will start @11:47
As you get settled...

- Get out your notes
- Get out a place to do today's ICA (5)
- Where are you on HW 1?
A. I haven't looked at it
B. I've glanced at the problems
C. I've gotten started but I'm not very far
D. I'm probably half way through
E. I'm finished/almost finished

Now playing:
"When We were young", Adele
YOASOBI, this is
a single from $2019 \mathrm{w} /$ a title in japanese

Linear Perceptrons

Given the features of snout length and fluffiness, featurize the following data

$\left.\begin{array}{l}5 \\ 5\end{array}\right]$

Machine Learning

- All machine learning models that do classification have the following components:
$\rightarrow D$ is it a dog?
- A way to represent the input data $->$ last lecture \rightarrow featurize into nom. vectors
- A classification function -> our starting point today
- A way to train the model $->$ also today! \rightarrow "learning"

Linear Perceptron

- A function that estimates one of two classes (a binary classifier), defined by the vector $\xrightarrow{\longrightarrow}$ "weights"

Linear Perceptron

ICA Question 1: what is a linear perceptron's class estimate for the following samples if the perceptron is defined by the vector:

$$
\begin{aligned}
& f(\vec{x})=1 \text { if } \vec{x} \cdot \vec{w} \geq 0 \text { else } 0 \\
& \vec{w}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& \vec{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \text { squashface } \\
& \vec{\omega} \cdot \vec{x}_{1}=1 \quad \vec{\omega} \cdot \overrightarrow{x_{2}}=-8 \\
& \vec{\omega} \cdot \vec{x}_{3}=-7 \\
& \text { class: } 1 \\
& \text { lass: } 0 \\
& \text { class: } 0
\end{aligned}
$$

Linear Perceptron

ICA Question 1: what is a linear perceptron's class estimate for the following samples if the perceptron is defined by the vector:

$$
f(\vec{x})=1 \text { if } \vec{x} \cdot \vec{w} \geq 0 \text { else } 0
$$

$$
\vec{w}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

! classification error -o

Linear Perceptron: decision boundary

- Visualize all points where are estimated to be either class 1 or class 0 equivalent,
class 1

$$
\begin{aligned}
& m=-\frac{\omega_{s}}{\omega_{2}} \\
& \text { class } 0
\end{aligned}
$$

- $\vec{x} \cdot \vec{w}=0$ O-indexed

$$
\begin{aligned}
& =0 \\
& =\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\omega_{1} \\
\vdots \\
\omega_{n}
\end{array}\right]=0{ }^{\text {way }} \text { + + w wite } \\
& =\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{c}
\omega_{1} \\
\omega_{2}
\end{array}\right]=0 \\
& =x_{1} \omega_{1}+x_{2} \omega_{2}=0 \\
& x_{2}=-\frac{\omega_{1}}{\omega_{2}} x_{1} \quad x_{1}=-\frac{\omega_{0}}{\omega_{1}} x_{0}
\end{aligned}
$$

Linear Perceptron: decision boundary pot the

ICA Question 2: find a perceptron weight vector \vec{w} that distinguishes all samples below. Double check your weights with a sample from each class!

Linear Perceptron: ICA 2

Linear Perceptron: ICA 2
classof ower hene

Linear Perceptron: bias term

The bias term adds a "fake feature" whose value is always 1

$$
\begin{aligned}
& \cdot \vec{x}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \\
& \cdot \vec{y}=\left[\begin{array}{c}
1 \\
-2 \\
6
\end{array}\right]
\end{aligned}
$$

- no line through the origin separates these points!

$$
y=m x+b
$$

Linear Perceptron: bias term \square $\rightarrow\left[\begin{array}{c}-9 \\ 0 \\ 3 \\ 3\end{array}\right] \approx\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right]$ $\vec{x} \cdot \vec{w}=0$

$$
\begin{aligned}
& \vec{x} \cdot \vec{w}=0 \\
& \rightarrow \text { bias term, always } 1
\end{aligned}
$$

$$
\cdot\left[\begin{array}{l}
1 \\
X_{1} \\
X_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
w_{0} \\
w_{1} \\
w_{1} \\
w_{2}
\end{array}\right]=0
$$

$$
1 * \omega_{0}+x_{1} \omega_{1}+x_{2} \omega_{2}=0
$$

$$
\begin{aligned}
x_{2} & =b+m_{x_{3}} \\
& =m x_{1}+b
\end{aligned}
$$

$$
x_{2}=-\frac{w_{0}}{w_{2}}-\frac{w_{1}}{w_{2}} x_{1}
$$

b/intercet $\mathrm{m} / \mathrm{slope}$

Linear Perceptron: Training

- how do we train the model?
- how do we know when to stop training?
break: $12: 50$
ID you don't have mon
You don Q_{s} today, soifyou
want to turn in now you can

Linear Perceptron: Training

- Aside: length \& dot product
. $\|\vec{x}\|=\sqrt{\sum_{i} x_{i}^{2}}$
- $\vec{x} \cdot \vec{x}=\left[\begin{array}{c}x_{0} \\ \vdots \\ x_{n}\end{array}\right] \cdot\left[\begin{array}{c}x_{0} \\ \vdots \\ x_{n}\end{array}\right]=x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}$
- $\vec{x} \cdot \vec{x}=\|\vec{x}\|^{2}$
- Note: $\vec{x} \cdot \vec{x}$ is \qquad positive
Always

Linear Perceptron: Training

$$
\begin{aligned}
& \cdot \text { Aside: dot product is linear } \\
& f\left(\begin{array}{l}
f(y) \\
\cdot \frac{f(y)(x)+\vec{z})}{x} \cdot x \cdot \vec{y}+\vec{x} \cdot \vec{z} \\
{\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]+\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right)}
\end{array}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
4
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
6
\end{array}\right]\right. \\
& {\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left(\left[\begin{array}{l}
8 \\
10
\end{array}\right]\right)=3+8+5+12} \\
& 8+20=11+17 \\
& 28=28
\end{aligned}
$$

Linear Perceptron: Training

- Suppose \vec{x} belongs to class 1 but our current perceptron estimates it as class $0 \rightarrow$ our guess is negative
- we want $\vec{x} \cdot \vec{w}$ to be larger
- We'll add the value of \vec{x} to \vec{w} :
- $\begin{aligned} & \vec{w}^{\prime}=\vec{w}+\vec{x} \\ & \text { LDupdaticed weights }\end{aligned}$
$\cdot \vec{x} \cdot \vec{w}^{\prime}=\vec{x} \cdot(\vec{w}+\vec{x})=\vec{x} \cdot \vec{\omega}+\vec{x} \cdot \vec{x}$ L larger then $\vec{x} \cdot \vec{w}$? Lo old dot pred. lo yes!

Linear Perceptron: Training

- Suppose \vec{x} belongs to class 0 but our current perceptron estimates it as class 1
- we want $\vec{x} \cdot \vec{w}$ to be smaller
- We'll Subtract the value of \vec{x} for \vec{w} :
- $\vec{w}^{\prime}=\vec{b}-\vec{x}$

Linear Perceptron: Training

- choose starting \vec{w} arbitrarily
- for each $\overrightarrow{x, y} \xrightarrow{\longrightarrow}$ one $\underset{x}{\longrightarrow}$ example data point,
- $\hat{y}=\vec{w} \cdot \vec{x} \geq 0 \rightarrow$ current estimated class
- if $\hat{y}=0$ and $y=1$
- $\vec{w}^{\prime}=\vec{w}$ under $+\alpha \vec{x}$
- else if $\hat{y}=1$ and $y=0$
- $\vec{w}^{\prime}=\vec{w}$ minus $-\alpha \vec{x}$
- else (wire correct)
- D nothing

Linear Perceptron: Learning rate

- The learning rate helps our model become more robust to wild swings.
- Imagine that you had two different training samples:

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \vec{x}_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right]
$$

G multiply by a $\#$ in range $(0,1]$ L_{D} experimentally detarmbed

Linear Perceptron: demo

- Notebook demo

Schedule

 wow, so many office hours now!Turn in ICA 5 on Gradescope
HW 1 is due on Wednesday! khouryofficehours.com

We are remote until Feb 5th. Next Monday we'll be in person in Snell Engineering 108.

Mon	Tue	Wed	Thu	Fri	Sat	Sun
January 31st Lecture 5 - Linear Perceptron	Felix OH Calendly	HW 1 due @ 11:59pm	Lecture 6 - matrix multiplication, transforms Felix OH Khoury Office Hours HW 2 released			
February 7th Lecture 7 - Vector spaces in Snell Engineering 108	Felix OH Calendly		Lecture 8 - line of best fit Felix OH Khoury Office Hours			HW 2 due @ 11:59pm

HW 1: proving linearity

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

not linear: one counter example is sufficient

$$
f(x)=|x|
$$

Ps:

$$
\left[\begin{array}{c}
v \\
a \\
r_{i} \\
a \\
b \\
1 \\
- \\
s
\end{array}\right]=\left[\begin{array}{l}
s \\
t \\
a \\
r \\
t
\end{array}\right]+\left\{\begin{array}{l}
\text { coefficients } \\
\text { tines } \\
\text { free variables }
\end{array}\right]
$$

