
CS2500 Exam 2 — Fall 2012

Name:

Student Id (last 4 digits):

Section (Shivers/Vona/Razzaq/Ahmed):

• Write down the answers in the
space provided.

• You may use the usual primitives
and expression forms, including
those suggested in hints; for every-
thing else, define it.

• The phrase “design this func-
tion/program” means that you
should apply the design recipe.
You are not required to provide
a template unless the problem
specifically asks for one. Be
prepared, however, to struggle with
the development of function bodies
if you choose to skip the template
step.

• To save time writing, you may write
(sqr 3) → 9

instead of
(check-expect (sqr 3) 9)

You may also write the Greek letter
λ instead of lambda, if you wish.

• Some basic test taking advice:
Before you start answering any
problems, read every problem, so
your brain can be thinking about
the harder problems in background
while you knock off the easy ones.

Good luck!

Problem Points /out of
1 / 8
2 / 10
3 / 11
4 / 28

Extra / 7
Total / 64
Base 57



8 POINTSProblem 1 Suppose we have the two lists

(define a ’(1 2))
(define b ’((3 4) (5 6)))

What do each of the following expressions produce?

1. (append a b)

2. (list a b)

3. (cons a b)

4. (apply append a b)

2



10 POINTSProblem 2 Suppose we use the following data definition to represent binary trees
with numbers at the leaves:

;;; A BT is one of:
;;; - Number
;;; - (make-node BT BT)
(define-struct node (left right))

Here are two example binary trees:

(define tree1 (make-node (make-node 10 9)
(make-node 3

(make-node 1 5))))
(define tree2 7)

Design a function to flatten a tree into the list of its elements, read left-to-right.
So, tree1 should flatten out to the list

(list 10 9 3 1 5)

3



11 POINTSProblem 3 Let’s continue working with the binary trees of the previous problem.
Two binary trees have the same shape if their structure matches, when we ignore
the actual values at the leaves. So these this tree has the same shape as tree1
from the previous problem:

(define tree3 (make-node (make-node 9 10)
(make-node 5

(make-node 0 -7))))

Design a function, same-shape? to determine if two trees have the same
shape.

4



28 POINTSProblem 4 [Note: this problem has four parts. Make sure you answer all of
them.]

We can represent songs in a music collection with the following data defini-
tion:

;;; A Song is a (make-song String String Number)
(define-struct song title artist length)
;;; where the length of the song is given in seconds.

(define song1 (make-song "Hey, Jude" "The Beatles" 431))
(define songs (list song1

(make-song "U Smile" "Justin Bieber" 197)
(make-song "Free Bird" "Lynyrd Skynyrd" 608)))

1. Design a function, total-time, that consumes a list of songs and produces
the total length of all the songs. Write your function using a loop function—
but do not use apply.

2. Your instructors are huge Justin Bieber fans1 We’d like a way to take a play
list of songs and determine if the list contains any songs by Justin.

Design a function, any-bieber? that returns true if the input list has one or
more songs by artist "Justin Bieber". Again, use a loop function; again,
don’t use apply.

3. We’ve been playing Justin Bieber2 at the weekly CS2500 staff meeting. All
semester. (We think it brightens up the mood.) To our dismay, not only have
some of the tutors and TAs refused to join in when we close the meetings
with our weekly sing-along of “As long as you love me,” they’ve actually
begun discussing writing a function that would take a list of songs and a
string naming an artist, and remove all the songs in the list by the given
artist. Perhaps you could help?

Design a function, remove-artist, that takes a list of songs, and a string
giving the name of an artist, and strips all the songs from the input list by
that artist. As usual, use a loop function, and no apply.

1Razzaq prefers the rawer, grittier edge of his pre-Misteltoe work, before he sold out and went
commercial, while Shivers maintains that Believe is some of his deepest and most harmonically
complex work to date—but, really, pretty much everyone’s a fan.

2Usually My World 2.0, but sometimes we’ll switch things up with some Believe for variety.

5



4. Give a contract and purpose statement for the following function.

(define (fred xs)
(quicksort xs

(lambda (a b) (< (song-length a)
(song-length b)))))

6



[Here is some more space for the previous problem.]

7



7 POINTSProblem 5 (Extra credit)
You can define binary trees that contain values at every node of the tree, not

just at the leaves. For example, this data definition lets us represent binary trees
that have a numeric grade in the range [0, 100] at every node in the tree:

(define-struct node (left val right))

;;; A GradeTree is one of:
;;; - a Grade
;;; - (make-node GradeTree Grade GradeTree)
;;;
;;; A Grade is a number in the range [0,100].

Here are three example GradeTrees:

(define tree1 (make-node (make-node 3 0 1)
10
(make-node 8 100 (make-node 1 2 3))))

(define tree2 (make-node (make-node 1 0 10)
3
105))

(define tree3 (make-node (make-node 1 5 8)
10
(make-node (make-node 11 17 18)

23
87)))

A GradeTree node is ordered if

• all the numbers in its left child are smaller than the node’s value,

• all the numbers in its right child are greater than the node’s value, and

• the left and right subtrees are both ordered.

(Note that this is a recursive definition.) A tree leaf (being just a number) is
considered to be trivially ordered.

So, for example, tree1 is not ordered, because the left subtree (make-node 3 0 1)
is not ordered. Likewise, tree2 is also not ordered, because the left child contains
the numbers {0, 1, 10}, but 10 isn’t less than root node’s value, 3.

8



On the other hand, tree3 is ordered.
Ordered trees are useful. We can, for instance, check a large ordered tree to see

if it contains a given number much more quickly than we can check an unordered
tree, or the equivalent list of numbers.

Please design a function tree-ordered? that takes a GradeTree and deter-
mines if the tree is ordered or not. Note: for credit, your program must be simple,
elegant and efficient: the amount of work it does should be proportional to the
total number of numbers in the tree.

Hint: you may find it useful to declare a helper function. . .

9


