

ECOOP 2001 Tutorial

Squeak:
An Open Source Smalltalk

for the 21st Century

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

1 of 44Squeak: An Open Source Smalltalk

ECOOP 2001 — Budapest

Squeak:
An Open Source Smalltalk

for the 21st Century!

Andrew P. Black

Professor, Oregon Graduate Institute

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

2 of 44Squeak: An Open Source Smalltalk

What is Squeak?

• An “Open Source” Smalltalk

• A pure Object-Oriented language for
research, experimentation, prototyping,
building applications

• Support for e-mail, web, sound, video, 3-D
modeling, scripting, presentations...

• An active community of people who are
getting excited about programming again!

• A “place” to experiment with objects

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

3 of 44Squeak: An Open Source Smalltalk

What we

won’t

 do this afternoon…

• Listen to a 3-hour lecture telling you
everything about Squeak

Why?

• I don’t know

everything

 about Squeak!

• Even if I did, I couldn’t tell you everything in
3 week, let alone 3-hours!!

• What you learn would be out of date in a
month anyway!!!

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

4 of 44Squeak: An Open Source Smalltalk

What we

will

 do:

Learn how to

learn

 about Squeak

• Focus on showing you how to find out more

• Explore objects

• Explore source code

• Try things out — learn by doing

• Know to use the Swiki and the mailing list

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

5 of 44Squeak: An Open Source Smalltalk

Outline

14:00 —Introduction

14:30 —Basic Smalltalk (Worksheet 1)

– Worksheet on Squeak syntax, creating and browsing
classes, instances and methods

– Using the paragraph editor and command keys

– Using Workspaces

– Filling-in code

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

6 of 44Squeak: An Open Source Smalltalk

15:00 —How to learn more (demo)

– Finding classes, exploring objects

– Finding methods, senders, implementors

– Fixing a bug

– “Showing off” your code: The Dandelion system

15:20 —Morphic User Interface (worksheet 2)

– 15:30—16:00 Refreshment break

– Drawing on the Screen

– Morphic Events

– Animation and updating

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

7 of 44Squeak: An Open Source Smalltalk

16:20 — More on Morphic

– What’s so neat about Morphic anyway?

– Any object is a window

– Relative addressing

16:30 —Morphic Programming Project
(hands on)

– Build your own Morphic project

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

8 of 44Squeak: An Open Source Smalltalk

17:00 —Distribution and MultiMedia (Demo
and lecture)

– Sound

– MPEG

– s2s: Remote Message Send

– PWS: Pluggable Web Server

– The SuperSwiki

17:30 — The End

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

9 of 44Squeak: An Open Source Smalltalk

The Squeak Environment

A “place” to experiment with objects

• Forget applications, files, compilers, data...

• Focus on objects

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

10 of 44Squeak: An Open Source Smalltalk

The Squeak World

 embedded in a curve, then you can ask to have
the text follow that curve, as illustrated in this
image. You can also ask to have the text avoid
occlusions, in which case it will do its
best to avoid sibling submorphs
that are in front of it. Kerning
(cmd sh + or -) can help with the
awkward spacing that results from
narrow margins. Other morphs can
also be embedded in text as glyphs.
Embedding placement is based on the top left
corner of the morph’s bounding box.

Text
in this

rectangle
flows

around
me

Text
morphs can be chained

together, causing their contents
to flow between containers as
the contents or the containers
change. If a TextMorph is

embedded in another
morph, then you canask to have itfill

the
sha

pe
 of thatmorp

h.
 If

 th
e
te
xt is

LIVE
in

MORPHIC

Yes, you are... x

XIIXI
X

IX

VIII
VII VI V

IV

III

II
I

S
q
u
e
a
k

 S u p p l i e s

T
o
o
l
s

image sources &
 changes“goodies”

Squeak VM

host OS

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

11 of 44Squeak: An Open Source Smalltalk

Smalltalk Syntax

• No syntax for classes, packages,

etc.

– Class creation and method categorization are done

imperatively

 using the development tools

• The method syntax is simple, but different

>= aString

"Answer whether the receiver sorts after or equal to
aString. The collation order is simple ascii (with case
differences)."

^ (self compare: self with: aString collated: AsciiOrder) >= 2

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

12 of 44Squeak: An Open Source Smalltalk

Smalltalk — The Language

Literal Objects

27 The unique object 27

18.5 The floating point number 18.5

1.85e1 same as above

'a string' a string

#request the symbol

request.

It is unique; two symbols
with the same name denote the same object

$r the single character

r

(3, 2.7, 'a string') an array literal. This is a heterogeneous array
containing an integer, a float, and a string

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

13 of 44Squeak: An Open Source Smalltalk

Sending Messages

Unary Message (no arguments)

• selector is a keyword-like

symbol

– examples: 3 factorial
7 negated
$c asInteger

– note: no colon at the end of the symbol

 7 printString

receiver
(target of message) selector

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

14 of 44Squeak: An Open Source Smalltalk

Binary Message (one argument!)

• selector is one or two special characters

7 = 5 message

= 5

 sent to object 7

2 + 3 message

+ 3

 sent to object 2

17 // 3 message

// 3

 sent to integer object 17
(result is 5)

17 / 3 message

/ 3

 sent to integer object 17
(result is)

5 + 2

receiver selector
argument

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

15 of 44Squeak: An Open Source Smalltalk

Keyword Messages

• one or more arguments

– Examples:

#(3 5 7 9 11) at: 2

game movefrom: pinA to: pinB using: pinC

5 between: 0 and: 9

• The colon ‘

:

’ indicates to the parser that an
argument follows the keyword.

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

16 of 44Squeak: An Open Source Smalltalk

Order of Evaluation

• The receiver (or an argument) can be
another invocation (message expression)

• Evaluation order is

– parenthesized invocations

– unary invocation, evaluated

left to right

– binary invocations, evaluated

left to right

– keyword invocations

• No “priorities” for particular operators

–

∗

 does not bind more tightly than +

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

17 of 44Squeak: An Open Source Smalltalk

Cascaded Messages (syntactic sugar)

anArray at: 1 put: 9.
anArray at: 2 put: 11.
anArray at: 3 put: 13.

• This can be abbreviated as

• Result is that of the last message send

Transcript show: 'Hello World'; cr

anArray at: 1 put: 9; at: 2 put: 11; at: 3 put: 13

receiver for all
“receiverless messages”3 messages

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

18 of 44Squeak: An Open Source Smalltalk

Variables

Instance Variables

• The names of the “slots” in an object, which
make up its representation.

• declared in the class

instanceVariableNames: 'name1 name2'

Temporaries

• Names local to a method body or block

| student professorAtOGI I

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

19 of 44Squeak: An Open Source Smalltalk

Assignment
x ← 3 + 5
– make x name the object resulting from the evaluation

of the expression 3 + 5

y := Array new: 1000000
– make y name a new 1MB array

• Variables name objects
– They do not provide storage for objects

• Assigning to a variable makes it name a
different object
– no object is created or copied by assignment

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

20 of 44Squeak: An Open Source Smalltalk

Enter the Squeak World!
• If you have loaded Squeak, but not really

figured out how to do anything:
– do worksheet 1A: An Introduction to the Squeak

World.

• If you are familiar with another Smalltalk, or
have already done 1A, instead:
– do worksheet 1B: Building Applications by Direct

Manipulation.

• If you haven’t got Squeak on your
computer:
– Come and see me or one of the student assistants.

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

21 of 44Squeak: An Open Source Smalltalk

If you get Stuck…

• If you get stuck, yell for help.

• Save your brainpower for the hard stuff!

• The reason to do a hands on workshop is
to quickly get past the initial learning
“bump”

14:30 – 15:00 — “Hands On”
Worksheet 1A or 1B

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

22 of 44Squeak: An Open Source Smalltalk

Learning More

• Finding Classes

– By name or fragment of a name

- command-f in the Class-category pane of a browser

– By selecting a morph and choosing browse morph
class from the debug menu

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

23 of 44Squeak: An Open Source Smalltalk

• Finding methods

– By name fragment or by example — with the method
finder

– Smalltalk browseMethodsWhoseNamesContain:
'screen'

– Smalltalk browseMethodsWithString: 'useful', or
highlight the string and type command-E

– highlight a selector, choose implementors of …
(command-m) or senders of …(command-n)

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

24 of 44Squeak: An Open Source Smalltalk

Finding Answers

Some invaluable resources:

• The Squeak “Swiki”

– a wiki is a website where anyone is free to contribute
to editing and maintenance

– http://minnow.cc.gatech.edu/squeak

- snapshot at http://swikimirror.squeakspace.com/

• Squeak.org

– Documentation, tutorials, swikis, other sites, books
and papers, downloads, and information on …

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

25 of 44Squeak: An Open Source Smalltalk

• The Squeak mailing list

– a friendly place where “newbies” are made welcome

– squeak-request@cs.uiuc.edu

– Archive of [FIX]es, [ENH]ancements, [GOODIE]s…

http://swiki.gsug.org:8080/SQFIXES

– Searchable archive of whole list

http://groups.yahoo.com/group/squeak

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

26 of 44Squeak: An Open Source Smalltalk

Example—Finding a Bug

• Let your mouse linger over the
collapse icon in a window.

– What does the balloon say?

• Now click the icon and collapse
the window.

• Let your mouse linger over the same icon in
the collapsed version of the window.

– What does the balloon say?

• Let’s fix this right now!

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

27 of 44Squeak: An Open Source Smalltalk

Showing off your Code

• Smalltalk programmers normally look at
code using their Smalltalk System

– code file browser, system browser …

• But what about showing code to others?

• Enter Dandelion: a code analysis
framework for Squeak.

– produces web pages for each class

– will eventually generate other forms of
documentation, e.g., UML class diagrams

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

28 of 44Squeak: An Open Source Smalltalk

Morphic User Interface

• Remember:
refreshment break from 15:30 to 16:00

15:20–16:20 — Worksheet 2

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

29 of 44Squeak: An Open Source Smalltalk

More on Morphic

• A new way of thinking about graphical
Interfaces

• Morphic reifies the UI

– reify = “to make real”

– no separation between building the UI
and using the UI

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

30 of 44Squeak: An Open Source Smalltalk

• display objects—Morphs—are full-fledged
Squeak objects

– they have state and behaviour

- you can send them messages

– you can add or subtract to their structure

- they can be nested to arbitrary depth

– they react to events (like mouse clicks)

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

31 of 44Squeak: An Open Source Smalltalk

• You can change the look and behaviour of
Morphs after they are instantiated

– Example: Buttons

- Place a button on the desktop

- Give it behavior so that when clicked it opens a
workspace.

- Try preferences >> annotationPanes

– Example

- “Ant” has a few simple rules for wandering about,
dropping pheromones

- StarSqueakAntColony new openInWorld

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

32 of 44Squeak: An Open Source Smalltalk

Hierarchy of Morphs

• The “world”—the desktop or background—
is a Morph (a PasteUpMorph)

• Any morph can be embedded inside any
other morph

– But not inside more than one

– Thus we have a pure tree structure:

- each morph has zero or one parents, called owners

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

33 of 44Squeak: An Open Source Smalltalk

• Example: building a “Launcher” launcher.5.cs

Launcher >> initializelayout
initializeLayout
self layoutPolicy: TableLayout new.
self listDirection: #leftToRight.
self layoutInset: 2.
self borderWidth: 0.
self hResizing: #shrinkWrap.
self vResizing: #shrinkWrap.
self color: Color gray.

• listDirection can be changed dynamically,
e.g., to #topToBottom

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

34 of 44Squeak: An Open Source Smalltalk

What about Model-View-Controller?

• The Model-View separation was pioneered
by Smalltalk.

• It’s an excellent idea for many applications
… but not for all.

• The Ant world, for instance, is much
simpler without the separation.
– We can actually give behavior to the dots on the

screen.

• You can use Morphs to implement View
and Controller with a separate Model.

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

35 of 44Squeak: An Open Source Smalltalk

A Word about MVC

• Squeak at present has two mostly
incompatible GUI frameworks:
1. Morphic — my focus today

2. MVC — the traditional UI framework since 1980

• There are a number of classes that really
work only in MVC, e.g., Spline, Line,
CurveFitter …

• We will not talk about MVC during this
tutorial
– There are many references available on MVC

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

36 of 44Squeak: An Open Source Smalltalk

Morphic Programming Project

• Build your own Morphic Clock

• Play the Reflex Game

• Warning: thinking is required!

– this worksheet is less of a cookbook

– more discovery is required

16:30 –17:00 — Worksheet 3

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

37 of 44Squeak: An Open Source Smalltalk

Distribution and Multimedia

Squeak is network and web aware

• Mail agent (Celeste)

• Web browser (Scamper)

• Online Updates

• The “SuperSwiki”

– Squeak projects that can be loaded directly

• Netscape plugin

• PWS: Pluggable Web Server

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

38 of 44Squeak: An Open Source Smalltalk

Distributed Programming

• TCP and UDP, FTP, HTTP, SMTP and
POP3: all the “P”s!

• s2s: a remote message send system for
Squeak.

– Creates proxies for remote objects.

– Messages sent to proxies are relayed to the real
object on the remote machine.

– Answer is relayed back.

– Like CORBA or Java RMI.

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

39 of 44Squeak: An Open Source Smalltalk

Multimedia Support

• Has support for MIDI.

– Sampled sounds as well as synthetic waveforms.

– Look at “fun with Music” project.

• Has MPEG decoder and player

– but decoder is file-based plug-in.

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

40 of 44Squeak: An Open Source Smalltalk

A Squeak Machine

• SoftComputing “is using Squeak to
program an embdeed microproesssor
“from the ground up”

– 160MHz combined
DSP and RISC chip

– See http://
www.softcomp.com

– I’m not endorsing
this product!

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

41 of 44Squeak: An Open Source Smalltalk

–

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

42 of 44Squeak: An Open Source Smalltalk

What Next?

• Explore the projects in the image
and the SuperSwiki

• Buy Mark Guzdial’s books!

– O-O Design with Multimedia Apps

– Squeak: Open Personal Computing and Multimedia

• Join the squeak mailing list

• Contribute to the evolution of Squeak.

– It’s an open source project

– You can drive it wherever you want to take it

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE &TECHNOLOGY

43 of 44Squeak: An Open Source Smalltalk

Acknowledgements

• All of the people on the Squeak mailing list

• “Squeak Central”

without whom I would not be here today!

OREGON GRADUATE INSTITUTE
— OF —

SCIENCE & TECHNOLOGY

44 of 44 Squeak: An Open Source Smalltalk

The End

Worksheets

Worksheet 1A

An Introduction to the Squeak World

Intorduction to SqueakBased on by Harry Porter
Version 1.0, 17 April 2001, by Andrew P. Black, black@cse.ogi.edu

Getting Started

If you don't already have the Squeak system on a computer that you can share, download it now! Launch Squeak.

Using the Mouse

Smalltalk, from which Squeak is derrived and with which it is still somewhat compatible, was designed assuming
a three-button mouse. If your mouse has fewer buttons, you must press extra keys with the mouse button or
buttons to simulate the mouse buttons that you are missing.

For platform independence, the mouse buttons are usually referred to by colors in the Squeak software and
documentation. Consider buying a 3-button mouse; they are quite inexpensive, and make the Squeak world much
more friendly. (They are pretty useful in many other applications too!) Software that comes with the mouse, or
that is available on the Internet, will let you set up the buttons so that they do the right things. The following chart
shows what keys must be held down when mouse-clicking to simulate Squeak's buttons.

Symbolic MacOS Windows 3-button Use

Red Mouse button Left-button Left-button Selecting, moving the insertion cursor

Yellow Option-button Right-button Middle-button Application-specific menus

Blue -button Alt-Left-button Right-button Window and graphics manipulation

My mouse also has a scrolling wheel. I have this set up so that "wheel up" maps to (on my Macintosh)
and "wheel down" maps to This lets me use the wheel to control scrolling in my Squeak windows.

-upArrow
-downArrow.

One of the advantages of referring to the buttons by colors is that you may choose to map them to different
physical buttons from those shown above. For example, if you are left-handed, you might choose to reverse the
red and blue buttons. On my mouse, the middle button is actually the scrolling wheel. Because the yellow button is
used very frequently, I prefer to put the yellow button on the right, and to put the blue button on the wheel in the
middle.

Placing some colored labels on the mouse buttons will help your fingers to follow these directions.

The World Menu

Red-click outside of any window; you will see the . Notice that most Squeak menus are not modal;
you can leave them on the screen for as long as you wish by selecting keep Do this. Also, notice that
menus appear when you click the mouse, but do not disapear when you release it; they stay visible until you make
a selection, or until you click outside of the menu. You can even move the menu around by grabbing its title bar.

world menu
this menu up.

Bring up the submenu and select . You should get a large window labeled .open... workspace Workspace

Terminating and Restarting a Squeak Session

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 1 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

A Squeak session is normally terminated by writing out all of your objects to a disk file called a snapshot or
 file. When you first start Squeak, the Squeak Virtual Machine is loaded with an initial set of objects, which

includes a vast amount of pre-existing code and programming tools (all of which are objects). You will modify
these objects during your Squeak session.

image

When you terminate Squeak, you will a snapshot of your memory containing all of your objects. The next
time you use Squeak, memory will be reloaded from this file and the state of the system will be exactly as you left
it. The snapshot file will be named , where is something you will choose, like .
There will be a corresponding "changes" file, with a name such as .

save

xxxxx.image xxxxx ECOOP.image
ECOOP.changes

From the world menu, select >> >> A "Blob" will attach itself to the
mouse cursor. (The jargon is: the blob is "in hand"). Put the Blob down (by red-clicking) somewhere on the
screen.

new morph ... Demo BlobMorph.

Make your first snapshot by selecting from the world menu. Give a name to your image file when
requested, such as . (Saving may take a second or two.) You may save an image any time
you wish, by selecting the option from the system menu. If the Squeak system crashes, and you restart
it, the state will revert to the last snapshot you made. You can use this feature to go back to an earlier state
if you get your Squeak machine into a really big mess.

save as...
ECOOP.image

save

Another file called will also be created. All the source code that you compile or execute is
saved there. For the most part the changes can be ignored, but if a crash occurs you can use it to recover
changes made after the last snapshot. See (at the end of this worksheet) for instructions.

ECOOP.changes

the box
Select on the world menu to exit the Squeak environment.quit
Restart Squeak from your saved image. The blob should still be ... well, behaving like a blob! Yes, running
processes are saved and restored too.

Collapse and / or close unneeded windows

Each window has a title bar with a "close" icon (an) in the upper left and a "collapse" icon
in the upper right.

x

In the initial state, you will see several windows on the screen. Collapse the windows
called and . Then expand them back to their original
size.

Getting Started... Welcome To..

Close the Workspace window that you created earlier.
Blue-click on the blob. You will see a collection of colored dots. Click in the pink
handle The blob should go away. (You may have to try several times as the Blob
squirms around and tries to get away from the mouse.)

.

Workspaces

 This time, instead of using the world menu, mouse over to the flap at the
right hand edge of the screen. The flap will pull out, like a drawer. Inside are a collection of tools. The off-
white rectangle third from the top is a workspace. If you let the mouse linger over the tools, ballons will
identify them. a workspace out of the flap.

Open another workspace. Tools

Drag
 To move the workspace window, grab it in the title bar at the top.

To make the window larger or smaller, move the mouse to the lower right corner. A yellow dot will appear;
this is a draggable resize handle. Note that a scroll bar appears when the cursor is in the workspace. Ignore
the scroll bar for now.

Practice resizing and moving windows.

 Every window has menu of items that apply specifically
to that window. Bring up the window menu for your workspace by red-
clicking the small icon at the left of the title bar, just to the right of the

 icon. Select to change the label in the title tab of the
workspace. This brings up a prompter�this is the same kind of prompter used
when saving a snapshot. (It's actually an object of class .)
Experiment with , and with changing the stacking order. Select

; the system is now waiting for you to select a color for the
window. Position the mouse anywhere on the screen and click it to select a
color.

The window menu.

menu
close change title ...

FillInTheBlank
full screen

window color

s in the workspace. Ignore

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 2 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

 window by pressing the "close" icon in the upper left corner.Close the workspace
 At any time only one window is active. The active window is in front and has its label

highlighted. The mouse cursor must be in the window in which you wish to type. Create a second
workspace and experiment with changing the active window with the red button. Experiment with
overlapping views.

Window Selection.

Type a sentence or two into a workspace. Use the , and
 keys. Drag with the red button to select some characters. (Press, drag, and release.) Type

characters to replace the highlighted characters. Try inserting and deleting characters after repositioning the
cursor. Click the mouse button twice without moving it. This is called double-clicking, regardless of how
long a time elapses between the clicks. What does double-click do when the cursor is in the middle of a
word, at the beginning of a line, at the beginning of the workspace or after quotes, brackets or parentheses?
(The bracket/quote feature will come in handy in matching nested brackets and parentheses when you are
writing code.) Bring up the yellow button menu and practice using , and . (There is a "copy
buffer" for text that has been cut. "Copy" saves into this buffer without cutting. You can also copy and paste
bwtween Squeak and other applications.

Text Editing in a Workspace. return tab
backspace

copy cut paste

can be used as short-cuts keys for , , and , as well as for many other editing
operations�see the for a full list.
Command keys copy cut paste

Squeak Language Reference Sheet
In this worksheet, we will write to mean that you type c while holding down the shortcut
key. But the actual key that you press to get a shortcut depends on your operating system. On the
Macintosh, hold down the key. On an IBM-compatible PC, hold down .

command-c

alt
Some command key shortcuts are written with a capital letter. For example, inserts the
text . To type these capitalized shortcuts you can hold down and the shortcut key while
you type , or, more conveniently, you can hold down while you type .

command-T
ifTrue: shift

t ctrl t
Here are some of the more commonly used editing shortcuts.

General Editing Commands

Key Description Notes

z Undo

x Cut

c Copy

v Paste

a Select all

D Duplicate. Paste the current selection over the prior selection, if it is non-
overlapping.

1

e Exchange. Exchange the contents of current selection with the contents of
the prior selection

1

y
Swap. If there is no selection, swap the characters on either side of the
insertion cursor, and advance the cursor. If the selection has 2 characters,
swap them, and advance the cursor.

w Delete preceding word

1. These commands are a bit unusual: they concern and affect not only the current selection, but also the
immediately preceding selection.

 Using and , type in more text than will fit in the window. The scroll bar works as you
expect; whether scroll bars are on the right or the left, and whether they flop out when they are needed or
are permanently on view, can be controlled by preferences. (). Notice that
there is a tiny menu icon at the top of the scroll bar. Press the red mouse button here to get the yellow
button menu that applies to the scrolling text pane. This is a nice short-cut, especially when using a stylus or
a one-button mouse.

Scrolling. copy paste

World menu>> help>>preferences

 Type in the workspace, select it and then select the menu option, or type
. (and work on the selected text, but if there is no selection, they work on the

whole of the current line.) Both commands evaluate the selected expression. The command displays

Message Sending. 2+3 print it
command-p Print it do it

print it

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 3 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

the result, but the option doesn't display the returned value. The short-cut key for is .
These are very common actions, so practice the short-cut keys.

do it do it command-d

Key Description

d Do "it" (where "it" is a Squeak expression)

i Inspect "it": evaluate "it" and open an inspector on the result. ("it" is a Squeak
expression). Exception: in a method list pane, i opens an interitance browser.

p Print "it". Evaluate "it" and insert the results immediately after "it." (where "it" is
a Smalltalk expression)

I Open the Object Explorer on "it" (where "it" is an expression)

Experiment with , to undo the last change. Experiment with searching the
workspace for a string. Use the shortcut keys as well as the menu items:
Undo, Searching. undo

Key Description

f Find. Set the search string from a string entered in a dialog. Then, advance the
cursor to the next occurrence of the search string.

g Find again. Advance the cursor to the next occurrence of the search string.

h Set Search String from the selection.

j Replace the next occurrence of the search string with the last replacement made

A Advance argument. Advance the cursor to the next keyword argument, or to the
end of string if no keyword arguments remain.

J Replace all occurrences of the search string with the last replacement made

S Replace all occurrences of the search string with the present change text

Figure out how the and commands work. Here are the
shortcut keys.
Accept, Cancel and Confirmers. accept cancel

Key Description

l Cancel (also "revert"). Cancel all edits made since the pane was opened or since the
last save

s Accept (also "save"). Save the changes made in the current pane.

o Spawn. Open a new window containing the present contents of this pane, and then
reset this window to its last saved state (that is, cancel the present window).

Workspaces keep a back-up copy. writes into this copy.Accept
Make some changes. takes the workspace back to the last copy saved by . Do an
and then close the workspace.

Cancel accept accept

In another workspace, make some changes without accepting them and try closing this workspace. A
confirmer should appear; try ignoring the question�what happens?

Graphics Demonstrations

In a workspace, type , select it and . Use the red button to click off several points on
the screen. Then click another button: you should see a curve. What does do to the curve?
Can the curve lie inside a window? What do scroll bars do to the curve? Why?

Spline example do it
restore display

Type in , then select . This is a typo and you should see a window pop up. Push theSpline example1 do it

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 4 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

 button. (is a valid message, just not for Splines.)Abandon example1
Type in then . This is also a typo, but this time Squeak suggests some possible
corrections. Select or . (Here is not a valid message on any object, so the system
looks for messages with similar spellings.)

Spline exampl do it
cancel example exampl

Accessing Files

From the world menu, select Alternatively, drag a browser from the flap.
You should see a pink window with several "sub-windows" known as . This is a file list browser, and
gives you a view of the current directory.

open...>>file list. file list Tools
panes

In the upper-left window pane you'll see the directory hierarchy, directories, so you know where you
are; the current directory is at the bottom.
In the upper-right pane, you'll see all the files in this directory.
Select a file name in the upper-right pane. (Choose a small text file.) You should see its contents in
the bottom pane.
Try using the wellow-button menu in the upper-right pane to change the sort order.

The bottom pane is similar to a workspace. You may edit files this way. Actually, you are editing an in-
memory copy. Use (or) to write the in-memory copy back to disk. Use to revert
to the old version without updating.

accept command-s cancel

The middle-left pane, containing just a *, defines a filtering pattern. You can change the pattern by
ing new text into this pane. Only directories and file names matching this pattern will be listed in the

upper-right pane.
accept

The file list browser also supports ftp. Servers appear as if they were volumes at the root directory level.
Yellow-click in the upper-left pane to add a new ftp server.

File Creation and Removal

In the upper-right pane, select and give it a name. This creates a zero-length file.add new file
Make some changes to the file, write them out, and read the changes back in.
Use to remove this and other unneeded files. Select the menu option and take a look at the
submenu options.

delete more...

Importing Code using file In

 is important: it is used for reading and compiling Squeak source code.file In
Select the file from the list in the upper-right pane.wkSheet.cs
Choose from the yellow-button menu. This brings up a tan-colored , which browse code file contents broswer

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 5 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

lets you examine the code in this file before you import it into Squeak.

Click on the comment button and the button, and explore the code in this file. ? class
Note how selections in one list affect the lists to its right.
Dismiss the file contents browser.

Return to the file list browser, make sure that the file is still selected, and choose from the
yellow-button menu.

wkSheet.cs file In

Forms and Points

Forms are rectangular blocks of pixels, like mini-bitmaps.

Expressions such as specify ; the @ character is a binary infix operator. For example
20@500 means the point with x=20 and y=500.

100@100 Points

The upper-left corner of the screen is position 0@0. The y coordinate increases the screen.down
Experiment with different display locations and variable names by re-sending the above messages.
Use to create a blank form. The message creates a form that is 30
pixels wide (x) and 40 pixels high (y).

f Form extent: 30@40 extent:

Execute . Click the mouse button.f displayAt: Sensor waitButton

Using a System Browser

The System Browser is the main tool used to read and write code in Smalltalk. It is OK to have many System
Browsers open at once. Normally, if you change code in one Browser, the changes will be visible in any other.
 (controls this).Preferences >> smartUpdating

Open a from the tool flap (or the world menu). The upper 4 panes in the browser contain
lists. These lists work just like the lists in the file contents browser. Practice scrolling and selecting items
from the lists. Note how selections in one list affect the lists to its right.

System Browser

Select from the upper-left pane; it should be right at the bottom. This pane is the
pane; because there are so many classes in Squeak, it is convenient to organize them into

categories. Once you have selected , you should see the class Hungary (the one that you
just filed in) in the pane, just to the right.

ECOOP-Tutorial class
category

ECOOP-Tutorial
class

Look at some methods in the lower pane.
Examine the menus in each pane of the browser. See if you can figure out what some of the menu options

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 6 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

do. (Selecting in the lower pane will re-compile the method if you made any changes. Select
if wish to avoid a compile and revert to the previous text.)

accept cancel

If you inadvertently change a method, use the versions menu item in the message list (top right) pane to get
back the old one.
Locate the method in class Integer. How does this method determine its result?even
Create a new Class category for the classes that you will define during this Workshop. Call it something like

.ECOOP-MyStuff

Executing Code: Sending Messages to Objects

Paths are collections of points used to represent geometric shapes.

There are two ways to type the assignment operator. You may either type colon-equal (like Pascal) or you may
use the left arrow, which in Squeak replaces the underscore character. In other words, type the _ key and see on
the display.

In a workspace, execute . Then cloose a blank peice of screen and click on several
points in a rough circle using the red mouse button. Each time that you click, you will leave behind a small
red dot. When you have enough points, click with one of the other mouse buttons. (The dots will dispear.)

 p := Path fromUser

What's going on here? This expression sends the message to the class object The answer is
a new instance of Path, which we assign to the temporary variable .

fromUser Path.
p

Execute . (Same statement, just use the left-arrow this time.)p Path fromUser
Execute . The red dots should reappear, but only for a moment, and offset 10 pixels
to the right of where you first drew them.

 p displayAt: 10 @ 0

OK, now let's make something that stays on the screen. Type the follwoing text into the workspace, select it
and . Be careful with the capitalization. For example, in , is a class, and so is
capitalized, while is a message sent to that class, and so is lower case. Also,

is a bit of a mouthful, so type and then use
completion. will move the cursor from one argument position to the next.

do it Color blue Color
blue vertices: color:

borderWidth: borderColor: vertices command-q
ctrl-a

m PolygonMorph vertices: p color: Color blue borderWidth: 1 borderColor:
Color black.

m openInWorld

The first line, ..., creates a new PloygonMorph and names it . The seond line tells
to display itself in the , that is, on the screen. A blue PolygonMorph will appear on the screen.

m PolygonMorph m m
 World

Pick up your PolygonMorph with the mouse, and put it down somewhere else on the screen.
Bring up the window menu of the workspace (using the window menu icon), and select the last item:

.
start

acceping dropping morph for reference
Pick up your PolygonMorph again, and putit down in the workspace. What happens?
You should now have a textual name in your workspace for the PolygonMorph � something like

. This provides you with a way of referring to the morph. Of course, you already happend to
have a name for your morph�m. So and should both be names for the same object. Let's
check this: do a on

polygon879
m polygon879

print it

polygon879 == m

 tests whether and are the very same object. This expression should print as .a == b a b true

Now execute

m color: Color red

The morph will change color.

Pick up the (red) morph with the mouse, and drag it into the in the Squeak flap. (If you like, you
can drag the trash can out of the Squeak flap and put it somewhere more convenient.) Now execute

trash can
m

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 7 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

 again. The morph (still red) will reappear.openInWorld
What's going on here? What do you think dropping a Morph into the trash really does?

What if you Crash Squeak?

It is quite possble to crash Squeak�as an experimental system, Squeak lets you change , including
things that are vital to make Squeak work! For example, try .

anything
Smalltalk := nil

The good news is that you need never loose work, even if you crash and go back to the last saved version of
your image,which might be hours old. This is because all of the code that you executed is saved in the changes
file. All of it! That includes one liners that you eveluate in a workspace, as well as code that you add to a class
while programming.

So here are the instructions on how to get your code back. There is no need to read this until you need it. But
when you do need it, you'll find it here waiting for you.

In the worst case, you can use a text editor on the changes file, but since it is many magabytes in size, this can
be slow. Squeak gives you better ways.

How to get your code back

Restart Squeak, and select from the menu. This will give you a workspace full
of useful expressions. The first three,

 help>>useful expressions world

Smalltalk recover: 10000.
ChangeList browseRecentLog.
ChangeList browseRecent: 2000.

are most useful for recovery.

If you execute , you will be given an opportunity to decide how far back in
history you wish to browse. Normally, it's sufficeint to browse changes as far back as the last Snapshot. (You
can get much the same effect by editing so that the number is be
something else, using trial and error.)

ChangeList browseRecentLog

ChangeList browseRecent: 2000 2000

One you have a broswer, say, back as far as your last snapshot, you will have a list of
 that you have done to Squeak during that time. You can delete items from this list using the yellow-

button menu. When you are satisifed, you can what is left. It's a good idea to start a new change set,
using the ordinary change set browser, before you do the , so that all of your receovered code will be in
a new change set. You can them file out this change set.

recent changes
everything

file in
file in

One useful thing to do in the Recent changes browser is to . Usually, you won't want to
(and thus re-execute) . But there is an exception. Creating a class shows up as a

So, if you have created any new classes, the
class creation , and the methods.

remove doIts file in
doIts doIt. Before you can file

in the methods for a class, the class must exist. first file in
doIts then remove doIts file in

When I am done, I like to my new ChangeSet, quit Squeak without saving the image, restart, and
makre sure that my new ChangeSet files back in cleanly.

file out

2001.04.24 11:07ECOOP Squeak Tutorial Worksheet 1A

Page 8 of 8file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201A.html#What%20if%20you%20Crash

Worksheet 1B

Building Applications by Direct Manipulation

A Morphic Rolodex Tutorial using Direct Manipulation by John Hinsley,Closely Based on jhinsley@telinco.co.uk
Version of 22 April 2001. This in turn was inspired by Bolot Kerimbaev's Rolodex System ad Dan Shafer's Counter Tutorial, as well as by
other sources.
Version 1.1, 24 April 2001, by Andrew P. Black, black@cse.ogi.edu

Introduction

Those already familiar with other Smalltalks will find Worksheet 1A rather boring. It is primarily for those people that
I am including this Tutorial. It is about a new and still rather experimental technique for building applications by direct
manipulation and scripting.

There is one part of Worksheet 1A that will be useful for those who are new to Squeak even if they are very familiar
with other Smalltalks. It is the final subsection entitled I suggest that you
take a few minutes to do this now. If you have difficulty, it will probably pay you to go back to the of
Worksheet 1A

Executing Code: Sending Messages to Objects.
beginning

This Tutorial was written by John Hinsley and tested under Squeak 3.0.

Getting Started

From Squeak's opening page, red click to bring up the menu, select and from the . menu select
. An orange window will appear. Click on its menu and change the title. (Alternatively, you can just

highlight and delete the text at the bottom and type in your title directly.)

world open... open..
morphic project

Click in the main pane to enter the project. You'll find yourself inside a blank project.

From the supplies tab at the bottom, drag out a blank . Next, drag out a ("Text for Editing")
from the supplies flap. Blue click until the halo appears around the (you'll see a little label at the
bottom), highlight the "Text for Editing" and delete it. Type in what you want as your field (for example, "Name").

BookMorph TextMorph
TextMorph Text

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 1 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

Now, you could keep dragging TextMorphs out of the supplies flap until all your fields were complete, but it's easier to
use the duplicate handle in the halo to do it. All you do is click on the green duplicate handle and use the black pincers
handle to relocate the copy. Very occasionally it's possible for something strange to happen during this process, as
though you've got one TextMorph on top of another. Just delete it using the pink handle."x"

(Incidentally, the duplicate handle is very powerful, much more so than this example can demonstrate.) Change the text
to whatever you want to call the field. If the field wraps onto a second line and you don't want it to, use the yellow
"change size" handle to drag the string out onto one line by moving it to the right. You may need to use the blue button
again to bring up the halo so that you can move something into a better position using the black "pincers" handle.

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 2 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

Now try moving the BookMorph about with its pincers. If any of the fields "fall out" (I'm unsure why this seems to
happen to some and not others!) you'll need to embed them. Pick them up and drag them back into place and choose

 from each one's red handle menu. You'll be given a choice of where to embed them. is the
white background, so that's no use, while will embed them as the title of the book. The remaining choice is .
But since we've discovered how to create a nice title for the book, we may as well use it. Duplicate one more
TextMorph, place it anywhere on the book, and change the text to Rolodex. Use the menu to embed it in the

, and voilà! there it is, nicely centered, too. The BookMorph even makes room for it. At this point, red click to
bring up the world menu and choose , or

embed aPasteUpMorph
book page

embed
book

save save as...

So far, we have the labels for the text fields, but no way of entering the text. Guess what we'll use? That's right, blank
TextMorphs! So, duplicate one that's already there, delete the entry ("Name", or whatever) entirely, and place it
alongside a field label. Use the duplicate handle to make copies, so that every text field has its own blank TextMorph.
Here you will need to drag them out to the right with the change size handle. (This time I'm taking no risks and
embedding everything, remember, we want to embed it in page, OK?) You should end up with something like this:

Thus far we've done no coding, and we don't need to do any coding at this stage. (In fact, here we're going to use the

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 3 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

"direct manipulation" style throughout.) But we still have a working Rolodex! Now, before you do anything else, click
the central dot in the grey bar in the book and choose this is really important! Save again,
and then red click in the pink bars to enter the details for the text fields for one page:

save as new-page prototype:

Now, at the right of the grey bar on the book is a little diamond icon (a bubble help pops up). Click on
that and then on the + icon () and fill in the name of a friend or two. You'll not only discover that the
pages are all there, but that you can use the find dialogue in the book's main menu to find an item.

more controls
add another page

Our next task is to try and use a button to pop up that dialogue.

Blue click until the book's halo comes up and click on the blue eye handle. You'll see a menu of scripts appear. Click
the top menu icon (it actually looks rather more like a unfurled Roman scroll) and pick .miscellaneous

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 4 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

The script that we want is called . Drag this script out onto a convenient place in the workspace and
click on the up and down arrows on the third element until appears.

Book do menu item
search for text

We can test that this script does, indeed, launch the search dialogue by clicking on the yellow exclamation mark at
extreme left. Wow! Now we need to associate that script with a button, and to make sure that the script responds to
mouse up (that is to say, it will be fired by the release of the mouse button after the button has been clicked on).

All we need to do to set the mouse up behaviour is to click on the normal tab of this script to bring up a menu from
which we select mouse up.

Now, take a look back at the viewer and you'll see that a new item corresponding to our has appeared. We
get our button simply by clicking on the dot to the left of this item and selecting from the menu
that pops up.

Book script 1
button to fire this script

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 5 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

A green button will appear.

We just need to change the label on this script (or seem the obvious candidates) and, since I like yellow
buttons, change the colour, and embed it in the page. Now, test it by pressing on the button.

Search Find

Now we need to undo all the text that we have entered to test our searches. From the central menu of the book,
select the page with the Search button in it as the . Now, enter some names, and try it out!

dot
save as new-page prototype

That's it. You've just programmed a fully functional Rolodex with a search function in less than an hour (considerably
less if this wasn't your first or second Morph) without entering a line of code.

Now, I'm not going to tell you that it's a particularly difficult project, or that this is all there is to Morphic (and it's
only my fourth Morphic project), but I believe that in any other language this would take at least twice, and probably
three times, as long.

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 6 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

A Postscript

Eventually I got fed up with the strange way that "Rolodex", although embedded in the book, comes back as a sort of
page heading. So let's remove that. Before we once more we should really get rid of all the
little bits of text we've put in.

save as new-page prototype

For our next trick, we'll put the book in a window. We do this simply by opting to do that from the book's red menu
handle.

Fortunately the book will auto-embed in the window! Now we just need to change the window's title (again, through
the red menu handle). That's it for now.

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 7 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

Don't forget to save your image now, and each time you put a new entry in your Rolodex.

An Enhancement: Visibility and Affordance!

One of the people who responded to the first version of this tutorial was having problems entering text in the empty
TextMorphs (the pink bar). I wasn't sure whether this was due to my description of the process (since revised) or an
inherent fault in the interface. Now, on the course I'm doing at the Open University we're taught to assess interfaces in
terms of visibilty, affordance and feedback. I won't go into the details of that (because I tend to get confused between
one and the other!), but if we look at the pink bar, it's not at all clear that it will accept focus or that it will take text.
The only feedback we get is that if we do get focus on a TextMorph which is blank and start typing, text appears. I
messed about (as one must) with some of the other text morphs from the menu and finally found
ShowEmptyTextMorph (under S in the sub menu). This both allows focus and shows you have it
by a flashing cursor. (If you like, the cursor "affords" that we can enter text.)

Add a new morph
from alphabetical list

If you like the sound of this, all you have to do is to delete the blank TextMorphs and replace them with
ShowEmptyTextMorphs. It's easier to manipulate a ShowEmptyTextMorph if you actually fill it in with some text. The
illustration shows one field completed, some just full of text for the purpose of manipulation/justification, and another
with focus (you should hust be able to see the green cursor next to "Address") waiting for input.

You'll note that on this SuperRolodex version, I've yet to put the "Search" button.

Again, don't forget to save the page as a , and then to your image.new-page prototype save

Onwards and Upwards: adding an email function

Squeak already has a nice little e mailer called Celeste. It's somewhat minimal (folk are working on enhancements such
as a mail sorter as I write), but is extremely elegant and just what we need to add a little functionality to our Rolodex.

I have to admit that how to get Rolodex to call Celeste's "compose" page (wonderfully named Mister Postman), puzzled
me for a good few days. In the end, I decided to try the simplest solution I could think of. All you need to do is to call
Celeste from the >> >> .world menu open... email reader

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 8 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

You'll see that Celeste has a "New" button. Try it out and you'll find that this button calls Mister Postman. (While
you're in Celeste you might like to fill in your e-mail address and the SMTP and POP3 servers) We can simply get a
halo around this "New" button, duplicate it, drag it down to the Rolodex and embed it (in Page, remember). Close
down Celeste and try your new "New" button. There you go, an e-mail function!

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 9 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

What we need to do now is to sort out how to get Mister Postman's To: field to contain the text in the
ShowEmptyTextMorph for the email field in that page. Bear with me, I may be gone for some time...

For the Future...

So, what remains to be done? I'm still not sure how to change the colour or the font of the buttons on the search
dialogue (and have them stay changed, that is). It would be nice if clicking on a 'phone number brought up an autodial
option. I'd like to be able to do stand alone versions (but these would presumably need a save dialogue too, so that new
entries were not lost). Also I think that a finished, stand alone version shouldn't have any superfluous menus. Removing
them without wrecking everything may be a little tricky!

In effect, the idea would be to create a program that has all the functionality of the Card Index program that came with
Windows 3.1 (surely one of the best Windows programs ever!) and more, but to do it entirely by direct manipulation.

Any comments, criticisms or ideas on how to improve the functionality of this little project will be gratefully received,
please me.e mail

In the meantime, may the Morph be with you!

2001.04.24 10:51ECOOP Squeak Tutorial Worksheet 1B

Page 10 of 10file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%201B.html

Worksheet 2

The Morphic Graphics System

Tutorial: Fun with the Morphic Graphics SystemBased on by John Maloney
Version 1.0, 17 April 2001, by Andrew P. Black, black@cse.ogi.edu

Introduction

In this worksheet you will build a Morphic object by writing code (as opposed to direct manipulation). We're
going to start with an empty class that is a subclass of Morph. Morph is the generic graphical class in the Morphic
object system.

Open a Browser (from the world menu>>open submenu, or drag one from the tools flap) select the category for
your stuff that you created previously. (If you don't have such a category, create one now � see the box.) Make
sure that none of the other browser panes have stuff selected. The bottom pane of the browser will be showing the
template for creating a new class. Make it look like this:

Morph subclass: #TestMorph
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'ECOOP-MyStuff'

First select (double-click it) and type the word with a capital M. The new class will be a subclass of
Morph. Select " and type in "TestMorph". The category name will already be filled in, and will
probably be different from mine!. Type to accept (save), or select from the yellow button
menu.

Object Morph
NameOfSubClass

Command-s accept (s)

Now open a workspace (or switch to an existing workspace) and create an instance of your new class. Type

TestMorph new openInWorld.

Hit or choose "do It" from the yellow button menu. Since nothing was selected, the "doIt" applies to
the whole of the line that the cursor is on.

Command-d

Your new Morph (graphical object), a blue square, is in the upper left corner of the display. You can pick this
object up and move it around. Just grab it with the mouse. Notice how, when you picked up this Morphic object, it
threw a dark shadow behind it. That helps you to see that you've actually lifted it up above everything else. If there
were overlapping objects, grabbing this object would automatically pull it to the front, and the shadow would
show that it's in front of everything else.

You'll notice the odd capitalization of 'openInWorld'. Smalltalkers place a high value on readability, but in
Smalltalk a message selector must be a single string without any spaces in it. The convention is to use capital letters
at the beginning of each English word except for the first, and to stitching them all together without spaces. Other
languages often use underbars or dashes between the words. Squeak does not. You will probably grow to like this
convention, but you should adopt it even if you don't!

The Morphic Halo

Now click the blue mouse button on your Morph, and you will see a surrounding array of colored circles, which

2001.04.24 10:49ECOOP Squeak Tutorial Worksheet 2

Page 1 of 7file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%202.html

we call a "Morphic halo". Some of these circles are buttons, and some are handles; each of them is a quick way to
send a command to the Morph. If you linger over any of the dots with the mouse, a help balloon will pop up
telling you what the dot does.

The black handle's balloon says: "Pick up". In this case, if
you drag the black handle, the effect is the same as if you
dragged the blue rectangle itself. That may seem like a
useless function, but the reason that it is there is that
sometimes Morphs will have an interactive behavior, like a
button. The pick up handle gives you a way of directly
manipulating something that has behavior associated with
mouse clicks.

The basic idea behind the halo is that there is no need to
resort to "modes" for changing the size of an object, .
That is, Morphic does not have a separate mode for editing an object as opposed to using it. In Morphic, you can
get a halo on anything regardless of how active it is. The halo is a safe way of dealing with a Morph while it is
running. For example, there is no need to turn off the function of a button in order to change its appearance.

etc

Let's look at what the halo can do. The green duplicate handle is a button that makes a copy, and the pink handle
with the deletes the Morph (moves it to the trash). The yellow handle is used to resize the object�try dragging
it. Resist the temptation to do too many other things to it yet; in particular, don't use the blue rotate handle.

x

Adding Custom Behaviour

Now let's start making this our own kind of object, by writing some methods to customize it.

The first thing you will do is make your object do something when you click on it with the mouse. This involves
writing two methods. Click on the Browser. Click on "no messages" in the third pane. Type (or paste) the
following text into the bottom pane, and . (Beware: cutting text from some web browsers includes some
invisible garbage characters; if the Squeak compiler doesn't like this text, that may be the problem).

Accept

hhhhaaaannnnddddlllleeeessssMMMMoooouuuusssseeeeDDDDoooowwwwnnnn:::: eeeevvvvtttt
 ^ true

If this is the first time that you have accepted a method in this image, you will be asked to type your initials,
which will be recorded along with the methods that you change.

The fact that this method, :, answers tells Squeak that this object wants to receive a
message when a mouse button is pressed over it. (Pressing a mouse button generates a mouseDown event; guess
what you get when a mouse button is released!)

handlesMouseDown true

So now we better define a method corresponding to that message. Go ahead and type (or paste) the following text
right over the other method.

mmmmoooouuuusssseeeeDDDDoooowwwwnnnn:::: eeeevvvvtttt
 self position: self position + (10 @ 0).

This will move the object ten pixels to the right when you click on it. How's that? Well, the infix @ notation is
used to build a Point from two numbers. For example, is a Point, with x coordinate 2 and y coordinate 3. The
message when sent to a Morph, answers a Point that is the Morph's current position. And + is defined
on Points to do elementwise addition. Note that is a different method; this one takes a Point as
argument and the position of the receiver.

2@3
 position,

position:
changes

Try clicking on the object; see what happens.

To summarize: at this point we have two methods. One of them returns to say that we want to handle
mouseDown: events. The second one responds to the mouseDown event by changing the object's position.

true

2001.04.24 10:49ECOOP Squeak Tutorial Worksheet 2

Page 2 of 7file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%202.html

Now lets give this Morph some behavior for redrawing itself. Type or paste this method into the bottom pane of
the browser and it. Rather than worrying about indentation, if you wish you can choose from
the yellow-button menu menu.

accept pretty print
more...

ddddrrrraaaawwwwOOOOnnnn:::: aaaaCCCCaaaannnnvvvvaaaassss
 | colors |
 colors := Color wheel: 10.
 colors withIndexDo: [:c :i |
 aCanvas fillOval: (self bounds insetBy: self width // 25 * i + 1)
 color: c].

Now when you click on the object it looks totally different. When the screen needs to be redrawn, the
message is sent by the world to all of the objects in it. So, by defining this method for our Morph, we are defining
its appearance. Let's go back and look at what this method is doing.

drawOn:

Understanding the drawOn: method

The first line, , is a heading that gives the name of the method and a name for the
formal parameter, . After the heading, the second line of the method, , declares a local
variable . Actually, there is no need to type this line; if you omit it, the compiler will offer to add it for
you. Remember, Smalltalk has no type declarations � any variable can name any kind of object. Smalltalk
programmers often choose identifiers for variables based on the types of objects that they will name.

ddddrrrraaaawwwwOOOOnnnn:::: aaaaCCCCaaaannnnvvvvaaaassss ddddrrrraaaawwwwOOOOnnnn::::
aaaaCCCCaaaannnnvvvvaaaassss | colors |

colors

The third line of the method is the first line of executable code: it assigns to the result of the expression
. To see what that does, select and type for immMMMMplementers. You

will see that there are two implementations of select the one in .

colors
Color wheel: 10 wheel: Command-m

wheel: Color class

One thing we often do in Squeak is we put a little comment at the head of a method. The first line says what
 does. It returns a collection of colors, where is the argument. The colors are evenly

spaced around the color wheel.
wheel: thisMany thisMany

When it's easy to give an example of the method in action, Smalltalkers do that too. The second line here is an
expression, which you can actually execute. Select the quoted text (by double-clicking just inside the quotes) and

(). Across the top of the screen Squeak just sprays out the color wheel�a collection of colors
spaced around the spectrum. (But not with total saturation nor full brightness, so they won't be too garish.)
doIt command-d

Notice that you can scribble directly on the screen in Squeak�you don't have to be in some sort of window to
draw. To clean up such scribbles, use the item in the world menu ().restore display command-r

This was a digression to figure out what meant. We now know that it's a collection of Colors. Close the
window by clicking in the " " on the left side of the title bar.

wheel:
Implementors of wheel: x

The next part of the method steps through that set of colors.drawOn:

This is a fragment of the method drawOn:, which you have already typed:
 colors withIndexDo: [:c :i |
 aCanvas fillOval: (self bounds insetBy: self width // 25 * i + 1)
 color: c].

The method evaluates the block between [and] ten times. It supplies as arguments to the block
both an element of colors, , and an index, . The index is needed to keep track of where we are in the collection
of colors; will be 1 the first time around, 2 the second, and so on, all the way through to 10.

withIndexDo:
c i

i

Inside the block, we send the message, with two arguments: the mess in parens and
 our color. What about that mess in parens? It is a Rectangle inset by (((self width) // 25) * i + 1) pixels inside

the bounding Rectangle returned by (self bounds). As the increases, the inset also increases, returning ever
smaller nested Rectangles, in each of which we inscribe an oval and fill it with the color .

aCanvas fillOval:color:
c,

i
c

2001.04.24 10:49ECOOP Squeak Tutorial Worksheet 2

Page 3 of 7file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%202.html

When we look at our object, we see up to ten bands of color. Because the method is using the result of
the message being sent to the Morph itself, this code "knows" how big the Morph is. Bring up the halo, and
drag on the yellow dot. As you resize the Morph, it just keeps redrawing itself at the new size.

drawOn:
width

Animating the Morph

The next thing to do is make clicking on our Morph invoke a more exciting kind of motion�some animation.
This means that we need to create a list of points that will be the path over which the object moves. When you
click on the object, we want it to move to each point in the path in turn. So, we will need some state in our object,
so that it can remember its path.

Morph subclass: #TestMorph
 instanceVariableNames: 'path'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'ECOOP-MyStuff'

Go back and click in the Browser, and then on the "instance" button (at the bottom of the second pane). That will
bring up the class definition. Then click in the place for instance variable names, between the single
quotes, and type . it.

TestMorph
path Accept

Initializing an Instance Variable

Since you added an instance variable, you need to make sure that it's initialized to something. Let's define an
initialization message for TestMorph. Click on the message category whose name has changed to "as yet
unclassified", and then type (or paste) the following text in the bottom pane of the browser.

iiiinnnniiiittttiiiiaaaalllliiiizzzzeeee
 super initialize.
 path := OrderedCollection new.

Why is the line here? Even though the definition of class is very simple, is
not the only instance variable that it has. In the second pane of the Browser, bring up the yellow button menu and
choose . You see a list of all the instance variables in TestMorph. is at the bottom, but above that
is a list of other instance variables, which TestMorph inherits from Morph. There is no need right now to select
any of them, but if you do, Squeak will show you all the methods that use that instance variable.

super initialize TestMorph path

inst var refs Path

So, since Morph has a bunch of instance variables, there is a good bet that it will have an method that
sets some or all of them to good values. (Take a look at it if you wish; its fine to open several more browsers).
When we define our own initialize method, we the one in our superclass, class Morph. So unless we do
something special, the initialize method in class Morph will no longer execute. This would be bad!

initialize

override

The "something special" is the . This executes the method of our superclass, class
Morph. When you send the message to the receiver , the message is really sent to , but
Squeak makes sure that the version of is invoked instead of the one that is executing.

super initialize initialize
initialize super self

inherited initialize

After taking care of that small but vital detail, the guts of our initialize method is the assignment
. This creates a new, empty, Collection and puts it into . So, when our

TestMorph receives the message, it first does all the initialization that Morph would do, and then it
does it's own initialization. The result is that all those instance variables inherited from class Morph will be
initialized as well as the new one that you added.

path := OrderedCollection new path
initialize

We are actually using a convention here, since a new object is not automatically sent the message.
But if you look at the method for class Morph, you will see that it always sends to each new
Morph instance. This is how many, many objects are coded.

initialize
new initialize

Now, our original TestMorph, here on the screen, was not initialized with our new code: we made it before we
defined our version of . We can fix this in two ways: with an , or by deleting the Morph and
making a new one.

initialize inspector

2001.04.24 10:49ECOOP Squeak Tutorial Worksheet 2

Page 4 of 7file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%202.html

Using an Inspector

The simplest thing is just to delete the TestMorph. But before we do that, lets see what an inspector can do for us.
Inspectors are really useful tools for looking at and changing individual objects, so it is worth getting to know what
they can do.

Bring up the Halo on our TestMorph, click on the debug handle and select from the debug
menu. An will attach itself to the mouse cursor. Put the inspector down in a convenient place. The left
pane contains a list of all of the instance variables in our TestMorph, including and those inherited from
Morph. Click on , and you will see (in the right pane) that its value is , that is, has not been
initialized.

inspect morph
inspector

path
path nil path

You can fix this right now by selecting and replacing it with . ; what you
typed will be evaluated, and the result, a new empty collection, will be assigned to . The text will change to

, which is the way that empty collections print themselves.

nil OrderedCollection new Accept
path

an OrderedCollection()

By the way, the bottom pane of the inspector is a little workspace. You can type a Smalltalk expression there and
or The useful thing about this workspace is that, here, the pseudo-variable names the object

that you are inspecting. So you can type and and see the result of sending the message
to this very TestMorph.

do it print it. self
self color print it color

Meanwhile, back to the Animation...

OK, so we are done with the inspector, and with our original TestMorph. Dismiss them both (using the in the
menu bar of the inspector, and the pink button with the in the TestMorph's halo). Now get a new TestMorph
(properly initialized this time) by executing:

x
x

TestMorph new openInWorld.

We're going to make our object do something different when you click the mouse on it. We've got the Collection
in . Type into the bottom pane of the browser and this method:path accept

ssssttttaaaarrrrttttAAAAnnnniiiimmmmaaaattttiiiioooonnnn
 path reset.
 0 to: 9 do: [:i | path add: self position + (0@(10 * i))].
 path := path, path reverse.
 self startStepping.

We are resetting our OrderedCollection in line 2, just to make sure that it is empty. In the next line, we're doing a
block ten times. See if you can figure out what it is doing! Remember, is a Point, with x coordinate 0 and y
coordinate 30.

0@30

In line 3, we change the path to be). I'm sure that you can guess what sending to
an OrderedCollection does! The comma () is just another message; it concatenates two collections.

(path, path reverse reverse
,

What we've done is taken our list of ten points which are going from zero to ninety, and added on a list that goes
from ninety back to zero. So now we've got twenty Points that start out and end up at the original position, and go
to a bunch of places in between.

The last line of this method enrolls our morph in an engine that keeps sending it the message . This is the
"tick" of the animation engine. So now we must make our morph understand the message.

step
step

sssstttteeeepppp
 path size > 0 ifTrue: [self position: path removeFirst].

This one is pretty easy to understand. It says that as long as there is something in that list of points, that is, as long

2001.04.24 10:49ECOOP Squeak Tutorial Worksheet 2

Page 5 of 7file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%202.html

as the size of is greater than zero, then move myself. does two things: it the first
point from path, making a collection with one less element, and it the Point that it just removed. So,
the argument to is the first point that was in the path. Sending myself the message
changes my position.

path path removeFirst removes
path answers

self position: position:

Graphically, the effect is that our TestMorph it will jump to the next point; you will see the change on the next
frame of the animation.

Starting the Animation

All that we need do now is actually kick our TestMorph off off by sending it the message . One
way to do this is to use a temporary variable in the Workspace. Type these lines in the Workspace, select them, and

.

startAnimation

doIt

t := TestMorph new openInWorld.
t startAnimation

You could also bring up an inspector on your TestMorph, and in the bottom pane.accept self startAnimation

A graphical alternative to all this typing is to make our TestMorph send itself the message when
the mouse button goes down.

startAnimation

mmmmoooouuuusssseeeeDDDDoooowwwwnnnn:::: eeeevvvvtttt
 self startAnimation.

There are two ways you can define this. You can paste it over any method showing in the bottom pane of the
Browser. Or you can click on in the right pane of the Browser, and modify the existing mouseDown:
method. Either way, the same thing happens when you .

mouseDown:
accept

When you've done that, go over and click on your morph, and you should see something happen. It's animating,
which is great, but it's going very, very slowly. Don't be too disappointed; Squeak is faster than this! What is
actually happening is that, by default, is sent to an object once every second. But the object can decide how
often it wants to be told to by implementing the method .

step
 step stepTime

sssstttteeeeppppTTTTiiiimmmmeeee
 ^ 50

This answers the time in milliseconds between messages that the object is requesting. Now, obviously, you
can ask for zero time between messages, but you won't get it. Basically, is an assertion of how
often you would to be stepped.

step
step stepTime

like

Now if we click on our object we get a much faster animation. Change it to 10 milliseconds, and try to get a
hundred frames a second. Let's see if that works. If you are really interested in knowing how fast your animation is
running, see if you can find out how to record the times at which your Morph receives the message.step

More Realistic Motion

Now, this tutorial was originally written by John Maloney, who works for Disney, "The Animation Company".
Our animation starts and stops instantly, but everyone at Disney knows that "slow in" and "slow out" are needed to
make it look really good. Here is a modification that uses the square of to start the motion off slowly.i

ssssttttaaaarrrrttttAAAAnnnniiiimmmmaaaattttiiiioooonnnn
 path reset.
 0 to: 29 do: [:i | path add: self position + (0@(i squared / 5.0))].
 path := path, path reversed.
 self startStepping.

2001.04.24 10:49ECOOP Squeak Tutorial Worksheet 2

Page 6 of 7file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%202.html

Only one line in the method needs to be changed. This code puts thirty points in the path, and
then appends the reverse version to make sixty points. The other change is that instead of saying times ten, we say
"i squared divided by five". At the end, the expression will be 841 (29) divided by 5.

startAnimation

2

This gives us an animation that starts down slowly and speeds up, and then slows down again as it comes back up.
In fact, it looks a bit like like a ball bouncing.

More Morphs

Now would be a good time to play with some pre-made Morphic objects on your own. Let's get a parts bin full of
objects. Click on the "Supplies" tab at the bottom of the screen. (If there is no tab at the bottom of the screen, use
the World menu and choose "authoring tools...". Choose "standard parts bin".) In either case you have a bunch of
objects that you can drag onto the screen. After you have dragged one out, blue-click to get a halo, and hold down
on the red circle to get the object's content menu. Here are some of the Morphs to play with:

A RectangleMorph (from the contents menu, try , and)raised bevel inset bevel rounded corners
An EllipseMorph
A StarMorph
A CurveMorph (from the contents menu, try)show handles
A PolygonMorph (from the contents menu, try)show handles
A TextMorph (be sure to use the yellow handle to make it wider)
The artist's palette starts a new painting where you drop it. After drawing, press to turn it into a
Morph.

Keep

In this worksheet, you have been introduced to morphic programming. You probably noticed some of the other
parts of the Morphic Halo that we did not talk about, like the eye and the rectangle buttons. These give access to an
entirely different way of creating applications: not by programming, but by direct manipulation. Feel free to
experiment! Worksheet 1b gives an example of building a complete application by direct manipulation � if you
haven't had a chance to try it out yet, do so! There are also other tutorials available on the web that will introduce
you to this style of application building.

A Final Example

Use a file list browser to find the file . From the yellow-button menu, choose open
. The resulting map is a full-fledged Morph (an instance of).

Hungary.gif image in a
 window SketchMorph

You should already have filed-in �if you have not, file it in now. In a workspace, type and executewkSheet.cs

Hungary new openInWorld.

The result will be an instance of ! Superimpose it on the map. Use the Supplies tab to drag in other
Morphs that help you to complete Hungary. For example, you can drag in a , change the text to
read , and place it in the appropriate position on the map. Then use the red handle in the morphic halo to
bring up a menu on the TextMorph, and it into . Now you will be able to move , and

 will move with it.

HungaryMorph
Text for Editing

Budapest
embed ... Hungary Hungary

Budapest

2001.04.24 10:49ECOOP Squeak Tutorial Worksheet 2

Page 7 of 7file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%202.html

Worksheet 3

A Small Programming Project

Version 1.0, 23 April 2001, by Andrew P. Black, black@cse.ogi.edu

Introduction

This worksheet is less of a step-by-step "cook book" that the previous ones. Instead, we suggest two projects, and
give you some hints as to how to program them in Squeak using Morphic. You probably won't have time to do
both, so pick the one that looks more interesting to you. Of course, if you and your partner wish, you could tackle
some completely different project.

I'm not going to talk about design at all. This is not because design is unimportant�quite the contrary! But I'm
assuming that you are proficient in OO design and OO programming in another language.

Project 3A: An Analogue Clock

The goal in this project is to implement a clock, the kind with a face and two (or three)
hands. You can make it look pretty much as you like, but it should, of course, keep time!
Here are some suggestions to make the project more interesting.

Rather than showing local time, you might give your clock an offset, controllable
from the UI, so that it shows the time in your home town. Add a label that identifies
the town.
Provide an option to make it a 24 hour clock, that is, make the hour hand go around once every 24 hours
rather than twice. Or, change the numerals on the face in the afternoon.
Allow the clock face to be a shape that is not round. The hands will need to change length as they go
around!

Getting Started

OK, how might you get started? It is always good to "shop" for functionality that others have already built, which
you can reuse, In fact, the normal way of figuring out how to use some piece of a Smalltalk system is to do a

 and see how others are already using it.senders of ...

In this case, if you do a in a system browser, you will find that there is already a . It's
a digital clock, but worth examining nonetheless. uses a number of techniques that you have already
seen, for example, a method that is called once every second. Notice the use of to obtain the time
of day from the system clock. Why is this preferable to simply adding one second to the previous time?

find ... "clock" ClockMorph
ClockMorph

step Time now

ClockMorph is a subclass of StringMorph, which already handles the updating of the display. So, when the
contents of the Morph is changed (by sending the message in the method for), the
display will change immediately.

 self contents: time step

Incidentally, you can make a new instance of any of the Morph classes using the menu.
Some of the more common Morphs are also available from the flap at the bottom of the screen

world>>new morph...
supplies

It turns out that there is also a in Squeak, which already implements an analogue clock. But try not to
look at it just yet! See how far you can get figuring things out on your own.

WatchMorph

2001.04.24 10:52ECOOP Squeak Tutorial Worksheet 3

Page 1 of 3file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%203.html

The best bet for a clock face would seem to be an ellipse; you can drag an out of the supplies flap.
(When you blue-click on a Morph, the name of it's class appears on the screen below it, without the suffix.)

EllipseMorph
Morph

Think back to the bouncing colored ball in worksheet 2. In that worksheet, we changed the appearance of our
TestMorph in arbitrary ways by overriding its method. Could you use the same idea to draw the hands
on the face of your ellipse? Previously, we used the method to do the painting. Use the

 to open a system browser on that method�you will see that it is in class . The browser will show
you similar methods in other categories that draw rectangles and polygons.

drawOn:
fillOval:color: method

finder Canvas

What about the face of the clock? Remember that you can embed one Morph inside another. String Morphs can be
used to place numerals in the right places. Or, perhaps you just want to draw tick marks every 30° around the face.

You know that positions on the display are represented by Points, like . But points also understand polar
coordinates, which are sometimes more convenient. For example, prints as
1.0@1.0.

100@50
Point r: 2 sqrt degrees: 45

I think that this should be enough to get you started ...

Project 3B: The Reflex game

The reflex game is like one of those machines that you might have seen in a
science museum or an arcade; it measures the speed of your reflexes.

1. The game starts by showing you a red light.

2. After a random time interval, the light turns green. This is an invitation to
click the mouse button as quickly as you can.

3. The game measures how quickly you respond. Then it turns out the green
light, and shows your reaction time on an LED display.

What if the user never clicks the mouse at all? Eventually, the game should time
out, and reset itself back to the initial state. What if the user cheats, and clicks the mouse before the light turns
green? The game should detect this.

This very simple game can be embellished in a number of ways.

Have it record the results of three trials per user, and report the best.
In addition to, or instead of, having the light turn green, have the game make a sound. Or have it say "Go!".
Which gives the shortest reaction time?
Turn this into a competition. Have two users on opposite sides of the keyboard, one on each shift key. When
the light turns green, see which user presses their key first.

The display for this game shown here is quite simple�just an EllipseMorph and a StringMorph embedded in a
RectangleMorph. I built this first by direct manipulation. Once I had a layout that I liked, copied the coordinates
out of an explorer into my method. Morphic supports quite complex dynamic 2D tabular layouts, but
I won't discuss them here.

initialize

Most of the complexity of the reflex game is in the testing and timing. For this reason I separated those aspects
from the user interface part. I used Morphic to provide the "view" and the "controller", and a separate model
object to implement the timing part. Of course, there are many other valid architectures for this game.

My model was a state machine. Messages to the model caused it to change state. One might use the to
implement this, or just a simple instance variable whose value (a Symbol) represents the state. In the latetr case,
the methods implementing the state transitions will have bodies that do a case selection on the state. (Yes, Squeak
does have a case statement; it is described on the sheet.)

state pattern

Squeak Language Reference

Squeak has a class whose instances are random number . As with many classes, there is an
 method in (that's on the) that tells you how to use s.

Random generators
example Random class class side Random

2001.04.24 10:52ECOOP Squeak Tutorial Worksheet 3

Page 2 of 3file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%203.html

The class has many useful methods, including , and
, which computes the difference between two times. Another useful class is . A Delay is an object on

which the current process can wait. Once again, there is an example method on that shows how a
Delay can be used.

Time Time millisecondClockValue Time milliseconds:
since: Delay

Delay class

Along with delays, you will need to create processes. This could hardly be easier: just send a block the message
. The Delay class example also illustrated the use of fork, or rather , which allows you to specify a

priority.
fork forkAt:

Events

I found it convenient to create a new class, , which has a single method on the class side:Event

EEEEvvvveeeennnntttt ccccllllaaaassssssss>>>>>>>>aaaafffftttteeeerrrrMMMMiiiilllllllliiiisssseeeeccccoooonnnnddddssss:::: aaaannnnIIIInnnntttteeeeggggeeeerrrr tttthhhheeeennnn:::: aaaaBBBBlllloooocccckkkk

"evaluate aBlock (in a new process) after waiting for anInteger
milliseconds. This method returns immediately, answering the new
process."
| d |
d := self forMilliseconds: anInteger.
^ [d wait. aBlock value] fork

Then an object could cause its method to be invoked asynchronously at a time 3 seconds in the future by
executing

timeOut

Event afterMilliseconds: 3000 then: [self timeOut]

Linking the Model and the View

Those of you who are familiar with the Model-View-Controller paradigm also know that it is traditional to
separate the model from the view. In this example, such a separation makes it hard to do accurate timing in the
model, because the model will only affect the view (, turn on the green light) indirectly. For this reason, I felt
that it was appropriate for the model and the view to be closely coupled. My model has direct access to the display
and the light of the reflex game morph.

e.g.

Making a Noise

If you have sound on your Squeak platform, you might try the word 'Go'. Look at the examples in the
class , or just try There is a problem here, though, because the text-to-
speech system takes a few moments to convert the string into sound. So, you will have to probe around a bit to
find out where when to start measuring the reaction time.

speaking
Speaker Speaker default say: 'Go!'

More simply, try . Look at to see other ways to make a sound.Smalltalk beep Implementors of beep

2001.04.24 10:52ECOOP Squeak Tutorial Worksheet 3

Page 3 of 3file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/Squeak%20Worksheet%203.html

Reference Pages

Squeak Smalltalk: Language Reference

Version 0.0, 20 November 1999, by Andrew C. Greenberg, werdna@mucow.com
Version 1.0, 17 April 2001, by Andrew P. Black, black@cse.ogi.edu

Based on:
 Smalltalk-80: The Language and Its Implementation, Author: Adele Goldberg and David Robson
 Squeak Source Code v. 2.6
 and the readers of the Squeak mailing list.

Squeak site: http://www.squeak.org

Contents

Using Squeak
Squeak Smalltalk Syntax

See also the Squeak Classes Reference page

Using Squeak: the Basics

Mousing Around
System Menus
System Key Bindings

Mousing Around

Squeak (and the Smalltalk-80 from which it was spawned) assumes a machine with a three-button mouse (or its equivalent). These buttons were
referred to as "red," "yellow" and "blue." The red button was conventionally used for selecting "things," the yellow button was conventionally used
for manipulating "things" within a view or window and the blue button was conventionally used for manipulating windows themselves. Conventions,
of course, are not always followed and your mileage may vary.

Since many modern mice no longer have three buttons, let alone colored ones, various "mapping" conventions are used:

For uncolored three-button mice, the mapping is:

 left-mouse -> red
 middle-mouse -> yellow
 right-mouse -> blue

Windows machines with three button mice can be made to conform with this mapping by right clicking the Windows title bar of Squeak, and selecting
"VM Preferences -> Use 3 button mouse mapping." Otherwise, for Windows machines, the mapping is:

 left-mouse -> red
 right-mouse -> yellow
 alt-left-mouse -> blue

MacOS Systems generally have one mouse button. The mapping is:

 mouse -> red
 option-mouse -> yellow
 cmd-mouse -> blue

If you purchase a 3-button mouse for your computer, you will be pleased that you did so! I put colored sticky labels on my buttons when I was first
training my fingers.

If you have a mouse with a scrolling wheel, map "wheel up" to cmd-upArrow and "wheel down" to cmd-downArrow, and you will be able to use the
wheel to control scrolling in your Squeak windows.

System Menus

Squeak provides access to certain Smalltalk services through its system menus, some of which are depicted below:

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 1 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

. The World menu, sometimes called the "main menu," can be reached by clicking the red button while the mouse points to the
background of a system project. From this menu, you can save the image and changes files, save them in files with a different name, and terminate
execution of the Squeak virtual machine. You can also access many other menus ... including the four shown here.

The Main Menu

 provides access to many system tools, including system browsers, workspaces, change sorters, transcripts and file lists, as well as
end user tools such as an email agent () and web browser ().
The open Menu

Celeste Scamper

 provides access to certain on-line help facilities as well as a preferences dialog, some environment enquiries, a dictionary and
facilities for updating your version of Squeak.
The help Menu

provides access to services for manipulating system windows and (in Morphic only) . Flaps are small tabs at the
side of the screen that pull out like drawers and provide quick access to whatever you place there. Try them! The flap is a very convenient way
of getting new system tools (rather than using the menu).

The windows and flaps Menu flaps
Tools

open

 lets the user change various aspects of the systems appearance. In particular, it provides a way of adjusting the display depth
and going in and out of full screen mode.
The appearance menu

System Key Bindings

Applications that use standard Squeak text container widgets, including System Browsers, Workspaces, File Lists and Transcripts, provide facilities
for manipulating the text and providing access to other system functionality. Many of these facilities can be reached by using the red-button menus,
but many are more conveniently accessed using special key sequences. Of course, particular applications can use some, all or of none of these. In the
following tables, a lower-case or numeric command "key" can be typed by simultaneously pressing the key and the Alt key (on Windows) or the
key (on MacOS). Upper-case keys are typed by simultaneously pressing either Shift-Alt (or Shift-) and the indicated key, ctrl and the indicated
key. Other special key presses are indicated below in square brackets.

or

General Editing Commands

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 2 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

Key Description Notes

z Undo

x Cut

c Copy

v Paste

a Select all

D Duplicate. Paste the current selection over the prior selection, if it is non-overlapping and legal 1

e Exchange. Exchange the contents of current selection with the contents of the prior selection 1

y
Swap. If there is no selection, swap the characters on either side of the insertion cursor, and advance the
cursor. If the selection has 2 characters, swap them, and advance the cursor.

w Delete preceding word

Notes

1. These commands are a bit unusual: they concern and affect not only the current selection, but also the immediately preceding selection.

Search and Replace

Key Description Notes

f
Find. Set the search string from a string entered in a dialog. Then, advance the cursor to the next occurrence of
the search string.

g Find again. Advance the cursor to the next occurrence of the search string.

h Set Search String from the selection.

j Replace the next occurrence of the search string with the last replacement made

A
Advance argument. Advance the cursor to the next keyword argument, or to the end of string if no keyword
arguments remain.

J Replace all occurrences of the search string with the last replacement made

S Replace all occurrences of the search string with the present change text

Cancel/Accept

Key Description Notes

l Cancel (also "revert"). Cancel all edits made since the pane was opened or since the last save

s Accept (also "save"). Save the changes made in the current pane.

o
Spawn. Open a new window containing the present contents of this pane, and then reset this window to its
last saved state (that is, cancel the present window).

Browsing and Inspecting

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 3 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

Key Description Notes

b Browse "it" (where "it" is a class name). Opens a new browser. 1

d Do "it" (where "it" is a Squeak expression) 1

i
Inspect "it": evaluate "it" and open an inspector on the result. ("it" is a Squeak expression). Exception: in a
method list pane, i opens an interitance browser.

1

m Open a browser of methods implementing "it" (where "it" is a message selector) 1,2

n Open a browser of methods that send "it" (where "it" is a message selector). 1,2

p Print "it". Evaluate "it" and insert the results immediately after "it." (where "it" is a Smalltalk expression) 1

B Set the browser to browse "it" (where "it" is a class name)present 1

E Open a browser of methods whose source contain strings with "it" as a substring. 1

I Open the Object Explorer on "it" (where "it" is an expression) 1

N Open a browser of methods using "it" (where "it" is an identifier or class name) 1

O Open single-message browser (in selector lists) 1

W Open a browser of methods whose selectors include "it" as a substring. 1

Notes:

1. A null selection will be expanded to a word, or to the whole of the current line, in an attempt to do what you want.
2. For these operations, "it" means the keyword selector in a large selection.outermost

Special Conversions and Processing

Key Description Notes

C Open a workspace showing a comparison of the selection with the contents of the clipboard

U Convert linefeeds to carriage returns in selection

X Force selection to lowercase

Y Force selection to uppercase

Z Capitalize all words in selection

Smalltalk Program Data Entry

Key Description Notes

q
Attempt to complete the selection with a valid and defined Smalltalk selector. Repeated commands
yield additional selectors.

r
Recognizer. Invoke the Squeak glyph character recognizer. (Terminate recognition by mousing out of
the window)

F Insert 'ifFalse:'

T Insert 'ifTrue:'

V Paste author's initials, date and time.

L Outdent (move selection or line one tab-stop left)

R Indent (move selection or line one tab stop right)

[Ctl-return]
Insert return followed by as many tabs as the previous line (with a further adjustment for additional
brackets in that line)

[shift-delete] Forward delete. Or, deletes from the insertion point to the beginning of the current word.

Bracket Keys

These keys are used to enclose (or unenclose if the selection is already enclosed) the selection in a kind of "bracket". Conveniently, double clicking just
inside any bracketed text selects the entire text, but not the brackets.

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 4 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

Key Description Notes

Control-(Enclose within (and), or remove enclosing (and)

Control- [Enclose within [and], or remove enclosing [and]

Control- { Enclose within { and }, or remove enclosing { and }

Control- < Enclose within < and >, or remove enclosing < and >

Control- ' Enclose within ' and ', or remove enclosing ' and '

Control- " Enclose within " and ", or remove enclosing " and "

Special Keys for Changing Text Style and Emphasis

Key Description Notes

k Set font

u Align

K Set style

1 10 point font

2 12 point font

3 18 point font

4 24 point font

5 36 point font

6
color, action-on-click, link to class comment, link to method, url. Brings up a menu. To remove these
properties, select more than the active part and then use command-0.

7 bold

8 italic

9 narrow (same as negative kern)

0 plain text (resets all emphasis)

- (minus) underlined (toggles it)

= struck out (toggles it)

_ (a.k.a.
shift -)

negative kern (letters 1 pixel closer)

+ (a.k.a.
shift =)

positive kern (letters 1 pixel larger spread)

Squeak Smalltalk Syntax: the Basics

Pseudo-variables
Identifiers
Comments
Literals
Assignments
Messages
Expression Sequences
Cascades
Expression Blocks
Control Structures
Brace Arrays
Class Definition
Method Definition

Pseudo-Variables

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 5 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

Pseudo-variable Description

nil The singleton instance of Class UndefinedObject

true The singleton instance of Class True

false The singleton instance of Class False

self The current object, that is, the receiver of the current message.

super
As the receiver of a message, refers to the same object as . However, when a message is sent to

, the search for a suitable method starts in the superclass of the class whose method definition
contains the word .

super self
super

super

thisContext The active context, that is, the "currently executing" MethodContext or BlockContext.

Pseudo-variables are reserved identifiers that are similar to keywords in other languages.
, and are constants.nil true false
, and vary dynamically as code is executed.self super thisContext

It is not possible to assign to any of these pseudo-variables.

Identifiers

 letter (letter | digit)*

Smalltalk identifiers (and symbols) are .case-sensitive
It is a Smalltalk convention for identifiers (instance and temporaries) of several words to begin with a lower case character, and then capitalize
subsequent words. (, thisIsACompoundIdentifier).e.g.
Certain identifiers, for example, globals (, Smalltalk) and class variables, are by convention initially capitalized. The names of all classes are
also global variables (, SystemDictionary).

e.g.
e.g.

Comments

a comment comprises any sequence of characters, surrounded by double quotes
comments can include the 'string delimiting' character
and comments can include embedded double quote characters by ""doubling"" them
comments can span many

many
lines

" "
" "
" "
"

"

Literals (Constant Expressions)

Numbers (Instances of class Number)

In the following, ==> means "prints as".

Decimal integer: ,
Octal integer: ,
Hex integer: ,
Arbitrary base integer: ==> 10
Integer with exponent: ==> 12300, ==> 40
Float (double precision):
Arbitrary base float: ==> 1.5
Float with exponent: ==> 6.0

1234 12345678901234567890
8r177 8r1777777777777777777777

16rFF 16r123456789ABCDEF012345
2r1010
123e2 2r1010e2

3.14e-10
2r1.1
2r1.1e2

Squeak supports SmallInteger arithmetic (integers between -2 and 2) with fast internal primitives.30 30-1

Squeak supports arbitrary precision arithmetic seamlessly (automatically coercing SmallInteger to LargePositiveInteger and LargeNegativeInteger
where appropriate), albeit at a slight cost in speed.
Squeak supports several other kinds of "numeric" value, such as Fractions (arbitrary precision rational numbers) and Points. While there are no
literals for these objects, they are naturally expressed as operations on built-in literals. ("2/3" and "2@3", respectively)
Numbers may be represented in many radices, but the radix specification itself is always expressed in base 10. The base for the exponent part is

the same as the radix. So: ==> 10, ==> 1000 (=10 x 10), but ==> 40 (=10 x 2)2r1010 10e2 2 2r1010e2 2

Characters (Instances of class Character)

 "A character is any character (even unprintable ones), preceded by a dollar sign"
 "Don't be shy about characters that are digits"
 "or symbols"
 "or even the dollar sign"

$x
$3
$<
$$

Strings (Instances of class String)

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 6 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

a string comprises any sequence of characters, surrounded by single quotes
strings can include the "comment delimiting" character
and strings can include embedded single quote characters by doubling'' them
strings can contain embedded

newline characters
 "and don't forget the empty string"

' '
' '
' '
'

'
''

A string is very much like ("isomorphic to") an array containing characters. Indexing a string answers characters at the corresponding position,
staring with 1.

Symbols (Instances of class Symbol)

A string preceded by a hash sign is a Symbol
orAnyIdentifierPrefixedWithAHashSign
orAnIdentifierEndingWithAColon:
or:several:identifiers:each:ending:with:a:colon:
- "A symbol can also be a hash followed by '-' or any special character"
+< "or a hash followed by any pair of special characters"

#' '
#
#
#
#
#

Symbol is a subclass of String, and undersatnds, in large part, the same operations.
The primary difference between a symbol and a string is that all symbols comprising the same sequence of characters are the same instance. Two
different string instances can both have the characters 'test one two three', but every symbol having the characters #'test one two three' is the
same instance. This "unique instance" property means that Symbols can be efficiently compared, because equality (=) is the same as identity
(==).
"Identifier with colon" Symbols (#a:keyword:selector:) are often referred to as keyword selectors, for reasons that will be made clear later.e.g.,
"Single or dual symbol" Symbols (#* or #++) are often referred to as binary selectors.e.g.,
The following are permissible special characters: +/*\~<=>@%|&?!
Note that #-- is not a symbol (or a binary selector). On the other hand, #'--' a symbol (but not a binary selector).is

Constant Arrays (Instances of class Array)

 1 2 3 4 5 "An array of size 5 comprising five Integers (1 to 5)"
 'this' #is $a #'constant' array "An array of size 5 comprising a String ('this'), a Symbol (#is), a Character ($a) and two Symbols (#constant and

#array)."
 1 2 (1 #(2) 3) 4 "An array of size 4 comprising two Integers (1 and 2), an Array of size 3, and another Integer (4)."
 1 + 2 "An array of size 3 comprising 1, #+, and 2. It is the singleton array comprising 3."

#()
#()

#()
#() not

Constant arrays are constants, and their elements must therefore be constants. "Expressions" are not evaluated, but are generally parsed as
sequences of symbols as in the example above.
Constant arrays may contain constant arrays. The hash sign for internal constant arrays is optional.
Identifiers and sequences of characters in constant arrays are treated as symbols; the hash sign for internal symbols is optional.
Arrays are indexed with the first element at index 1.

Assignments

identifier expression
identifier := expression " := is always a legal alternative to , but the pretty printer uses "

foo 100 factorial
foo bar 1000 factorial

The identifier (whether instance variable, class variable, temporary variable, or otherwise) will thereafter refer to the object answered by the
expression.
The " " glyph can be typed in Squeak by keying the underbar character (shift-hyphen).
Assignments are expressions; they answer the result of evaluating the right-hand-side.
Assignments can be cascaded as indicated above, resulting in the assignment of the same right-hand-side result to each variable.

Messages

Unary Messages

theta sin
quantity sqrt
nameString size
1.5 tan rounded asString "same result as (((1.5 tan) rounded) asString)"

Unary messages are messages without arguments.
Unary messages are the most "tightly parsed" messages, and are parsed left to right. Hence, the last example answers the result of sending
#asString to the result of sending #rounded to the result of sending #tan to 1.5

Binary Messages

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 7 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

3 + 4 " ==> 7 "
3 + 4 * 5 " ==> 35 (23) "
3 + 4 factorial " ==> 27 (5040) "
total - 1
total <= max "true if total is less than or equal to max"
(4/3)*3 = 4 "==> true � equality is just a binary message, and Fractions are exact"
(3/4) == (3/4) "==> false � two equal Fractions, but not the same object"

not
not

Binary messages have a receiver, the left hand side, and a single argument, the right hand side. The first expression above sends 3 the message
comprising the selector #+ with the argument 4.
Binary messages are parsed left to right, without regard to precedence of numeric operators, unless corrected with parentheses.always
Unary messages bind more tightly than binary messages

Keyword Messages

12 between: 8 and: 15 " ==> true "
#($t $e $s $t) at: 3 " ==> $s "
array at: index put: value "==> answers value, after storing value in array at index"
array at: index factorial put: value "same, but this time stores at index factorial"
1 to: 3 do: aBlock "This sends #to:do: (with two parameters) to integer 1"
(1 to: 3) do: aBlock "This sends #do: (with one parameter) to the Interval given by evaluating '1 to: 3'"

Keyword messages have 1 or more arguments
Keyword messages are the least "tightly parsed messages." Binary and unary messages are resolved first unless corrected with parentheses.

Expression Sequences

expressionSequence ::= expression (. expression)* (.)opt

box 20@30 corner: 60@90.
box containsPoint: 40@50

Expressions separated by are executed in sequence.periods
Value of the sequence is the value of the final expression.
The values of all of the other expressions are ignored.
A final period is optional.

Cascade Expressions

receiver
 unaryMessage;
 + 23;
 at: 23 put: value;
 yourself

messages in a cascade are separated by ; each message is sent to in sequence.semicolons receiver
Intermediate answers are ignored, but side-effects on will be retained.receiver
The cascade answers the result of sending the last message to (after sending all the preceding ones!)receiver

Block Expressions

Blocks, actually instances of the class BlockContext. They are used all the time to build control structures. Blocks are created using the syntax
around a sequence of expressions.

[]

 expressionSequence "block without arguments"

 (: identifier) | expressionSequence "block with arguments"

(: identifier) | | identifier | expressionSequence "block with arguments and local variables"

[]
[+]
[+ +]

 1. 2. 3 "a block which, when evaluated, will answer the value 3"
 object doWithSideEffects. test "a block which, when evaluated, will send #doWithSideEffects to object, and answer the object test"
 :param param doSomething "a block which, when evaluated with a parameter, will answer the result of sending #doSomething to the parameter.

[]
[]
[|]

A block represents a deferred sequence of actions.
The value of a block expression is an object that can execute the enclosed expressions at a later time, if requested to do so. Thus

 1. 2. 3 ==> [] in UndefinedObject>>DoIt[]
 1. 2. 3 value ==> 3[]

Language experts will note that blocks are rougly equivalent to lambda-expressions, anonymous functions, or closures.

Evaluation Mesages for BlockContext

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 8 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

Message Description Notes

value Evaluate the block represented by the receiver and answer the result. 1

 argvalue: Evaluate the block represented by the receiver, passing it the value of the argument, arg. 2

anArray
valueWithArguments:

Evaluate the block represented by the receiver. The argument is an Array whose
elements are the arguments for the block. Signal an error if the length of the Array is not
the same as the the number of arguments that the block was expecting.

3

Notes

1. The message , sent to a block, causes the block to be executed and answers the result. The block must require zero arguments.#value
2. The message , causes the block to be executed. The block must require exactly one argument; the corresponding parameter is

initialized to .
 #value: arg
arg

3. Squeak also recognizes , and . If you have a block with more than four
parameters, you must use .

#value:value: #value:value:value #value:value:value:value
#valueWithArguments

Control Structures

Alternative Control Structures (Receiver is Boolean)

Message Description Notes

 alternativeBlockifTrue:
Answer nil if the receiver is false. Signal an Error if the receiver is
nonBoolean. Otherwise, answer the result of evaluating alternativeBlock

1,2

 alternativeBlockifFalse:
Answer nil if the receiver is true. Signal an Error if the receiver is
nonBoolean. Otherwise answer the result of evaluating the argument,
alternativeBlock.

1,2

 trueAlternativeBlock
falseAlternativeBlock
ifTrue: ifFalse:

Answer the value of trueAlternativeBlock if the receiver is true. Answer
the value of falseAlternativeBlock if the receiver is false. Otherwise,
signal an Error.

1,2

 falseAlternativeBlock
trueAlternativeBlock
ifFalse: ifTrue:

Same as ifTrue:ifFalse:. 1,2

Notes

1. These are not technically control structures, since they can be understood as keyword messages that are sent to boolean objects. (See the
definitions of these methods in classes True and False, respectively).

2. However, these expressions play the same role as control structures in other languages.

Alternative Control Structures (Receiver is any Object)

Message Description Notes

 nilBlockifNil:
Answer the result of evaluating nilblock if the receiver is nil. Otherwise answer
the receiver.

 ifNotNilBlockifNotNil:
Answer the result of evaluating ifNotNilBlock if the receiver is not nil.
Otherwise answer nil.

 nilBlock
ifNotNilBlock
ifNil: ifNotNil: Answer the result of evaluating nilBlock if the receiver is nil. Otherwise answer

the result of evaluating ifNotNilBlock.

 ifNotNilBlock
nilBlock
ifNotNil: ifNil:

Same as #ifNil:ifNotNil:

Iterative Control Structures (receiver is aBlockContext)

Message Description Notes

whileTrue Evaluate the receiver. Continue to evaluate the receiver for so long as the result is true.

 aBlockwhileTrue: Evaluate the receiver. If true, evaluate aBlock and repeat.

whileFalse Evaluate the receiver. Continue to evaluate the receiver for so long as the result is false.

aBlockwhileFalse: Evaluate the receiver. If false, evaluate aBlock and repeat.

Enumeration Control Structures (Receiver is anInteger)

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 9 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

Message Description Notes

 aBlocktimesRepeat: Evaluate the argument, aBlock, the number of times represented by the receiver.

 stop aBlockto: do: Evaluate aBlock with each element of the interval (self to: stop by: 1) as the argument.

 stop step
aBlock
to: by: do: Evaluate aBlock with each element of the interval (self to: stop by: step) as the

argument.

Enumeration Control Structures (Receiver is Collection)

Message Description Notes

aBlockdo: For each element of the receiver, evaluate aBlock with that element as the argument. 1

1. Squeak collections provide a very substantial set of enumeration operators. See the section on the Classes Reference.Enumerating Collections

Case Structures (Receiver is any Object)

Message Description Notes

 aBlockAssociationCollectioncaseOf:
Answer the evaluated value of the first association in
aBlockAssociationCollection whose evaluated key equals the receiver. If
no match is found, signal an Error.

1

 aBlockAssociationCollection
 aBlock

caseOf:
otherwise:

Answer the evaluated value of the first association in
aBlockAssociationCollection whose evaluated key equals the receiver. If
no match is found, answer the result of evaluating aBlock.

1

1. aBlockAssociationCollection is a collection of Associations (key/value pairs).
Example: aSymbol caseOf: {[#a]->[1+1]. ['b' asSymbol]->[2+2]. [#c]->[3+3]}

Expression "Brace" Arrays

 braceArray ::= expressionSequence

 1. 2. 3. 4. 5 "An array of size 5 comprising five Integers (1 to 5)"
 $a #brace array "An array of size 3 comprising a Character ($a) a Symbol (#brace), and the variable array."
 1 + 2 "An array of size 1 comprising the single integer 3."

{ }

{ }
{ } the present value of
{ }

Brace arrays are bona-fide Smalltalk expressions that are computed at runtime.
The elements of a brace array are the answers of its component expressions.
They are a sometimes convenient and more general alternative to the clunky expression "Array with: expr1 with: expr2 with: expr3"
Indexing is 1-based.

Answer Expressions

answerExpression ::= ^ expression

^ aTemporary
^ 2+3

Inside the body of a method, an answer expression is used to termionate the execution of the method and deliver the expression as the method's
answer.
Answer expressions inside a nested block expression will terminate the enclosing method.

Class Definition

Class Definition

SuperClass subclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

Variable Class Definition

These forms of class definition are used to create indexable objects, , those like Array, ByteArray and WordArray. They are included here for
completeness, but are not normally used directly; instead, use an ordinary object with an instance variable whose value is an approriate Array (or other
collection) object.

i.e.

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 10 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

SuperClass variableSubclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

SuperClass variableByteSubclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

SuperClass variableWordSubclass: #NameOfClass
 instanceVariableNames: 'instVarName1 instVarName2'
 classVariableNames: 'ClassVarName1 ClassVarName2'
 poolDictionaries: ''
 category: 'Major-Minor'

Method Definition

All methods answer a value; there is an implicit at the end of every method to make sure that this is the case. Here is an example (from class
String).

 ̂self

 "Answer the number of lines represented by the receiver, where every
 cr adds one line."

 | cr count |
 cr Character cr.
 count 1 min: self size.
 self do:
 [:c | c == cr ifTrue: [count count + 1]].
 ̂ count

lineCount

2001.04.24 1:45Squeak Smalltalk: Basic Language Reference

Page 11 of 11file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakLanguageRef.html

Squeak Smalltalk: Classes Reference

Version 0.0, 20 November 1999, by Andrew C. Greenberg, werdna@mucow.com
Version 01., 10 April 2001, by Andrew P. Black, black@cse.ogi.edu

Based on:
 Smalltalk-80: The Language and Its Implementation, Author: Adele Goldberg and David Robson
 Squeak Source Code v. 2.6
 and the readers of the Squeak mailing list.

Squeak site: http://www.squeak.org

Contents

Fundamental Classes and Methods
Numeric Classes and Methods
Collection Classes and Methods
Streaming Classes and Methods
ANSI-Compatible Exceptions
The Squeak Class Hierarchy
Other Categories of Squeak Classes

See also the Squeak Language Reference page

Fundamental Classes and Methods

Class Object
Class Boolean
Class Magnitude
Class Character

Class Object (Operations on all objects)

Instance Creation (Class Side)

Message Description Notes

new
Answer a new instance of the receiver (which is a class). This is the usual way of creating a new
object. is often overridden in subclasses to provide class-specific behavior.new

1, 2

basicNew This is the primitive that is ultimately called to implement .new 3

anInteger
new: Answer an instance of the receiver (which is a class) with size given by anInteger. Only allowed if it

makes sense to specify a size.
4

Notes:

1. The usual body for a method is . Remember to put it on the class side, remember to type the , and remember
to say not !

new ̂super new initialize ^
super, self

2. It's OK not to implement new if it makes no sense, For example, look at Boolean class>>new and MappedCollection class>>new.
3. is there so you can still make instances even if a superclass has overridden . Consequently, never override , until you

become a wizard.
basicNew new basicNew

4. If you need an initialization parameter other than a size, choose a more meaningful name than For example, look at the instance creation
protocol for Pen class and Rectangle class.

new:

Comparing Objects

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 1 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

==
anObject

Are the receiver and the argument the same object? (Answer is or)true false 1

~~ anObject Are the receiver and the argument different objects? 1

= anObject
Are the receiver and the argument equal? The exact meaning of equality depends on the class of the
receiver.

2

~= anObject Are the receiver and the argument unequal? 2

hash Answer a SmallInteger whose value is related to the receiver's value. 2

Notes:

1. == and ~~ should not normally be redefined in any other class.
2. Since various classes (particularly Sets and Dictionaries) rely on the property that equal objects have equal hashes, you should override

whenever you override #=. It must be true that implies . The inverse and the converse will not hold in general.
#hash

(a = b) (a hash = b hash)

Testing Objects

Message Description Notes

isNil Is the receiver nil? (Answer is or)true false

notNil Is the receiver not nil?

 aBlockifNil: Evaluate aBlock if the receiver is nil, and answer the value of aBlock. Otherwise answers nil.

aBlockifNotNil:
Evaluate aBlock if the receiver is not nil, and answer the value of aBlock. Otherwise answers
the receiver.

aBlock
ifNotNilDo:

If the receiver is not nil, evaluate aBlock with the receiver as argument. 1

 is useful if the receiver is a complex expression, for exampleifNotNilDo: aBlock
self leftChild rightChild ifNotNilDo: [:node | node balance]

Copying Objects

Message Description Notes

copy
Answer another instance just like the receiver. Subclasses typically override this method; they
typically do not override shallowCopy.

shallowCopy Answer a copy of the receiver which shares the receiver's instance variables.

deepCopy Answer a copy of the receiver with its own copy of each instance variable.

veryDeepCopy
Do a complete tree copy using a dictionary. An object in the tree twice is copied once and shared
by both referents.

Sending Messages to Objects

Message Description Notes

 aSymbolperform:
Send the unary selector, aSymbol, to the receiver. Signal an error if the number
of arguments expected by the selector is not zero.

 aSymbol
anObject
perform: with: Send the selector aSymbol to the receiver with anObject as its argument. Fail if

the number of arguments expected by the selector is not one.
1

 selector
argArray

perform:
withArguments:

Send the selector, aSymbol, to the receiver with arguments in argArray. Fail if
the number of arguments expected by the selector does not match the size of
argArray.

1. Squeak objects also recognize and #perform:with:with: #perform:with:with:with

Indexing Objects

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 2 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

 indexat:
Answer the value of an indexable element in the receiver. Signal an Error if index is not an
Integer or is out of bounds.

 index
anObject
at: put:

Store the argument value in the indexable element of the receiver indicated by index. Signal an
Error if index is not an Integer or is out of bounds. Or fail if the value is not of the right type for
this kind of collection. Answer the value that was stored.

 index
 aBlock

at:
modify:

Replace the element at index of the receiver with that element transformed by the block.

size
Answer the number of indexable variables in the receiver. This value is the same as the largest
legal subscript. If the receiver does not have instance variables, then signal an Error.

Displaying and Storing Objects

Message Description Notes

printString Answer a String whose characters describe the receiver.

aStreamprintOn: Append to the argument, aStream, a String whose characters describe the receiver.

storeString Answer a String from which the receiver can be reconstructed.

aStreamstoreOn: Append to the argument, aStream, a String from which the receiver can be reconstructed

Interrogating Objects

Message Description Notes

class Answers the receiver's class (an object).

 aClassisKindOf: Is the receiver an instance of aClass or one of its subclasses?

 aClassisMemberOf: Is the receiver an instance of aClass? (Same as)rcvr class == aClass

 aSelectorrespondsTo:
Can the receiver find a method for aSelector, either in the receiver's class or in one of its
superclasses?

aSelector
canUnderstand: Does the receiver, which must be a class, have a method for aSelector? The method can

belong to the receiver or to any of its superclasses.

Miscellaneous Messages on Objects

Message Description Notes

yourself Answers self. 1

asString Answers the receiver's printString.

aSymboldoesNotUnderstand: Report that the receiver does not understand aSymbol as a message.

 aStringerror: Signal an Error.

halt Stops execution. 2

1. the message is mostly used as the last message in a cascade, when the previous message answered some object other than the receiver.
For example,

 answers , the object that was put, whereas
; answers

yourself

#(1 2 3 5 5) at: 4 put: 4 4
#(1 2 3 5) at: 4 put: 4 yourself #(1 2 3 4)

2. is the usual way of forcing entry to the debugger. The halt can be resumed.self halt

Class Boolean

This abstract class represents logical values, providing Boolean operations and conditional control structures. It has two subclasses, True and False,
each of which have singleton instances represented by the Squeak keywords and , respectively.true false

Evaluating and Non-Evaluating Logical Operations for Boolean

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 3 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

 aBoolean&
Evaluating conjunction (AND). Evaluate the argument. Then answer true if both the receiver
and the argument are true.

 aBooleaneqv: Answer true if the receiver is equivalent to aBoolean.

not Negation. Answer true if the receiver is false, answer false if the receiver is true.

 aBooleanxor: Exclusive OR. Answer true if the receiver is not equivalent to aBoolean.

 aBoolean|
Evaluating disjunction (OR). Evaluate the argument. Then answer true if either the receiver or
the argument is true.

alternativeBlock
and: Nonevaluating conjunction. If the receiver is true, answer the value of the argument,

alternativeBlock; otherwise answer false without evaluating the argument.

 alternativeBlockor:
Nonevaluating disjunction. If the receiver is false, answer the value of the argument,
alternativeBlock; otherwise answer true without evaluating the argument.

Class Magnitude

This abstract class embraces, among other classes, Numbers, Characters, Date and Time. It addresses classes whose instances can be linearly ordered.

Message Description Notes

< aMagnitude Answer whether the receiver is strictly less than the argument.

> aMagnitude Answer whether the receiver is strictly greater than the argument.

<= aMagnitude Answer whether the receiver is less than or equal to the argument.

>= aMagnitude Answer whether the receiver is greater than or equal to the argument.

 min maxbetween: and:
Answer whether the receiver is greater than or equal to the argument, min, and less
than or equal to the argument, max.

 aMagnitudemin: Answer the receiver or the argument, whichever is the lesser magnitude.

 aMagnitudemax: Answer the receiver or the argument, whichever is the greater magnitude.

 firstMagnitude
secondMagnitude
min: max:

Take the receiver or the argument, firstMagnitude, whichever is the lesser
magnitude, and answer that or the argument, secondMagnitude, whichever is the
greater magnitude.

Class Character

Squeak has its own 256-character set, which may differ from that of the host platform. Instances of class Character store an 8-bit character code.

The characters 0-127 are the same as the corresponding ASCII characters, with a few exceptions: the assignment arrow replaces underscore, and
characters for the enter, insert, pageup, page down, home, and the 4 arrow keys replace some of the ACSII control characters. These characters
can be accessed from Squeak using methods in class Character.
The characters 128-255 are sparsely populated. Various symbols, such as bullets, trademark, copyright, cent, Euro and Yen, dipthongs and a fair
number of accented characters as well as non-breaking space (Character nbsp) are available at the same codes as in the Macintosh character set,
but fewer characters are assigned than on the Macintosh.
The full character set can be viewed by doing a printIt on "Character allCharacters"

Methods for instance creation (Class side)

Most of the time, characters literals , , are used in preference to class methods. The principal expections are the non-printing characters listed
here. Programs should never need to depend on the details of the character encoding.

$a $b etc.

Message Description Notes

 nvalue:
n must be ain integer in the range 0 to 255.
Answer the Character with code n

 1

xdigitValue:
Answer the Character whose digit value is x. For
example, answer $9 for x=9, $0 for x=0, $A for
x=10, $Z for x=35.

arrowDown arrowLeft arrowRight arrowUp backspace cr
delete end enter escape euro home insert lf linefeed nbsp
newPage pageDown pageUp space tab

Answer the appropriate character

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 4 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

1. The invariant holds for all in the range [0..255].(Character value: n) asciiValue = n n

Methods for accessing Characters

Message Description Notes

asciiValue Answer the value used in the receiver's encoding. This is not really ASCII, despite the name! 1

digitValue
Answer 0-9 if the receiver is $0-$9, 10-35 if it is $A-$Z, and < 0 otherwise. This is used to parse literal
numbers of radix 2-36.

1. Character has the unique instance property, so that all equal ("=") instances of a character are identical ("=="). That is,
 if and only if .

a asciiValue == b
asciiValue a == b

Methods for testing Characters

Message Description Notes

isAlphaNumeric Answer whether the receiver is a letter or a digit.

isDigit Answer whether the receiver is a digit.

isLetter Answer whether the receiver is a letter.

isLowercase Answer whether the receiver is a lowercase letter.

isSeparator
Answer whether the receiver is one of the separator characters: space, cr, tab, line feed, or form
feed.

isSpecial Answer whether the receiver is one of the special characters

isUppercase Answer whether the receiver is an uppercase letter.

isVowel Answer whether the receiver is one of the vowels, AEIOU, in upper or lower case.

tokenish Answer whether the receiver is a valid token-character--letter, digit, or colon.

Methods for converting Characters

Message Description Notes

asLowercase If the receiver is uppercase, answer its matching lowercase Character.

asUppercase If the receiver is lowercase, answer its matching uppercase Character.

Numeric Classes and Methods

Class Number

This abstract class embraces Integers, Floats and Fractions. Number is a subclass of Magnitude.

Methods for arithmetic on all Numeric Classes

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 5 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

+ aNumber Answer the sum of the receiver and the argument.

- aNumber Answer the difference of the receiver and the argument.

* aNumber Answer the product of the receiver and the argument.

/ aNumber
Answer the result of dividing the receiver and the argument, retaining as much precision as possible. If
the answer is not exact, the result will be Fraction or Float, as appropriate. Signal ZeroDivide if the
argument is Zero.

// aNumber
Answer the result of dividing the receiver and the argument, truncating toward negative infinity. Signal
ZeroDivide if the argument is Zero.

\\ aNumber
Answer the remainder of dividing the receiver and the argument, truncating toward negative infinity.
This is the modulus operator. Signal ZeroDivide if the argument is Zero.

aNumber
quo: Answer the result of dividing the receiver and the argument, truncating toward zero. Signal

ZeroDivide if the argument is Zero.

aNumber
rem: Answer the remainder of dividing the receiver and the argument, truncating toward zero. Signal

ZeroDivide if the argument is Zero.

abs Answer the absolute value of the receiver.

negated Answer the negation of the receiver.

reciprocal Answer 1 divided by the receiver. Signal ZeroDivide if the receiver is zero.

Methods implementing mathematical functions for Numbers

Message Description Notes

exp Answer a floating point number that is the exponential of the reciever

ln Answer the natural log of the receiver.

 aNumberlog: Answer the logarithm base aNumber of the reciever.

 aNumberfloorLog:
Take the logarithm base aNumber of the reciever, and answer the integer nearest that
value towards negative infinity.

 aNumberraisedTo: Answer the receiver raised to the power of the argument, aNumber.

anInteger
raisedToInteger: Answer the receiver raised to the power of the argument, anInteger. Signal an Error if

anInteger is not an integer.

sqrt Answer a floating point number that is the positive square root of the receiver.

squared Answer the receiver multiplied by itself.

Methods for testing Numbers

Message Description Notes

even Answer whether the receiver is even.

odd Answer whether the receiver is odd.

negative Answer whether the receiver is less than zero.

positive Answer whether the receiver is greater than or equal to zero.

strictlyPositive Answer whether the receiver is greater than zero.

sign
Answer 1 if the receiver is strictly positive, zero if the receiver is zero, and -1 if the receiver is
strictly negative.

isZero Answer whether the receiver is zero.

Methods for truncating and rounding Numbers

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 6 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

ceiling Answer the Integer nearest the receiver toward positive infinity.

floor Answer the Integer nearest the receiver toward negative infinity.

truncated Answer an integer nearest the receiver toward zero.

aNumbertruncateTo: Answer the next multiple of aNumber toward zero that is nearest the receiver.

rounded Answer the integer nearest the receiver.

 quantumroundTo: Answer the nearest number that is a multiple of quantum.

quantumroundUpTo: Answer the next multiple of aNumber toward infinity that is nearest the receiver.

Methods for trigonometry on Numbers

Message Description Notes

sin Answer the sine of the receiver taken as an angle in radians.

cos Answer the cosine of the receiver taken as an angle in radians.

tan Answer the tangent of the receiver taken as an angle in radians.

degreeSin Answer the sin of the receiver taken as an angle in degrees.

degreeCos Answer the cosine of the receiver taken as an angle in degrees.

arcSin Answer an angle in radians whose sine is the receiver.

arcCos Answer an angle in radians whose cosine is the receiver.

arcTan Answer an angle in radians whose tangent is the receiver.

denominatorarcTan: Answer the angle in radians whose tan is the receiver divided by denominator.

degreesToRadians Answer the receiver in radians. Assumes the receiver is in degrees.

radiansToDegrees Answer the receiver in degrees. Assumes the receiver is in radians.

Class Integer

Methods for arithmetic on Integers

Message Description Notes

isPowerOfTwo Answer whether the receiver is a power of two.

factorial Answer the factorial of the receiver.

 anIntegergcd: Answer the greatest common denominator of the receiver and the argument.

 anIntegerlcm: Answer the least common multiple of the receiver and the argument.

 anIntegertake: Answer the number of combinations of the receiver, taken the argument, anInteger, at a time.

Methods for bit manipulation on Integers

A range of bit manipulation operations are availabel on Integers. They are rarely needed, however, so they are not described here. Of course, they can
be viewed using the browser.

Collection Classes and Methods

The Collection Hierarchy

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 7 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Class Description

Collection Abstract Class for Collections

 Bag Unordered, unindexed collection of objects

 Set Unordered, unindexed collection of unique objects

 Dictionary Set of associations (values are indexable by keys)

 IdentityDictionary Dictionary, but comparisons are done using ==

 IdentitySet Set, but comparisons are done using ==

 SequenceableCollection Ordered collection, indexed by integers

 OrderedCollection Ordered according to manner elements are added and removed

 SortedCollection Ordered according to value of a "sortBlock"

 LinkedList Homogeneous SequenceableCollection of Links

 Interval Homogeneous sequence of arithmetic progression of Integers

 ArrayedCollection Ordered collection, indexed by fixed range of Integers

 Array ArrayedCollection of arbitrary Objects

 Array2D Homogeneous ArrayedCollection of Arrays

 ByteArray Homogeneous ArrayedCollection of Bytes (Integers -128..255)

 FloatArray Homogeneous ArrayedCollection of Floating point numbers

 IntegerArray Homogeneous ArrayedCollection of Signed 32-bit Integers

 PointArray Homogeneous ArrayedCollection of Points (with 32-bit values)

 RunArray Homogeneous ArrayedCollection of Integers (sparse RLE representation)

 ShortIntegerArray Homogeneous ArrayedCollection of Signed 16-bit Integers

 ShortPointArray Homogeneous ArrayedCollection of Points (with 16-bit values)

 ShortRunArray Homogeneous ArrayedCollection of Signed 16-bit Ints (sparse RLE rep)

 String Homogeneous ArrayedCollection of Characters

 Symbol Homogeneous ArrayedCollection of Characters (with unique instance property)

 Text Homogeneous ArrayedCollection of Characters with associated text attributes

 WordArray Homogeneous ArrayedCollection of Unsigned 32-bit Integers

 Heap Like SortedCollection, but stores information as a heap. (see Heapsort)

 MappedCollection
Means for accessing an indexable Collection, using a mapping from a collection of "external"
keys to the accessed collection's "indexing" keys. The MappedCollection can then be used
directly, indexing and changing the accessed collection via the external keys.

Class Collection

Methods for creating Collections (Class Side)

Message Description Notes

 anObjectwith: Answer an instance of the receiver containing anObject

 firstObject
secondObject
with: with: Answer an instance of the receiver containing all the arguments as elements. (Squeak

recognizes instantiators of this type up to six "with:" clauses).

 aCollectionwithAll: Answer an instance of the receiver containing all the elements from aCollection.

Methods for testing, adding and removing Collection elements

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 8 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

anyOne
Answer a specimen element of the receiver (any one at all). Signal an error if the
receiver is empty.

isEmpty Answer whether the receiver contains any elements.

 anObjectoccurrencesOf: Answer how many of the receiver's elements are equal to anObject.

 aBlockanySatisfy:
Evaluate aBlock with the elements of the receiver. If aBlock returns true for
any element return true. Otherwise return false

 anObjectincludes: Answer whether anObject is one of the receiver's elements.

 aCollectionincludesAllOf: Answer whether all the elements of aCollection are in the receiver.

 aCollectionincludesAnyOf: Answer whether any element of aCollection is one of the receiver's elements.

 secondCollectiondifference:
Answer a new collection that is computed by copying the receiver and
removing all the elements in secondCollection.

 newObjectadd:
Include newObject as one of the receiver's elements. Answer newObject.
ArrayedCollections cannot respond to this message.

 newObjectaddAll:
Include all the elements of aCollection as the receiver's elements. Answer
aCollection.

 oldObjectremove:
Remove oldObject as one of the receiver's elements. Answer oldObject unless
no element is equal to oldObject, in which case, signal an Error.

 oldObject
anExceptionBlock
remove: ifAbsent:

Remove oldObject as one of the receiver's elements. If several of the elements
are equal to oldObject, only one is removed. If no element is equal to
oldObject, answer the result of evaluating anExceptionBlock. Otherwise,
answer oldObject. SequenceableCollections cannot respond to this message.

 aCollectionremoveAll:
Remove each element of aCollection from the receiver. If successful for each,
answer aCollection. Otherwise signal an Error.

 aCollectionremoveAllFoundIn:
Remove from the receiver each element of aCollection that is present in the
receiver.

 aBlockremoveAllSuchThat: Apply the condition to each element and remove it if the condition is true.

Methods for enumerating Collections

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 9 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

 aBlockdo: Evaluate aBlock with each of the receiver's elements as the argument.

 aBlock
separatorBlock
do: separatedBy:

Evaluate aBlock for all elements in the receiver, and if there is more than one
element, evaluate the separatorBlock between each pair of elements in the
receiver.

 aPredicateBlockselect:
Evaluate aPredicateBlock with each of the receiver's elements as the argument.
Collect into a new collection like the receiver, only those elements for which
aPredicateBlock evaluates to true. Answer the new collection.

 aPredicateBlockreject:
Evaluate aPredicateBlock with each of the receiver's elements as the argument.
Collect into a new collection like the receiver only those elements for which
aPredicateBlock evaluates to false. Answer the new collection.

 aMappingBlockcollect:
Evaluate aMappingBlock with each of the receiver's elements as the argument.
Collect the resulting values into a collection like the receiver. Answer the new
collection.

 aPredicateBlockdetect:
Evaluate aPredicateBlock with each of the receiver's elements as the argument.
Answer the first element for which aPredicateBlock answers true. Signal an
Error if none are found.

 aPredicateBlock
exceptionBlock
detect: ifNone:

Evaluate aPredicateBlock with each of the receiver's elements as the argument.
Answer the first element for which aPredicateBlock evaluates to true. If there is
none, answer the result of evaluating exceptionBlock.

 initialValue
binaryBlock
inject: into:

Accumulate a running value associated with evaluating binaryBlock. The
running value is initialized to initialValue. The current running value and the next
element of the receiver are provided as the arguments to binaryBlock. For
example, to compute the sum of the elements of a numeric collection,
aCollection 0 [:subTotal :next | subTotal + next].inject: into:

 aMappingBlock
aPredicateBlock

collect:
thenSelect:

Evaluate aMappingBlock with each of the receiver's elements as the argument.
Collect the resulting values that satisfy aPredicateBlock into a collection like the
receiver. Answer the new collection.

 aPredicateBlock
aMappingBlock

select:
thenCollect:

Evaluate aMappingBlock with each of the receiver's elements for which
aPredicateBlock answers true as the argument. Collect the resulting values into a
collection like the receiver. Answer the new collection.

 aPredicateBlockcount:
Evaluate aPredicateBlock with each of the receiver's elements as the argument.
Return the number that answered true.

Bag

Methods for accessing Bags

Message Description Notes

 newObject
anInteger
add: withOccurrences: Add the element newObject to the receiver. Do so as though the element

were added anInteger number of times. Answer newObject.

Dictionary and IdentityDictionary

Methods for Accessing Dictionaries

Dictionaries are homogenous Sets of key and value pairs. These pairs are called Associations: key and value can be any object. Instances of
Association are created by sending the binary message " " (is defined in Object). Dictionaries have the property that each key occurs
at most once. IdentityDictionaries have the same property, but determine uniqueness of keys using == instead of =. In ordinary use, both kinds of
Dictionary are indexed using the unique key to obtain the corresponding value.

key -> value ->

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 10 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

 aKeyat:
Answer the value associated with aKey. Signal an Error if no value is
associated with aKey.

 aKey aBlockat: ifAbsent:
Answer the value associated with aKey. If no value is associated with
aKey, answer the value of aBlock.

 aKeyassociationAt:
Answer the association whose key is aKey. If there is none, signal an
Error

 aKey aBlockassociationAt: ifAbsent:
Answer the association whose key is aKey. If there is none, answer the
value of aBlock.

 aValuekeyAtValue:
Answer the key of the first association having aValue as its value. If there
is none, signal an Error.

 aValue
exceptionBlock
keyAtValue: ifAbsent: Answer the key of the first associaiton having aValue as its value. If there

is none, answer the result of evaluating exceptionBlock.

keys Answer a Set containing the receiver's keys.

values Answer an Array containing the receiver's values.

 aValueincludes: Does the receiver contain a value equal to aValue?

 aKey>includesKey: Does the receiver have a key equal to aKey?

 aBlockdo: Evaluate aBlock with each of the receiver's values as argument.

 aBlockkeysDo: Evaluate aBlock with each of the receiver's keys as argument.

 aBlockvaluesDo: same as do:

 aBinaryBlockkeysAndValuesDo:
Evaluate aBinaryBlock with each of the receiver's keys and the associated
value as the arguments.two

 aBlockassociationsDo:
Evaluate aBlock with each of the receiver's elements (key/value
associations) as the argument.

Sequenceable Collection

Methods for accessing SequenceableCollections

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 11 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

 indexCollectionatAll:
Answer a collection containing the elements of the receiver specified by the
integer elements of the argument, indexCollection.

 aCollection anObjectatAll: put:
Put anObject at every index specified by the integer elements of the argument,
aCollection.

 anObjectatAllPut: Put anObject at every one of the receiver's indices.

first
Answer the first element of the receiver. (Squeak also recognizes second, third,
fourth, fifth and sixth). Signal an error if there aren't sufficient elements in the
receiver.

middle
Answer the median element of the receiver. Signal an error if the receiver is
empty.

last Answer the last element of the receiver. Signal an error if the receiver is empty.

allButFirst
Answer a collection equal to the reciever, but without the first element. Signal
an error if the receiver is empty.

allButLast
Answer a collection equal to the reciever, but without the last element. Signal
an error if the receiver is empty.

 anElementindexOf:
Answer the index of anElement within the receiver. If the receiver does not
contain anElement, answer 0.

 anElement
exceptionBlock
indexOf: ifAbsent:

Answer the index of anElement within the receiver. If the receiver does not
contain anElement, answer the result of evaluating the argument,
exceptionBlock.

aSubCollection
anIndex

indexOfSubCollection:
startingAt:

Answer the index of the receiver's first element, such that that element equals
the first element of aSubCollection, and the next elements equal the rest of the
elements of aSubCollection. Begin the search at element anIndex of the
receiver. If no such match is found, answer 0.

aSubCollection
anIndex exceptionBlock

indexOfSubCollection:
startingAt:

ifAbsent:

Answer the index of the receiver's first element, such that that element equals
the first element of sub, and the next elements equal the rest of the elements of
sub. Begin the search at element start of the receiver. If no such match is
found, answer the result of evaluating argument, exceptionBlock.

 start stop
replacementCollection
replaceFrom: to: with:

This destructively replaces elements from start to stop in the receiver. Answer
the receiver itself. Use for insertion/deletion that
may alter the size of the result.

copyReplaceFrom:to:with:

 start
replacementCollection
repStart

replaceFrom: to: stop: with:
startingAt:

This destructively replaces elements from start to stop in the receiver starting
at index, repStart, in the sequenceable collection, replacementCollection.
Answer the receiver. No range checks are performed.

Methods for copying SequenceableCollections

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 12 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

, otherCollection
Answer a new collection comprising the receiver concatenated with the
argument, otherCollection.

 start stopcopyFrom: to:
Answer a copy of a subset of the receiver that contains all the elements
between index start and index stop, inclusive of both.

 oldSubCollection
newSubCollection

copyReplaceAll:
with:

Answer a copy of the receiver in which all occurrences of oldSubstring
have been replaced by newSubstring.

 start stop
 replacementCollection

copyReplaceFrom: to:
with:

Answer a copy of the receiver satisfying the following conditions: If stop
is less than start, then this is an insertion; stop should be exactly start-1,
start = 1 means insert before the first character, start = size+1 means
append after last character. Otherwise, this is a replacement; start and
stop have to be within the receiver's bounds.

 newElementcopyWith:
Answer a copy of the receiver that is 1 bigger than the receiver and has
newElement at the last element.

 oldElementcopyWithout:
Answer a copy of the receiver in which all occurrences of oldElement have
been left out.

 aListcopyWithoutAll:
Answer a copy of the receiver in which all occurrences of all elements in
aList have been removed.

 length
anElement
forceTo: paddingWith: Force the length of the collection to length, padding if necissary with elem.

Note that this makes a copy.

reversed
Answer a copy of the receiver in which the sequencing of all the elements
has been reversed.

shuffled
Answer a copy of the receiver in which the elements have been permuted
randomly.

 aBlocksortBy:
Create a copy that is sorted. Sort criteria is the block that accepts two
arguments. When the block is true, the first arg goes first ([:a :b | a > b]
sorts in descending order).

Methods for enumerating SequenceableCollections

Message Description Notes

 aBlockfindFirst:
Return the index of the receiver's first element for which aBlock evaluates as
true.

 aBlockfindLast:
Return the index of the receiver's last element for which aBlock evaluates as
true.

 aBinaryBlockkeysAndValuesDo:
Evaluate aBinaryBlock once with each valid index for the receiver in order,
along with the corresponding value in the receiver for that index.

 aBlockreverseDo:
Evaluate aBlock with each of the receiver's elements as the argument, starting
with the last element and taking each in sequence up to the first. For
SequenceableCollections, this is the reverse of the enumeration for #do:.

 otherCollection
binaryBlock
with: do: Evaluate binaryBlock with corresponding elements from this collection and

otherCollection.

 otherCollection
aBinaryBlock
reverseWith: do:

Evaluate aBinaryBlock with each of the receiver's elements, in reverse order,
along with the corresponding element, also in reverse order, from
otherCollection.

OrderedCollections

Methods for accesing OrderedCollections

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 13 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

 newObject
oldObject
add: before: Add the argument, newObject, as an element of the receiver. Put it in the

sequence just preceding oldObject. Answer newObject.

 newObject oldObjectadd: after:
Add the argument, newObject, as an element of the receiver. Put it in the
sequence just succeeding oldObject. Answer newObject.

 newObject
index
add: afterIndex: Add the argument, newObject, as an element of the receiver. Put it in the

sequence just after index. Answer newObject.

 anElementaddFirst: Add newObject to the beginning of the receiver. Answer newObject.

anOrderedCollection
addAllFirst: Add each element of anOrderedCollection at the beginning of the receiver.

Answer anOrderedCollection.

 anElementaddLast: Add newObject to the end of the receiver. Answer newObject.

anOrderedCollectionaddAllLast:
Add each element of anOrderedCollection at the end of the receiver. Answer
anOrderedCollection.

 anIndexremoveAt:
remove the element of the receiver at location anIndex. Answers the element
removed.

removeFirst
Remove the first element of the receiver and answer it. If the receiver is empty,
signal an Error.

removeLast
Remove the last element of the receiver and answer it. If the receiver is empty,
signal an Error.

Strings

String is an extensive class, built over the ages in something of an ad hoc manner. We describe here only a small fraction of the methods provided (there
are about 300!)

Methods for accessing Strings

Message Description Notes

 delimiters
start

findAnySubStr:
startingAt:

Answer the index of the character within the receiver, starting at start, that
begins a substring matching one of the delimiters; delimiters is an Array of
Strings and/or Characters. If the receiver does not contain any of the
delimiters, answer size + 1.

 delimitersfindBetweenSubStrs:
Answer the collection of tokens that results from parsing the receiver. And
of the Strings (or Characters) in the Array delimiters is recognized as
separating tokens.

 delimiters
start

findDelimiters:
startingAt:

Answer the index of the character within the receiver, starting at start, that
matches one of the delimiters. If the receiver does not contain any of the
delimiters, answer size + 1.

 subStringfindString:
Answer the first index of subString within the receiver. If the receiver does
not contain subString, answer 0.

 subString
start
findString: startingAt: Answer the index of subString within the receiver, starting at start. If the

receiver does not contain subString, answer 0.

 delimitersfindTokens:
Answer the collection of tokens that results from parsing the receiver. Any
character in the argument, delimiters, marks a border. Several delimiters in a
row are considered as just one separator

 aCharacterindexOf:
Answer the index of the first occurrence of aCharacter in the receiver. 0
Otherwise.

 aCharacter startindexOf: startingAt:
Answer the index of the first occurrence of aCharacter in the receiver,
beginning at index start. 0 Otherwise.

 aCharacter start
 aBlock

indexOf: startingAt:
ifAbsent:

Answer the index of the first occurrence of aCharacter in the receiver,
beginning at index start. If not present, answer the value of aBlock.

 aCharacterSetindexOfAnyOf:
Answers the index of the first occurrence in the receiver of any character in
the given set. Returns 0 if none is found.

 1

Notes

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 14 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

1. As with #indexOf:, there are corresponding messages #indexOfAnyOf:ifAbsent:, #indexOfAnyOf:startingAt: and
#indexOfAnyOf:startingAt:ifAbsent:)

Methods for comparing Strings

Message Description Notes

= aString Answer whether the receiver is equal to aString.The comparison is case-sensitive,

< aString,
<= aString
> aString
>= aString

Answer whether the receiver sorts as indicated with aString. The collation order is that of the
Squeak character set, and therefore case-sensitive,

 aStringsameAs: Answer whether the receiver is equal to aString, ignoring differences of case.

 aStringcompare:
Answer a code defining how the receiver sorts relative to the argument, aString. 1 - receiver
before aString; 2 - receiver equal to aString; and 3 - receiver after aString. The collation sequence
is that of the Squeak character set and is case insensitve.

 textmatch:
Answer whether text matches the pattern in the receiver. Matching ignores upper/lower case
differences. Where the receiver contains #, text may contain any character. Where the receiver
contains *, text may contain any sequence of characters.

prefix
beginsWith:

Answer whether the receiver begins with the argument, prefix.

 prefixendsWith: Answer whether the receiver ends with the argument, prefix.

 aStringalike:
Answer a non-negative integer indicating how similar the receiver is to aString. 0 means "not at
all alike". The best sccore is aString size * 2.

Methods for converting Strings

Message Description Notes

asLowercase Answer a new String that matches the receiver but without any upper case characters.

asUppercase Answer a new String that matches the receiver but without any lower case characters.

capitalized Answer a copy of the receiver with the first character capitalized if it is a letter.

asDisplayText Answer a copy of the receiver with default font and style information.

asInteger
Attempts to parse the receiver as an Integer. Answers the Integer, or nil if the receiver does not
start with a digit.

asNumber Attempts to parse the receiver as a Number. It is an error if the receiver does not start with a digit.

asDate
Attempts to parse the receiver as adate, and answers an appropriate instance of class Date. Many
formats are recognized.

Streaming Classes and Methods

The Stream Hierarchy

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 15 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Class Description

Stream Abstract Class for Accessors

 PositionableStream Accessors for Collections Indexable by an Integer

 ReadStream Read-Only

 WriteStream Write-Only

 ReadWriteStream Read and/or Write

 FileStream Accessors for collections whose elements are "paged in"

 StandardFileStream Accessors for files accessed from a file system

 CrLfFileStream Automatically handles system-specific line endings

 DummyStream Like /dev/null

Class Stream

Stream is an abstract class for an accessor to a sequence of objects, called the contents. The stream is said to be "advanced" when the stream is
configured to access a later element of the contents.

Methods for accessing Streams

Message Description Notes

contents Answer the entire contents of the receiver.

next Answer the next object accessible by the receiver.

 anIntegernext: Answer the next anInteger number of objects accessible by the receiver.

 n anObjectnext: put: Make the next n objects accessible by the receiver anObject. Answer anObject.

 aCollnextMatchAll:
Answer true if next N objects are the ones in aColl, else false. Advance stream if true,
leave as was if false.

anObject
nextMatchFor:

Answer whether the next object is equal to the argument, anObject, advancing the stream.

 anObjectnextPut:
Insert the argument, anObject, as the next object accessible by the receiver. Answer
anObject.

 aCollectionnextPutAll:
Append the elements of aCollection to the sequence of objects accessible by the receiver.
Answer aCollection.

upToEnd Answer the remaining elements in the string

flush Ensure that any objects buffered in the receiver are sent to their final destination.

Methods for testing Streams

Message Description Notes

atEnd Answer whether the receiver can access any more objects.

Methods for enumerating Streams

Message Description Notes

 aBlockdo: Evaluate aBlock for each of the remaining objects accessible by receiver.

Class PositionableStream

PositionableStream is an abstract class for accessors to sequences of objects that can be externally named by indices so that the point of access can be
repositioned. Concrete classes ReadStream, WriteStream and ReadWriteStream are typically used to instantiate a PositionableStream on Collections,
depending upon the access mode. StandardFileStream and CRLFFileStream are typically used for instantiating PositionableStreams for Files.

Methods for accessing PositionableStreams

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 16 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

contentsOfEntireFile Answer a collection containing the remainder of the receiver.

last Return the final element of the receiver.

terminator
nextDelimited:

Answer the contents of the receiver, from the current position up to the next terminator
character; provided, however, that doubled terminators will be included as a single
element.

 buffernextInto:
Given buffer, an indexable object of size n, fill buffer with the next n objects of the
receiver.

nextLine Answer next line (may be empty), or nil if at end

originalContents Answer the receiver's actual contents collection. (returns a copy)contents

peek
Answer what would be returned if the message were sent to the receiver, but don't
advance the receiver. If the receiver is at the end, answer nil.

next

 anObjectpeekFor:
Answer false and do not move over the next element if it is not equal to anObject, or if
the receiver is at the end. Answer true and advance the stream if the next element is equal
to anObject.

 anObjectupTo:
Answer a subcollection from the current access position to the occurrence (if any, but
not inclusive) of anObject in the receiver. If anObject is not in the collection, answer the
entire rest of the receiver.

 aCollectionupToAll:
Answer a subcollection from the current access position to the occurrence (if any, but
not inclusive) of aCollection. If aCollection is not in the stream, answer the entire rest of
the stream.

Methods for testing PositionableStreams

Message Description Notes

isEmpty Answer whether the receiver's contents has no elements.

Methods for positioning PositionableStreams

Message Description Notes

 subCollectionmatch:
Set the access position of the receiver to be past the next occurrence of the
subCollection. Answer whether subCollection is found. No wildcards, case sensitive.

 nBytes
aCharacter
padTo: put:

Pad, using aCharacter, to the next boundary of nBytes.

 charpadToNextLongPut:
Make position be on long word boundary, writing the padding character, char, if
necessary.

position Answer the current position of accessing the sequence of objects.

 anIntegerposition:
Set the current position for accessing the objects to be anInteger, as long as anInteger is
within the bounds of the receiver's contents. If it is not, create an error notification.

reset Set the receiver's position to the beginning of the sequence of objects.

resetContents Set the position and limits to 0.

setToEnd Set the position of the receiver to the end of the sequence of objects.

 anIntegerskip:
Set the receiver's position to be the current position+anInteger. A subclass might
choose to be more helpful and select the minimum of the receiver's size and position+
anInteger, or the maximum of 1 and position+anInteger for the repositioning.

 anObjectskipTo:
Set the access position of the receiver to be past the next occurrence of anObject.
Answer whether anObject is found.

Class WriteStream

Methods for writing characters on WriteStreams

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 17 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Message Description Notes

cr Append a return character to the receiver.

crtab Append a return character, followed by a single tab character, to the receiver.

anIntegercrtab: Append a return character, followed by anInteger tab characters, to the receiver.

space Append a space character to the receiver.

tab Append a tab character to the receiver.

ANSI-Compatible Exceptions

Evaluating Blocks with Exceptions

Methods for handling Exceptions raised in a BlockContext

Message Description Notes

 aTerminationBlockensure:
Evaluate aTerminationBlock after evaluating the receiver, regardless of whether
the receiver's evaluation completes.

 aTerminationBlockifCurtailed: Evaluate the receiver. If it terminates abnormally, evaluate aTerminationBlock.

 exception
handlerActionBlock
on: do:

Evaluate the receiver in the scope of an exception handler, handlerActionBlock.

Examples

["target code, which may abort"]
 ensure:
 ["code that will always be executed
 after the target code,
 whatever whatever may happen"]

["target code, which may abort"]
 ifCurtailed:
 ["code that will be executed
 whenever the target code terminates
 without a normal return"]

["target code, which may abort"]
 on: Exception
 do: [:exception |
 "code that will be executed whenever
 the identified Exception is signaled."]

Exceptions

Exception is an abstract class; instances should neither be created nor trapped. There are two common subclasses of Exception, Error and Notification,
from which subclasses normally inherit. Errors are not resumable; a Notification is an indication that something interesting has occurred; if it is not
handled, it will pass by without effect.

Exceptions play two distinct roles: that of the exception, and that of the exception handler.

Methods for describing Exceptions

Message Description Notes

defaultAction The default action taken if the exception is signaled.

description Return a textual description of the exception.

isResumable Determine whether an exception is resumable.

messageText Return an exception's message text.

tag Return an exception's tag value.

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 18 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Methods for signalling Exceptions

Message Description Notes

signal Signal the occurrence of an exceptional condition.

signalerTextsignal: Signal the occurrence of an exceptional condition with a specified textual description.

Methods for dealing with a signaled Exception

Message Description Notes

isNested
Determine whether the current exception handler is within the scope of another
handler for the same exception.

outer Evaluate the enclosing exception action for the receiver and return.

pass Yield control to the enclosing exception action for the receiver.

replacementException
resignalAs:

Signal an alternative exception in place of the receiver.

resume Return from the message that signaled the receiver.

 resumptionValueresume: Return the argument as the value of the message that signaled the receiver.

retry Abort an exception handler and re-evaluate its protected block.

 alternativeBlockretryUsing:
Abort an exception handler and evaluate a new block in place of the handler's
protected block.

return Return nil as the value of the block protected by the active exception handler.

 returnValuereturn:
Return the argument as the value of the block protected by the active exception
handler.

Class ExceptionSet

An ExceptionSet is used to specify a set of exceptions for an exception handler.

Creating ExceptionSet

Message Description Notes

anException
, Receiver may be an Exception class or an ExceptionSet. Answers an exception set that contains the

receiver and anException.

Example

["target code, which may abort"]
 on: Exception, Error, ZeroDivide
 do:
 [:exception |
 "code that will be executed whenever
 one of the identified Exceptions is
 signaled."]

The Squeak Class Hierarchy

In Smalltalk, "everything is an object." That is, everything is an instance of class Object or an instance of some subclass of class Object. Everything.
Numbers, Classes, Metaclasses, everything. I refer to this as the "Object rule."

Actually, Squeak bends this rule a little bit; the Object rule does not apply for certain system objects, which derive from class ProtoObject.
Nevertheless, except for these few system objects, the vast majority of Squeak objects, which I call, "proper objects," satisfy the Object Rule. Proper
Objects and their classes and metaclasses, satisfy the following properties.

The Laws of Proper (Smalltalk) Classes

Every proper class is a subclass of class Object, except for Object itself, which has no proper superclass. In particular, Class is a subclass of
ClassDescription, which is a subclass of Behavior which is a subclass of Object.

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 19 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

Every object is an instance of a class.
Every class is an instance of a metaclass.
All metaclasses are (ultimately) subclasses of Class.
Every metaclass is an instance of MetaClass.
The methods of Class and its superclasses support the behavior common to those objects that are classes.
The methods of instances of MetaClass add the behavior specific to particular classes.

Class ProtoObject

Squeak additionally supports an improper class ProtoObject, from which object hierarchies other than proper instances and proper classes can inherit.
ProtoObject is the superclass of class Object and has no instances. Presently, there are two subclasses of ProtoObject besides Object: ObjectOut and
ImageSegmentRootStub, both of which are used to do magic involving objects that have been moved out of memory onto an external medium. You
might need to subclass ProtoObject if you are doing something like implementing a remote message send system where you have proxies for remote
objects (those on another computer).

However, as with proper classes, ProtoObject, is an instance of a metaclass, ProtoObject class, which in turn is an instance of class MetaClass.

Categories of Squeak Classes

This quick reference only scratches the surface of the functionality available through Squeak. To assist the beginner in surveying the system, the
following outline, or roadmap, of the Squeak system is provided.

Category Description

Kernel
Primary Smalltalk classes for creating and manipulating Smalltalk objects, the Object hierarchy,
coroutines and parallel processes. Subcategories include: Objects, Classes, Methods and Processes.

Numeric
Classes for numeric operations, including date and time operations. Subcategories include Magnitudes
and Numbers

Collections Classes for aggregations of Smalltalk objects.

Graphics
Core classes for Smalltalk graphic objects as well as facilities and applications for operating on graphic
objects. Key classes include Form and BitBlt.

Interface
The "traditional" MVC User Interface Framework. Also found here are a number of useful Smalltalk
applications, including: Squeak browsers, a mail client, a web browser, irc chat client and facilities for
operating on "projects."

Morphic Squeak's Morphic User Interface Framework

Music
Classes supporting Squeak's Sound Synthesis capabilities. Also found here are several useful facilities
and applications for manipulating MIDI data and other representations of musical scores.

System
Key System Facilities. Subclasses include: Compiler (Smalltalk compiler); Object Storage (virtual
memory for Smalltalk objects); File facilities; Compression; Serial Data Transmission; Basic network
facilities.

Exceptions Class supporting Squeak's ANSI-compliant exceptions facilities.

Network Classes implementing various Internet and Squeak related network protocols.

PluggableWebServer
A complete web-server application, including an implementation of SWIKI, a collaborative world-
wide-web environment. Key classes include: PWS

HTML Classes for manipulating HTML data.

Squeak
Here lives the mouse. Key classes include: the Squeak VM and an interpreter; the Squeak Smalltalk
Subset (Slang) to C translator; and facilities for developing native plugins (pluggable primitives).

Balloon Classes for complex 2-D graphic objects and fast 2-D graphics rendering.

Balloon-3D Classes for complex 3-D graphics objects and fast 3-D graphics rendering.

TrueType Classes for manipulating and displaying TrueType data.

MM-Flash Classes for manipulating and displaying Flash file data.

Alice &
Wonderland

A remarkable interactive 3-D graphics environment.

2001.04.24 1:44Squeak Smalltalk: Classes Reference

Page 20 of 20file:///Topaz/Users/black/Andrew%20Black/talks/ECOOP%20Tutorial/SqueakClassesReference.html

	Title page
	Slides
	Worksheet 1A
	Worksheet 1B
	Worksheet 2
	Worksheet 3
	Language Reference
	Classes Reference
	final page

