Northeastern University
College of Computer and Information Science

Contact Us

  • Contact Us

Search

  • Explore CCIS
    • About the College
      • Dean’s Message
    • Undergraduate Programs
      • Advising
      • Degree Programs
      • Minor in Computer Science
      • Minor in Information Science
      • Tutoring
      • Scholarships
      • Student Awards
    • Graduate Programs
      • Degree Programs
      • Current Students
    • Co-op
    • People and Organizations
      • Faculty
      • Administrative Staff
      • Student Organizations
    • Contact Us
    • Research
      • Research Groups
      • Centers and Institutes
    • Technical Help
  • Prospective Students
  • Current Students
  • Alumni
  • Employers
Layout Image
  • About the College
    • Dean’s Message
    • CCIS Videos
  • Undergraduate Programs
    • Advising
    • Degree Programs
    • Minor in Computer Science
    • Minor in Information Science
    • Scholarships
      • Bradley E. Bailey Scholarship
      • Darwin Scholarship
      • Jane K. Wenzinger Scholarship Fund
      • Department of Defense Information Assurance Scholarship Program
      • NSF Federal Cyber Service: Scholarship for Service
    • Student Awards and Research
    • Tutoring
  • Graduate Programs
    • Degree Programs
      • Ph.D. in Computer Science
        • Admission Requirements
        • Academic Requirements
        • Time and Time Limitation
        • Transfer Credit
        • Approved Courses
        • Electives Outside the College
        • Specimen Curriculum
        • Academic Review Process
      • Ph.D. in Information Assurance
        • Admissions Requirements
        • Academic Requirements
        • Time and Time Limitation
        • Transfer Credit
        • Specimen Curriculum
        • Program Faculty
        • Contact Us
      • Ph.D. in Personal Health Informatics
      • M.S. in Computer Science
        • Admissions Requirements
        • Academic Requirements
        • Academic Probation
        • Time and Time Limitation
        • Transfer Credit
        • Approved Courses
        • Specimen Academic Schedule
        • Reading and Project Courses
        • Master’s Thesis
        • Request More Information
      • M.S. in Information Assurance
        • Admissions Requirements
        • Academic Requirements
        • Specimen Academic Schedule
        • Financial Aid and Scholarships
        • Faculty
        • Request More Information- MSIA
      • M.S. in Health Informatics
        • Program Overview
        • Master’s Degree
        • Certificates
        • Course Descriptions
        • Testimonials
        • Faculty
        • Careers
        • Student Profiles
        • Apply
        • Request More Information- MSHI
      • ALIGN
    • Apply
    • Scholarships
    • FAQ
    • Current Students
      • Course Descriptions
      • Course Schedules
      • Graduate Guidebook
      • Commencement
      • Forms
      • Travel Support
      • Wiki
      • Jobs
      • New Student Page
        • MyNeu Account
        • Course Registration
        • Health Insurance Requirements
        • ISSI Orientation
        • CCIS Orientation
        • CCIS Email Account
        • Paying Your Bill
        • Husky ID Cards
        • Online Learning
        • Housing
        • Parking
        • Public Transportation
  • Research
    • Research Groups
      • Algorithms and Theory
      • Artificial Intelligence
      • Data
      • Educational Research
      • Formal Methods
      • Game Design
      • Network Science
      • Personal Health Informatics
      • Programming Languages
      • Security
      • Software Engineering
      • Systems
    • Centers and Institutes
  • Co-op
    • Information for Students
      • FAQ
      • Information for New Students
      • Information for Upperclass Students
      • Information for Graduate Students
      • Prospective
      • Forms
    • Information for Employers
    • Co-op Manual
      • Steps to Finding A Job
      • Taking a Course
      • Academic Standards
    • Research & Data
      • Assessment
    • Calendar
    • Surveys & Evaluations
      • Student Evaluation
      • Employer Evaluation
  • People and Organizations
    • Faculty
    • Administrative Staff
    • Student Organizations
  • News & Events
    • News Archive
    • Events
    • Distinguished Speakers Series

Complex Systems Made Simple

By bironje
Friday, February 15th, 2013

cover-expansion_620-590x631Just as the name implies, com­plex sys­tems are dif­fi­cult to tease apart. An organism’s genome, a bio­chem­ical reac­tion, or even a social net­work all con­tain many inter­de­pen­dent components—and changing any one of them can have per­va­sive effects on all the others. In the case of a very large system, like the human genome, which con­tains 20,000 inter­con­nected genes, it’s impos­sible to mon­itor the whole system at once.

But that may not matter any­more. In a paper pub­lished in the pres­ti­gious mul­ti­dis­ci­pli­nary journal Pro­ceed­ings of the National Academy of Sci­ence, North­eastern net­work sci­en­tists have devel­oped an algo­rithm capable of iden­ti­fying the subset of components—or nodes—that are nec­es­sary to reveal a com­plex system’s overall nature.

The approach takes advan­tage of the inter­de­pen­dent nature of com­plexity to devise a method for observing sys­tems that are oth­er­wise beyond quan­ti­ta­tive scrutiny.

“Con­nect­ed­ness is the essence of com­plex sys­tems,” said Albert-​​László Barabási, one of the paper’s authors and a Dis­tin­guished Pro­fessor of Physics with joint appoint­ments in biology and the Col­lege of Com­puter and Infor­ma­tion Sci­ence. “Thanks to the links between com­po­nents, infor­ma­tion is dis­trib­uted throughout a net­work. Hence I do not need to mon­itor everyone to have a full sense of what the system does.”

Barabási’s col­lab­o­ra­tors com­prise Jean-​​Jacques Slo­tine of M.I.T. and Yang-​​Yu Liu, lead author and research asso­ciate pro­fessor in Northeastern’s Center for Com­plex Net­work Research, for which Barabási is the founding director.

Using their novel approach, the researchers first iden­tify all the math­e­mat­ical equa­tions that describe the system’s dynamics. For example, in a bio­chem­ical reac­tion system, sev­eral smaller reac­tions between periph­er­ally related mol­e­cules may col­lec­tively account for the final product. By looking at how the vari­ables are affected by each of the reac­tions, the researchers can then draw a graph­ical map of the system. The nodes that form the foun­da­tion of the map reveal them­selves as indis­pen­sible to under­standing any other part of the whole.

“What sur­prised me,” said Liu, “was that the nec­es­sary nodes are also suf­fi­cient in most cases.” That is, the indis­pen­sible nodes can tell the whole story without drawing on any of the other components.

The meta­bolic system of any organism is a col­lec­tion of hun­dreds of mol­e­cules involved in thou­sands of bio­chem­ical reac­tions. The new method, which com­bines exper­tise from con­trol theory, graph theory, and net­work sci­ence, reduces large com­plex sys­tems like this to a set of essen­tial “sensor nodes.”

In the case of metab­o­lism, the researchers’ algo­rithm could sim­plify the process of iden­ti­fying bio­markers, which are mol­e­cules in the blood that tell clin­i­cians whether an indi­vidual is healthy or sick. “Most of the cur­rent bio­markers were selected almost by chance,” said Barabási. “Chemists and doc­tors found that they happen to work. Observ­ability offers a rational way to choose bio­markers, if we know the system we need to monitor.”

Categories : Uncategorized
Northeastern University
  • My NEU
  • Find Faculty & Staff
  • Find A – Z
  • Emergency Information
  • Search

360 Huntington Ave. Boston, Massachusetts 02115 • 1 (617) 373-2000

© 2013 Northeastern University

  • twitter
  • facebook
  • youtube