will start @11:47 As you get settled...

- Get out your notes
- Get out a place to do today's ICA (5)
- Where are you on HW 1?
 - A. I haven't looked at it
 - B. I've glanced at the problems
 - C. I've gotten started but I'm not very far
 - D. I'm probably half way through
 - E. I'm finished/almost finished

```
Now play
   "When We were young',
  YOASOBI, this is
a single from 2019 w/
a title in japanese
```


CS 2810: Mathematics of Data Models, Section 1

Spring 2022 — Felix Muzny

Linear Perceptrons

Given the features of **snout length** and **fluffiness**, featurize the following data points:

Machine Learning

- All machine learning models that do classification have the following
- components:
 A way to represent the input data -> last lecture -> featurize into num. vectors
- A classification function -> our starting point today
- A way to train the model -> also today! -> "learning"

Linear Perceptron

• A function that estimates one of two classes (a **binary classifier**), defined by the vector \vec{w} "weights" $f(\vec{x}) = 1$ if $\vec{x} \cdot \vec{w} \ge 0$ else 0 (lass 1 - P' dog"/ (1ass 0 = "cat" Lonew data point, take dot prod, assign a dass 100 4

Linear Perceptron

ICA Question 1: what is a linear perceptron's class estimate for the following samples if the perceptron is defined by the vector:

Linear Perceptron

ICA Question 1: what is a linear perceptron's class estimate for the following samples if the perceptron is defined by the vector:

$$f(\overrightarrow{x}) = 1$$
 if $\overrightarrow{x} \cdot \overrightarrow{w} \ge 0$ else 0

Linear Perceptron: decision boundary

(lass 0

(lagg

Linear Perceptron: ICA 2

Linear Perceptron: bias term

• Aside: length & dot product

• Note: $\vec{x} \cdot \vec{x}$ is ______positive Always Sonctines

- Suppose \vec{x} belongs to class 1 but our current perceptron estimates it as class 0 \rightarrow our guess is negative.
 - we want $\overrightarrow{x} \cdot \overrightarrow{w}$ to be **larger**
- We'll **add** the value of \vec{x} to \vec{w} :

- Suppose \vec{x} belongs to class 0 but our current perceptron estimates it as class 1
 - we want $\overrightarrow{x} \cdot \overrightarrow{w}$ to be smaller
- We'll <u>Gubtract</u> the value of $\vec{x} = \vec{w}$:
 - $\vec{w}' = \vec{J} \vec{X}$

Linear Perceptron: Learning rate

- The learning rate helps our model become more robust to wild swings.
- Imagine that you had two different training samples:

Linear Perceptron: demo

Mon	Tue	Wed	Thu	Fri	Sat	Sun
January 31st Lecture 5 - Linear Perceptron	Felix OH Calendly	HW 1 due @ 11:59pm	Lecture 6 - matrix multiplication, transforms Felix OH Khoury Office Hours HW 2 released			
February 7th Lecture 7 - Vector spaces in Snell Engineering 108	Felix OH Calendly		Lecture 8 - line of best fit Felix OH Khoury Office Hours			HW 2 due @ 11:59pm

Hw 2: proving linearity

$$\int (\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$
not linear: one counter example is sufficient

$$\int (x) = |x|$$

~