-project

CS 2810: Mathematics of Data Models, Section 1

Spring 2022 — Felix Muzny

chi-square tests, multiple comparisons

t-tests - summary

- Do "morning people" and "night people" have differences in how long they sleep?
 - two-tailed test
 - observe a sample from each population of how many hours they sleep a day
- Does tire A last longer than tire B?
 - one-tailed
 - measure tire treads for tire A vs. tire B at the same time (e.g. after one year)
 - could do multiple t-tests (see end of lecture)

t-tests

• When do we use a t-test? 4 compare two groups' Wariances of the groups them are other Kinds of t-tests - DErtune sto These are limited circumstances—there are other kinds of tests for other scenarios Loch: - squared

Reading t-tables + value

- df = 4 $\alpha = 0.05$ + value = 1.72 two-tailed
- Let's do a t-tables example (because you'll often see these referenced for other statistics as well, and it's good to know a way to tell this w/o python/excel)
 1.72 > 2.74C.

	$0.2 \leq p \leq 0.1$				t-test table					
	cum. prob one-tail	t.50 0.50	t.75 0.25	t _{.80} 0.20	t.85 0.15	<i>t</i> .90 0.10	t.95 0.05	t.975 0.025	t.99 0.01	1
_	two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	
egress ffre	df 1 2	0.000	1.000 0.816	1.376 1.061	1.963 1.386	3.078 1.886	6.314 2.920	12.71 4.303	31.82 6.965	
	3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	
	5	0.000	0.727	0.920	1.156	1.476	1.943	2.571	3.365	

t-value -> p-value

- How is the p-value really being calculated though?
 - (the answer beyond "we asked the t-test function" or "we looked it up in the t-table")

- When do we use a chi-squared test?
 - want to ask whether a certain variable follows an expected distribution

• Formula!

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

+ - test

- Where
- O_i is the observed values
- E_i is the expected values

- This is the test that we would use to answer the question:
 - "Hey! Is that a loaded die???"
 - "Hey! Is that an unfair coin???"
- Data:
 - Observations about a single random variable/attribute

- Things that we'll have again:
 - degrees of freedom: number of outcomes that you could have minus 1
 LD +-test: Lof free n 2
 - critical value (this like the t-values in t-tests needed for a certain p-value): what # for χ^2 do we need to have a certain p-value (threshold)?

• critical value: we'll pick 0.05 - we want to be 95% sure that the coin actually is unfair before calling the casino cops D corresponding X^2 value $D \propto = 0.05$

- Data:
 - 50 flips
 - 28 heads, 22 tails observed values
- Null hypothesis: no significant difference between the observed and expected values

- Data:
 - 50 flips
 - 28 heads, 22 tails observed values
 - <u>25</u> heads, <u>25</u> tails expected values

$$\chi^{2} = \sum_{i} \frac{(o_{i} - E_{i})^{2}}{E_{i}} \rightarrow i \text{ will be heads then tails}$$

$$\sum_{i} \frac{(o_{i} - E_{i})^{2}}{E_{i}} \rightarrow i \text{ will be heads then tails}$$

$$\sum_{i} \frac{(o_{i} - E_{i})^{2}}{E_{i}} \rightarrow i \text{ will be heads then tails}$$

• Data:

.....

- 50 flips
- 28 heads, 22 tails observed values

• 25 heads, 26 tails - expected values - **D** be cause we assure
•
$$\chi^2 = \sum_{i} \frac{(o_i - E_i)^2}{E_i} \rightarrow \frac{(28 - 25)^2}{25} + \frac{(22 - 25)^2}{25} = \frac{18}{25} = 0.72$$

• That's our chi-squared value!

• That's our chi-squared value! Is our number higher than our critical value? Jf = 2 - 1 = J J = 0.05

	-	Ch	Chi-square (x ²) Distribution Table						
a df	0.1	0.05	0.025	0.01	0.005	0.001			
- 4	2.706	3.841	5.024	6.635	7.879	10.828			
2	4.605	5.991	7.378	9.21	10.597	13.816			
3	6.251	7.815	9.348	11.345	12.838	16.266			
4	7.779	9.488	11.143	13.277	14.86	18.467			
5	9.236	11.07	12.833	15.086	16.75	20.515			

- For the flips example:
 - degrees of freedom: 1

- critical value: we'll pick α = 0.05 we want to be 95% sure that the coin actually is unfair before calling the casino cops, so this is the corresponding chi-squared value (3.841)
 - Threshold to reject the null hypothesis

- Data:
 - 100 flips
 - 64 heads, 36 tails observed values
 - 50 heads, 50 tails expected values

$$\chi^{2} = \sum_{i} \frac{(o_{i} - E_{i})^{2}}{E_{i}} \rightarrow \frac{(64 - 50)^{2}}{50} + \frac{(36 - 50)^{2}}{50} = \frac{392}{50} = \frac{7.89}{50}$$

• That's our chi-squared value!

Chi-squared tests to X² > the value associated w/x

- Data:
 - 100 flips
 - 64 heads, 3 tails observed values
 - 50 heads, 50 tails expected values

$$\chi^2 = \sum_{i} \frac{(o_i - E_i)^2}{E_i} \to \frac{(64 - 50)^2}{50} + \frac{(35 - 50)^2}{50} = \frac{196}{50} + \frac{196}{50} = \frac{392}{50} = 7.84$$

		-	-	-			
	α	0.1	0.05	0.025	0.01	0.005	0.001
	df	0.1	0.05	0.025	0.01	0.005	0.001
	-₽1	2.706	3.841	5.024	6.635	7.879	10.828
	2	4.605	5.991	7.378	9.21	10.597	13.816
	3	6.251	7.815	9.348	11.345	12.838	16.266
	4	7.779	9.488	11.143	13.277	14.86	18,467

ICA Question 2: chi-squared

Say you have 36 4-sided dice. import random rolls = [random.randint(1, 4) for i in range(36)]

Fill in the following table, then calculate your chi-squared value:

	1	2	3	4
Expected	9	9	9	9
Observed	9	8	9	10

0.222

ICA Question 2: chi-squared

Say you have 36 4-sided dice.

If our chi-squared value is: 12.32 - reject of f = 7If our chi-squared value is: 0.2245 - don't reject?

If our chi-squared value is: <u>11.333-D</u> don't reject!

Do we reject the null hypothesis? (if J = 0.01)

		Chi-square (x ²) Distribution Table									
	۵	0.1	0.05	0.025	0.01	0.005	0.001				
	df										
	1	2.706	3.841	5.024	6.635	7.879	10.828				
	2	4.605	5.991	7.378	9.21	10.597	13.816				
	-D 3	6.251	7.815	9.348	11.345	12.838	16.266				
	4	7.779	9.488	11.143	13.277	14.86	18.467				
1	5	9.236	11.07	12.833	15.086	16.75	20.515				

Calculating Chi-squared in python

- What are we actually calculating here?
- The percentage of the way that we are through a chi-square distribution
 - (just like in a t-test we calculate the % of the way that you are through a t-value distribution)

Chi-squared and some "real world" (non casino) data

- Where are chi-squared tests used in the real world?
 - There is equal number of riders ride the Orange Line each weekday.
 - The relative species distribution for 3 sub-species of bees in Massachusetts is x%, y%, z%.
 - The number of honks that Felix hears on their way to work follows a poisson distribution.

Chi-squared and some "real world" (non casino) data

- Where are chi-squared tests used in the real world?
 - There is equal number of riders ride the Orange Line each weekday.
 - The relative species distribution for 3 sub-species of bees in Massachusetts is x%, y%, z%.
 - The number of honks that Felix hears on their way to work follows a poisson distribution.
- (we can also use a slightly different chi-squared test to determine if two variables are independent)

Amount of data needed

- Chi-squared
 - ~30 data points

- T-tests
 - No minimum sample size
 - When you get > 40 samples, other tests become more appropriate

ICA Question 3: Chi-squared tests

Say we want to know if the number of goals scored in a game of soccer follows a Poisson distribution where $\lambda = 1$ (number of goals/game).

You observe the following total goal counts for 5 games: 1, 1, 2, 0, 1.

How would you do a chi-squared test to calculate the p-value for games with 0, 1, and 2 goals scored? $p(x = k) = \frac{\lambda e^{-\lambda}}{k e^{-\lambda}}$

ICA Question 3: Chi-squared tests

Multiple Comparisons (Bonferonni Correction)

- Family-wise error (for t-tests): probability of making one or more false positives (type 1 errors) when performing multiple t-tests
- We want to know whether or not using a certain fertilizer increases our crop yield on our spinach farm.
- Each week, we measure the crops in two fields and perform a t-test to determine whether no fertilizer or fertilizer is better.
- We'd like to control the Family-Wise Error rate to be under 0.1

Multiple Comparisons (Bonferonni Correction)

- We'd like to control the Family-Wise Error rate to be under 0.1 and we have 13 weeks of data
- If each week's t-test has a p-value that is under our chosen threshold of 0.1, what is the probability that we've made at least one type 1 error? • $1-(1-\text{prob of } + \text{ypeL error})^{*} = 1-(1-1)^{1} = 0.746$
- Now, we'll adjust our weekly p-value cutoff so that we can guarantee that the family-wise error rate is not above .1

Multiple Comparisons (Bonferonni Correction)

- In summary:
- When doing multiple significance tests, to guarantee a Family Wise Error rate at a certain level, we need to increase the threshold of confidence on each individual test

•
$$\alpha_{bonferonni} = \frac{\alpha_{orginal}}{n}$$

• Where α are the significance levels needed and n is the number of tests that will be happening

Admin

- Four weeks in the semester left (schedule on next page)
- Test 4: will be May 4th, 1 3pm, in this room (this is during your final exam period scheduled by the university registrar)
 - Change: this test will not be cumulative, it will only* cover HW 7 -9
 - *don't be surprised if previous topics are referenced or built-upon, but there won't be questions that focus specifically on the HW 1 - 6 material
- This week would be a *great week* to get your mini-project done U gap in HW, this week

Mini project questions

- This week would be a *great week* to get your mini-project done
 - Mini-project question:
 - Talk to a group by you—what are they thinking of doing for their mini project?

Schedule HW8 will be released on Thursday

Turn in ICA 19 on Canvas (make sure that this is submitted by 2pm!) - passcode is "chi" Test 4 is May 4th 01-3 pm in Suell Eng. 108

Mon	Tue	Wed	Thu	Fri	Sat	Sun
April 4th Lecture 19 - chi-square test, multiple comparison correction	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 20 - covariance, correlation			
April 11th Lecture 21 - conditional probabilities, bayes	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 22 - conditional ind., bayes nets			HW 8 due @ 11:59pm
April 18th No lecture - Patriot's Day	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 23 - Regression: R^2 & F			
April 25th Lecture 24 - presentations, wrap-up Mini-project due @ 11:45am		HW 9 due @ 11:59pm				

\ D G

More recommended resources on these topics

- Chi-squared Test: YouTube, Bozeman Science | Chi-squared Test
- Family-Wise Error Rate & Bonferonni Correction:
 - <u>https://riffyn.com/blog/family-wise-error-rate</u>
 - <u>https://www.statology.org/family-wise-error-rate/</u>
- Amount of data for a t-test: <u>https://stats.stackexchange.com/questions/</u> <u>37993/is-there-a-minimum-sample-size-required-for-the-t-test-to-be-valid</u>
- t-table: <u>https://cdn1.byjus.com/wp-content/uploads/2020/04/T-table.png</u>