Midterm Examination Solution
Com 1201 – Winter 2003 – Jeff Raab
Section 1 – Java Programming

(10)
[image: image1.png]Al
HID

The flag of the United States of America contains 13 stripes of alternating colors and 50 stars in rows of alternating lengths. The layout of these stars and stripes is shown in the picture of the flag at the right. You must write two methods that deal with this kind of layout.
Write a method below named stripes that takes one parameter named count of type int and has a return type of boolean. This method must return true if it is possible to create a flag whose layout of stripes is similar to that of the United States of America, in that it has an odd number of red stripes and an even number of white stripes whose sum is equal to the given count. This method must return false otherwise.
For the purposes of this problem, zero is an even number. It is not possible to create a flag with a negative number of stripes. Your method must be correct and completely documented to the specification of the model code for a function as posted on the course website. Write your function and its documentation in the space below:
/**
 * Returns whether or not a flag could be created

 * with the given number of stripes.

 * @example stripes(-1) returns false

 * @example stripes(2) returns false

 * @example stripes(3) returns true

 * @example stripes(4) returns false

 * @param count number of stripes

 */

public boolean stripes(int count) {

if (count < 3)

return false;

return (count % 2 == 1);

}

All that you must do in this problem is determine if it is possible to create a flag with the given number of stripes. You have to determine if some number of reds and whites exists whose sum equals count. You just need an odd number of stripes greater than 1. Note that no exceptions are thrown in this method, as you are just to return false if the given number doesn’t fit the specification for the stripes in the flag.

The running time for this method, as you have written it, is O(1) .

(15)
Write a method below named stars that takes one parameter named count of type int and has a return type of boolean. This method must return true if it is possible to create a flag whose layout of stars is similar to that of the United States of America, in the following ways:

1.
The stars are in rows of alternating lengths.

2.
The lengths of the rows differ by exactly one.

3.
There are at least 3 rows of stars.

4.
There is one more row of the longer length than of the shorter length.

5.
The number of stars is equal to the given count.

This method must return false if it is not possible to create a flag that meets these criteria.

It is not possible to create a flag with a negative number of stars. Your method must be correct and completely documented to the specification of the model code for a function as posted on the course website. Write your function and its documentation in the space below:
/**

 * Returns whether or not a flag could be created

 * with the given number of stars.

 * @example stars(-1) returns false

 * @example stars(3) returns false

 * @example stars(5) returns true

 * @example stars(6) returns false

 * @param count number of stars

 */

public boolean stars(int count) {

if (count < 5)

return false;

int perCol = 3;

for (int rows = 5; rows < count; rows += 3) {

for (int cols = 0; cols < count; cols++) {

if (rows + (cols * perCol) == count) {

return true;

}

}

perCol += 2;

}

return false;
}
The algorithm for this problem is difficult, but the structure of the code is the same as for the previous method. It is probably possible to try a series of modulus calculations in O(n) time, but the above is easier to understand, I think.
The above code takes the smallest possible configuration of 5 stars and adds 1 column to it, over and over, to try and equal the appropriate number of stars. If that doesn’t work, it tries 5 rows with 8 stars, and adds 1 column per time to try and equal the right number. If that doesn’t work it tries 7 rows, then 9 rows, &c. until it can be proven that the given number of stars doesn’t have a possible configuration.
The running time for this method, as you have written it, is O(n2) .

For this section, the following things were required:

•
Documentation with purpose, examples, and param descriptions

•
Method header

•
Method body with correct algorithm
Section 2 – Implementing a Java interface

(30)
The Deck interface describes a data structure used to store and retrieve Objects in the same manner as a deck of cards. Assume the following code:

/** Interface describing the operations for a deck. */

public interface Deck {

/**

 * Adds the given element to the bottom of this deck.

 * @param element object to be added

 */
public void add(Object element);

/**

 * Inserts the given element at a random position

 * in this deck.

 * @param element object to be inserted

 */
public void insert(Object element);
/**

 * Removes the object on the top of this deck,

 * and returns that object.

 */

public Object removeTop() throws RuntimeException;

/** Returns the number of objects in this deck. */

public int size();

/** Returns whether or not this deck is empty. */

public boolean isEmpty();
}
On the following page, write a complete Java class named VectorDeck that implements this ADT using a Java Vector object to do the work of the methods required by the interface. The last pages of this exam summarize the documentation for the Vector class, for your reference.

The following code stores a random integer in the range [0, n) in the variable k:

int k = (int)(Math.random() * n);

Your method must be correct and completely documented to the specification of the model code for a class as posted on the course website. Write your class and its documentation on the next page.

Section 2 answer
import java.util.*;

/**

 * Implementation of the Deck interface using a Vector.

 * @author Jeff Raab

 */

public class VectorDeck implements Deck {

/** Vector used to store elements. */

protected Vector elements = new Vector();

/** Constructs a new VectorDeck. */

public VectorDeck() {}

/**

 * Adds the given element to the bottom of this deck.

 * @param element object to be added

 */

public void add(Object element) {

elements.add(element);

}

/**

 * Inserts the given element at a random position

 * in this deck.

 * @param element object to be inserted

 */

public void insert(Object element) {

elements.add((int)(Math.random() * size(), element));

}
/**

 * Removes the object on the top of this deck,

 * and returns that object.

 */

public Object removeTop() throws RuntimeException {

return elements.remove(0);

}

/** Returns the number of objects in this deck. */

public int size() {

return elements.size();

}

/** Returns whether or not this deck is empty. */

public boolean isEmpty() {

return elements.isEmpty();

}

}
There is no need to grow and shrink the Vector, as that is what the class does for you automatically during add and remove operations. It is inappropriate to extend the Vector class because that exposes methods that could be used to circumvent the idea of the Deck as described in the interface. (For example, it allows removal of elements other than from the top of the deck.)

Note that the remove method used in removeTop will throw a runtime exception if the deck is empty. If you explicitly threw an exception in the proper case, that’s fine too.
For this section, the following things were required:

•
Import of the Vector class

•
Class documentation comment with purpose of class

•
Class header

•
Protected Vector data member for class

•
Documentation comment for data member with its purpose

•
Constructor

•
All methods in the Deck interface

•
Method bodies with correct algorithms

•
Documentation comments for each method
If you included your name in the class documentation comment, I went easy on the import statement. If you stated in a documentation comment for each method that you copied that documentation comment from the interface definition, that was fine too.

Section 3 – Analysis

Analyze each function. Write the number of * characters it actually prints, in terms of the values of any inputs to the function. Provide an asymptotic analysis of the number of * characters printed, in terms of the values of any inputs to the function. In case you are unsure, the following code prints a single * character:

System.out.println(“*”);

The following code prints three * characters:

System.out.println(“***”);

Be sure to completely read the code of each function before performing your analysis of it.

(5)
public void printStars1(int n) {
System.out.println(“***”);

for (int i = 0; i < n; i++) {

for (int j = 0; j < 50; j++) {

System.out.println(“*”);

}

}

System.out.println(“**”);

}

The number of * characters actually printed is 50n + 5 .

Asymptotically, the number of * characters printed is O(n) .

(5)
public void printStars2(int n) {

System.out.println(“**********”);

}
The number of * characters actually printed is 10 .

Asymptotically, the number of * characters printed is O(1) .

Section 3 – Analysis

Analyze each function. Write the number of * characters it actually prints, in terms of the values of any inputs to the function. Provide an asymptotic analysis of the number of * characters printed, in terms of the values of any inputs to the function. In case you are unsure, the following code prints a single * character:

System.out.println(“*”);

The following code prints three * characters:

System.out.println(“***”);

Be sure to completely read the code of each function before performing your analysis of it.

(5)
public void printStars3(int n) {

System.out.println(“***”);

int pow = 1 * 2 * 3 * 4;

for (int i = 0; i < pow; i++)

System.out.println(“**”);

System.out.println(“***”);

}
The number of * characters actually printed is 2(4!) + 6, which equals 54 .

Asymptotically, the number of * characters printed is O(1) .

(10)
public void printStars4(int n) {

System.out.println(“**”);

for (int i = 0; i < n; i++) {

System.out.println(“**”);

System.out.println(“*”);
}
System.out.println(“*”);

}

The number of * characters actually printed is 3n + 3 .

Asymptotically, the number of * characters printed is O(n) .

Section 4 – Linked Lists

(20)
Assume a linked list class constructed from nodes that each contain three references: one for the element Object the node contains, one that refers to the next node in the list, and one that refers to the previous node in the list. You must draw diagrams that show the state of the nodes in the list during the process of inserting a new node immediately after the head sentinel node.

The diagram below shows the state of the list before inserting. Draw one diagram per step, in the boxes below, that shows the state of the list after that step is performed. Use the given diagram as a guide for the correct way to draw a linked list. References to null can be left blank. Feel free to ask if your diagrams are understandable, to ensure that you get proper credit.
	Before insert of object o at the front of the list

[image: image7.png]

	Create a new node n that refers to o

[image: image2.png]5 Objeet

Ul

i

[0

fead Node] [n:Nod:

	Set the previous for n to the head

[image: image3.png][Fead Node] [n:Nod:

	Set the next for n to the first node after the head

[image: image4.png][Fead Node] [n:Nod:

	Set the next for the head to n

[image: image5.png]5 Objeet

Ul

Al

000

[head :Node]

	Set the previous for the first node after head to n

[image: image6.png]5 Objeet

[head -Node

java.util
Class Vector
	Constructor Summary

	Vector()
 Constructs an empty vector so that its internal data array has size 10 and its standard capacity increment is zero.
	

	Vector(Collection c)
 Constructs a vector containing the elements of the specified collection, in the order they are returned by the collection's iterator.
	

	Vector(int initialCapacity)
 Constructs an empty vector with the specified initial capacity and with its capacity increment equal to zero.
	

	Vector(int initialCapacity, int capacityIncrement)
 Constructs an empty vector with the specified initial capacity and capacity increment.
	

	Method Summary

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this Vector.

	 boolean
	add(Object o)
 Appends the specified element to the end of this Vector.

	 void
	addElement(Object obj)
 Adds the specified component to the end of this vector, increasing its size by one.

	 int
	capacity()
 Returns the current capacity of this vector.

	 void
	clear()
 Removes all of the elements from this Vector.

	 boolean
	contains(Object elem)
 Tests if the specified object is a component in this vector.

	 void
	copyInto(Object[] anArray)
 Copies the components of this vector into the specified array.

	 Object
	elementAt(int index)
 Returns the component at the specified index.

	 void
	ensureCapacity(int minCapacity)
 Increases the capacity of this vector, if necessary, to ensure that it can hold at least the number of components specified by the minimum capacity argument.

	 boolean
	equals(Object o)
 Compares the specified Object with this Vector for equality.

	 Object
	firstElement()
 Returns the first component (the item at index 0) of this vector.

	 Object
	get(int index)
 Returns the element at the specified position in this Vector.

	 int
	indexOf(Object elem)
 Searches for the first occurence of the given argument, testing for equality using the equals method.

	 int
	indexOf(Object elem, int index)
 Searches for the first occurence of the given argument, beginning the search at index, and testing for equality using the equals method.

	 void
	insertElementAt(Object obj, int index)
 Inserts the specified object as a component in this vector at the specified index.

	 boolean
	isEmpty()
 Tests if this vector has no components.

	 Object
	lastElement()
 Returns the last component of the vector.

	 int
	lastIndexOf(Object elem)
 Returns the index of the last occurrence of the specified object in this vector.

	 int
	lastIndexOf(Object elem, int index)
 Searches backwards for the specified object, starting from the specified index, and returns an index to it.

	 Object
	remove(int index)
 Removes the element at the specified position in this Vector.

	 boolean
	remove(Object o)
 Removes the first occurrence of the specified element in this Vector If the Vector does not contain the element, it is unchanged.

	 void
	removeAllElements()
 Removes all components from this vector and sets its size to zero.

	 boolean
	removeElement(Object obj)
 Removes the first (lowest-indexed) occurrence of the argument from this vector.

	 void
	removeElementAt(int index)
 Deletes the component at the specified index.

	protected void
	removeRange(int fromIndex, int toIndex)
 Removes from this List all of the elements whose index is between fromIndex, inclusive and toIndex, exclusive.

	 Object
	set(int index, Object element)
 Replaces the element at the specified position in this Vector with the specified element.

	 void
	setElementAt(Object obj, int index)
 Sets the component at the specified index of this vector to be the specified object.

	 void
	setSize(int newSize)
 Sets the size of this vector.

	 int
	size()
 Returns the number of components in this vector.

	 Object[]
	toArray()
 Returns an array containing all of the elements in this Vector in the correct order.

	 Object[]
	toArray(Object[] a)
 Returns an array containing all of the elements in this Vector in the correct order; the runtime type of the returned array is that of the specified array.

	 void
	trimToSize()
 Trims the capacity of this vector to be the vector's current size.

_1106480188

_1106480269

_1106480364

_1106480444

_1106480231

_1105822212

