
CS 2500 Exam 2 HONORS SUPPLEMENT – Fall 2012

Name:

Student Id (last 4 digits):

• This supplement to Exam 2 is in-
tended for students enrolled in the
Honors section of 2500.

• See the instructions on the regular
exam.

Good luck!

Problem Points /out of
1 / 16
2 / 15
3 / 15

Total / 46



16 POINTSProblem 1 Here’s a data definition for representing M&M’s:

(define-struct m+m (kind color))
;; An M+M is a (make-m+m Kind Color)
;;
;; A Kind is one of:
;; - ’plain
;; - ’peanut
;;
;; A Color is one of:
;; - ’red
;; - ’yellow
;; - ’green
;; - ’blue

(a) Design the function odd-plainblues? that takes a list of M+Ms and re-
turns true if the list contains an odd number of plain blue M&M’s. You must
define the function using just foldr, as follows:

(define (odd-plainblues? mms)
(foldr ...

You may use the following function:

(define (plain-blue? mm)
(and (symbol=? (m+m-kind mm) ’plain)

(symbol=? (m+m-color mm) ’blue)))

You may use the following list of M&M’s in your tests:

(define mms1 (list (make-m+m ’plain ’red)
(make-m+m ’plain ’blue)
(make-m+m ’peanut ’yellow)
(make-m+m ’plain ’blue)
(make-m+m ’plain ’blue)))

2



[Here is some more space for the previous problem.]

3



(b) You also want to be able to determine how many yellow peanut M&M’s will
be left over after you take all the yellow peanut M&M’s in a given list and
evenly divide them amongst five people. As a good programmer, you know
there’s an opportunity for abstraction here!

Design a function leftover that takes a list of elements, a predicate pred
on those elements, and a number n. The function should return the number of
elements satisfying pred that are left over after dividing all the list elements
satisfying pred into n equal sets.

You must define leftover using just foldr, as follows:

(define (leftover xs pred n)
(foldr ...

Give leftover the most general contract possible.

Here are examples of how we expect to be able to use leftover:

(check-expect (leftover mms1 plain-blue? 2) 1)
(check-expect (leftover ’(2 0 4 0 0) zero? 3) 0)
(check-expect (leftover ’(2 0 4 0 1 0 0 0) zero? 3) 2)

4



[Here is some more space for the previous problem.]

5



(c) Define odd-plainblues? from part (a) again, this time using leftover.
(There’s no need to provide a contract, purpose statement, and tests again.)

6



15 POINTSProblem 2 All semester students have been asking us about objects, so we’ve
decided to show you some on the exam. How would we represent objects in a
functional langauge like ISL-λ? As functions, of course! For this problem you
will implement a “class” of Circle objects. A Circle is an object-oriented
(OO) representation of a circle, though you don’t need to know anything about
objects to do this problem; just pay careful attention to the description and the
examples.

Design a function new-circle that consumes two inputs, a Posn specify-
ing the position of the center of the circle and a number representing the radius of
the circle, and produces a Circle.

;; new-circle : Posn Number -> Circle

A Circle is a function that responds to messages. A message is sent by applying
a Circle to a Symbol that matches the message’s name. The object reacts by
producing a value, which is frequently called a “method,” that is, a function that
will carry out some task on behalf of the object.
Here are the contracts of the messages your Circle representation must support:

Message Name Message Result Contract
’center Posn
’radius Number
’resize [Number -> Circle]
’equal [Circle -> Boolean]

Sending a Circle the message ’center (in other words, applying a Circle
to the symbol ’center) returns a Posn that represents the center of the circle
(the first argument to new-circle); sending ’radius returns the radius of
the circle. Sending a Circle the message ’resize returns a function that
consumes a number indicating how much to change the radius by and constructs
a new circle with the center unchanged and the radius increased by the given
amount. Sending a Circle the message ’equal returns a function that when
applied to another Circle determines if the circles have the same centers and
radii.

Hint: The next page contains some examples/tests to further clarify the details.

Task: Design new-circle.

7



;; Example Circles...
(define c0 (new-circle (make-posn 10 20) 4))
(define c1 (new-circle (make-posn 10 20) 9))

;; Tests for each ’message’
(check-expect (c0 ’radius) 4)
(check-expect (* (posn-x (c0 ’center))

(posn-y (c0 ’center))) 200)
(check-expect (((c0 ’resize) 10) ’radius) 14)
(check-expect ((c1 ’equal) c0) false)
(check-expect ((((c1 ’resize) -5) ’equal) c0) true)

8



[Here is some more space for the previous problem.]

9



15 POINTSProblem 3 An oracle is a function that knows about a number and can respond
to guesses about the number. Here is our data definition for Oracles:

;; An Answer is one of:
;; - ’low
;; - ’high
;; - ’ok
;;
;; An Oracle is a [Number -> Answer]

The oracle wilma, for example, knows about the number 4:

(wilma 2) ; produces ’low
(wilma 3) ; produces ’low
(wilma 4) ; produces ’ok
(wilma 5) ; produces ’high
(wilma 6) ; produces ’high

(a) Design a function number->oracle that makes an oracle for a given num-
ber.

(b) Design a function oracle->number that consumes an oracle and two in-
tegers, lo and hi, and produces the number the oracle knows. Assume that
lo < hi, and that the number known to the oracle is an integer in the range
[lo,hi).

Your function must be efficient; it should only make at most about 20 guesses
in order to find a number in the range [0,1000000).

10



[Here is some more space for the previous problem.]

11


