
IN
D

IA
N

E
N

S
IS

 UN
IVERSITAT

IS
S
I G
IL
L
U
MET VERITAS

LUX

M
DCCCX

X

Indiana University
Computer Science Department

Technical Report 600
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR600

Scheme 2004

Proceedings of the Fifth Workshop
on Scheme and Functional Programming

September 22, 2004
Snowbird, Utah

Olin Shivers and Oscar Waddell, editors

Sponsored by the Association for Computing
Machinery’s Special Interest Group on

Programming Languages (ACM/SIGPLAN)

Preface

This report contains the papers presented at the Fifth Workshop on Scheme and
Functional Programming, on September 22, 2004, in Snowbird, Utah.

The purpose of the workshop is to discuss experience with, and future de-
velopments of, the Scheme programming language, as well as general aspects of
Computer Science loosely centered on the general theme of Scheme. The intention
of the steering committee is that the workshop provide an annual focal point where
the Scheme community can gather and share ideas: researchers, educators, imple-
mentors, programmers, hobbyists, and enthusiasts of all stripes—all welcome.

Eleven papers were submitted in response to the workshop’s call for papers.
Paper submission and review was conducted via electronic mail. Each paper was
read by at least three reviewers including at least two members of the program
committee. We are grateful to Olivier Danvy, Kent Dybvig, Martin Gasbichler,
Eric Knauel, and Bradley Lucier for their service as outside reviewers.

Several others helped with the planning for the workshop. Mayer Goldberg
lent his type-setting expertise to the production of this technical report. Matthew
Flatt of the University of Utah allowed himself to be drafted for local arrange-
ments without demur or complaint. Chris Okasaki, ICFP general chairman, and
Franklyn Turbak, ICFP workshop chairman, were consistently helpful throughout
the process. The Scheme workshop steering committee provided advice and gen-
eral counsel during the planning of the workshop. We are thankful for all of this
support and assistance.

Olin Shivers and Oscar Waddell,
For the program committee

Program committee
J. Michael Ashley (Beckman Coulter, Inc.)
Danny Dubé (Université Laval)
Robert Findler (University of Chicago)

Richard Kelsey (Ember Corporation)
Julia Lawall (University of Copenhagen)
Michael Sperber (DeinProgramm)

Steering committee
William D. Clinger (Northeastern)
Marc Feeley (Université de Montréal)
Matthias Felleisen (Northeastern)
Matthew Flatt (University of Utah)
Dan Friedman (Indiana University)

Christian Queinnec (Université Paris 6)
Manuel Serrano (INRIA)
Olin Shivers (Georgia Tech)
Mitchell Wand (Northeastern)

Contents
Scheme program documentation tools

Kurt Nørmark . 1

A framework for memory-management experimentation
Stephen Carl . 13

trx: Regular-tree expressions, now in Scheme
Ilya Bagrak and Olin Shivers . 21

Topsl: A domain-specific language for on-line surveys
Mike MacHenry and Jacob Matthews 33

Lexer and parser generators in Scheme
Scott Owens, Matthew Flatt, Olin Shivers and Benjamin McMullan . 41

Compiling Java to PLT Scheme
Kathryn Gray and Matthew Flatt . 53

Foreign interface for PLT Scheme
Eli Barzilay and Dmitry Orlovsky . 63

Debugging Scheme fair threads
Damien Ciabrini . 75

Mobile reactive programming in ULM
Stéphane Epardaud . 87

Shift to control
Chung-chieh Shan . 99

Cleaning up the tower: Numbers in Scheme
Sebastian Egner, Richard Kelsey, Michael Sperber 109

The R6RS status report (invited presentation)
Marc Feeley . 121

1

Scheme Program Documentation Tools

Kurt Nørmark
Department of Computer Science

Aalborg University
Denmark

normark@cs.aau.dk

Abstract

This paper describes and discusses two different Scheme documen-
tation tools. The first is SchemeDoc, which is intended for docu-
mentation of the interfaces of Scheme libraries (APIs). The second
is the Scheme Elucidator, which is for internal documentation of
Scheme programs. Although the tools are separate and intended
for different documentation purposes they are related to each other
in several ways. Both tools are based on XML languages for tool
setup and for documentation authoring. In addition, both tools rely
on the LAML framework which—in a systematic way—makes an
XML language available as a set of functions in Scheme. Finally,
the Scheme Elucidator is able to integrate SchemeDoc resources as
part of an internal documentation resource.

1 Introduction

Program documentation tools are important for all kinds of non-
trivial programming tasks. In a general sense, program documen-
tation tools make it possible to produce important information for
programmers who apply a program library, and for future devel-
opers of a program. In this paper we are concerned with program
documentation for Scheme developers. End user documentation is
not an issue in this paper.

We discuss two documentation tools for Scheme. The first,
SchemeDoc, is a tool for documenting library interfaces—also
known as application programmers interfaces (APIs). The docu-
mentation produced by SchemeDoc is intended for Scheme pro-
grammers who apply the documented Scheme library. The sec-
ond, the Scheme Elucidator, is a tool for documentation of the in-
ternal details of a Scheme program. The documentation produced
by the Scheme Elucidator—called an elucidative program—is typ-
ically intended for future maintainers of the program. Elucidative
Scheme programs may, however, be targeted towards any reader
with an interest in understanding the program. As such, the Scheme
Elucidator can be used whenever there is a need to write about a
Scheme program, for educational, tutorial, or scientific purposes.

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Kurt Nørmark.

SchemeDoc and the Scheme Elucidator share a number of proper-
ties. The input formats of both tools are defined as XML languages,
with use of XML DTDs (Document Type Definitions) [1]. In simple
cases, the input formats are relatively small setup files that hold a
number of processing attributes, whereas in other cases, substantial
amounts of documentation is authored within the XML documents.
Both tools are part of LAML (see Section 2) and as such the full
expressiveness of Scheme can be used in the XML-related parts of
both SchemeDoc documentation and in elucidative programs. Fi-
nally, both tools generate web output, in terms of XHTML files.

In this paper we give overall and concise descriptions of the tools.
More detailed descriptions can be found on the web [16, 20]. As
part of the discussions we point out relevant details in the imple-
mentation of the tools. In addition we compare the tools with other
similar documentation tools for Scheme.

The paper is structured as follows. In Section 2 we summarize the
most basic properties of LAML, which is the common underlying
platform of both tools. In Section 3 we discuss SchemeDoc. This
includes a discussion of similar tools for documentation of Scheme
libraries. In Section 4 we discuss the Scheme Elucidator. The main
contributions and the conclusions are summarized in Section 5. It
is possible to skip Section 3 in case the reader is only interested in
documentation of internal programs aspects with the Scheme Elu-
cidator. The programs and documentation that are discussed in this
paper are all available as web resources [21].

2 LAML Background

Both tools described in this paper rely on LAML (Lisp Abstracted
Markup Language), and we will therefore in this section provide
a brief summary of LAML. For more information about LAML
please consult the paper Web Programming in Scheme with LAML
[17] and the LAML home page [18].

From an overall perspective, LAML attempts to come up with nat-
ural Scheme-based counterparts to the most important aspects of
XML. The main purpose of LAML is to make XML languages
available as sets of Scheme functions. With this, an XML docu-
ment becomes a Scheme expression. As a consequence, the power
of Scheme is available anywhere in a document, and at any time
during the authoring process. We refer to this situation as program-
matic authoring [15].

The set of Scheme functions that corresponds to the elements of an
XML language L is called a mirror of L in Scheme. Each element
of an XML language is represented as a Scheme function. When
applied, these functions generate an internal format (ASTs repre-

2

sented as lists) and they carry out a comprehensive documentation
validation at run time (document processing time).

LAML provides an XML DTD parser and a mirror generation
tool. These tools have been used to generate validating mirrors of
XHTML, SVG and a number of more specialized XML languages
(such as the SchemeDoc language and the Elucidator language dis-
cussed in this paper).

Web authoring with LAML is supported by a set of convenient
Emacs editor commands. No specialized lexical Scheme conven-
tions are used. As an example, the sample XML fragment

<book id = "sicp">
<title>Structure and Interpretation

of Computer Programs</title>
<authors>
<author>Abelson</author>
<author>Sussman</author>

</authors>
</book>

can be written as the Scheme expression

(book ’id "sicp"
(title "Structure and Interpretation

of Computer Programs")
(authors (author "Abelson") (author "Sussman"))

)

provided that the mirror of the book description language is loaded
on beforehand.

The parameters to each mirror function are interpreted relative to
the LAML parameter passing rules [17], which can be summarized
as follows: An attribute is a symbol; an attribute value is the string
following a symbol; other strings represent textual element content
items; lists are recursively unfolded. If relevant, white space is al-
ways provided in between element content items unless explicitly
suppressed by a distinguished value (#f usually bound to the vari-
able named). As a consequence of the list unfolding rule, the
expression

(authors (map author (list "Abelson" "Sussman")))

is equivalent to

(authors (author "Abelson") (author "Sussman"))

The definition of XML languages, and their mirrors in Scheme, can
be seen as a linguistic abstraction process. With use of the higher-
order function xml-in-laml-abstraction it is, in addition, pos-
sible for the author to define functions that use LAML parameter
passing rules. Seen in contrast to the linguistic abstractions, such
functions are called ad hoc abstractions.

LAML works on a variety of different Scheme Systems on Unix
and Windows. Therefore the documentation tools discussed in this
paper can be used together with many different Scheme systems on
both platforms.

3 SchemeDoc

As stated in the introduction, SchemeDoc is a tool for creation
of web documentation of programmatic interfaces of Scheme pro-
grams, most notable the interfaces of program libraries. Many pro-
grammers are familiar with web documentation of programmatic

interfaces from the success of Javadoc [2, 29]. As Javadoc, Scheme-
Doc supports extraction of documentation from distinguished doc-
umentation comments in source programs. In addition, SchemeDoc
allows manual authoring of the documentation, and documentation
of XML mirror functions in Scheme. In the section 3.1 below we
describe these possibilities.

3.1 SchemeDoc operational modes

SchemeDoc can be used in four operational modes:

• Source Extraction mode.
The documentation is extracted from distinguished documen-
tation comments in a Scheme source program.

• Manual mode.
The documentation is authored manually, in an XML format
with use of LAML.

• XML DTD mode.
The documentation is extracted from a parsed XML DTD,
typically with the purpose of documenting the mirror of the
XML language in Scheme.

• Augmented XML DTD mode.
A mixture of the XML DTD mode and the manual mode.
Documentation, which is not present in the DTD is authored
manually and merged with the extracted DTD documentation.

The Source Extraction mode relies on the concepts of comment
blocks and documentation comments. A comment block is a se-
quence of consecutive Scheme comment lines (each of which is
initiated with a semicolon). A documentation comment is a com-
ment block which, by means of a given commenting style, is set
apart from “ordinary comments”.

Documentation comments are classified as either definition com-
ments, documentation sections, or documentation abstracts. A def-
inition comment precedes and documents a Scheme definition. A
documentation section describes common properties of the set of
definitions that follows the section comment. A documentation ab-
stract gives an initial and overall description of a Scheme source
file.

SchemeDoc supports two different commenting styles for identi-
fication of documentation comments: multi-semicolon style and
documentation-mark style. Using multi-semicolon style, each doc-
umentation comment line is initiated with two, three or four semi-
colons, supporting definition comments, documentation sections,
and documentation abstracts respectively. Using documentation-
mark style, a documentation comment is identified with occurrences
of a distinguished character (per default ’!’) at the start of the first
comment line in a comment block. Definition comments use a sin-
gle mark, documentation sections use two marks, and documen-
tation abstracts use three exclamation marks. Until recently, all
LAML software has been documented using multi-semicolon style.

Within documentation comments, a little markup language is used
to provide additional structure. SchemeDoc uses dot-initiated doc-
umentation keywords together with a line-oriented organization.
These elements of SchemeDoc are, to a large degree, modelled di-
rectly after similar systems, such as Javadoc [2, 29] and Doxygen
[30].

As a concrete illustration of SchemeDoc in Source Extraction mode
with use of multi-semicolon documentation comments, the Scheme

3

;;;; .title SchemeDoc Demo
;;;; .author Kurt Normark
;;;; .affiliation Aalborg University, Denmark
;;;; This is a brief example of a Scheme
;;;; program with multi-semicolon SchemeDoc comments.

; This comment is not extracted.

;;; Factorials.
;;; .section-id fac-stuff
;;; This section demonstrates a plain function.

;; The factorial function. Also known as n!
;; .parameter n An integer
;; .pre-condition n >= 0
;; .returns n * (n-1) * ... * 1
(define (fac n)
(if (= n 0) 1 (* n (fac (- n 1)))))

;;; List selection functions.
;;; .section-id list-stuff
;;; This section demonstrates two aliased functions.

;; An alias of car.
;; .returns The first component of a cons cell
;; .form (head pair)
;; .parameter pair A cons cell
(define head car)

;; An alias of cdr.
;; .returns The second component of a cons cell
;; .form (tail pair)
;; .parameter pair A cons cell
(define tail cdr)

Figure 1: A Scheme program with documentation comments in
multi-semicolon style.

Program in Figure 1 gives rise to the extracted documentation,
shown partially in Figure 2. (The same example is shown with use
of documentation-mark style at the web resource page [21] of this
paper). The figure illustrates a single documentation abstract, two
documentation sections, and three definition comments. Scheme-
Doc ignores one-semicolon comments. In Figure 1 we illustrate
the title, author, and affiliation tags in the documentation
abstract. In the section comments, we illustrate the section-id
tag, which is used for generation of an anchor name in HTML.
In the definition comments, we illustrate the form, parameter,
pre-condition, and returns tags. The form tag is used in situa-
tions where the actual calling form does not appear as a constituent
of the definition.

SchemeDoc can deal with nested documentation comments. More
specifically, definition comments and documentation sections are
extracted from the definitions, which are documented by means of
definition comments. In the current version of SchemeDoc, we only
handle two levels of nested documentation comments.

XML DTD mode can, in general, be used for documentation of an
XML DTD, which has been parsed with the LAML DTD parser
[18]. The documentation of an XML DTD presents the DTD af-
ter full expansion of the parameter entities [1] (textual macros in
the DTD). Use of parameter entities is convenient in order to re-
duce the complexity of the DTD authoring process, but they make

Figure 2: A partial presentation of the SchemeDoc documentation
from Figure 1.

it difficult to read the DTD. Activation of SchemeDoc on the parsed
XML DTD file leads to a straightforward presentation of the XML
elements, primarily in terms of the XML content model and infor-
mation about the attributes. The presentation of content models pro-
vides for easy navigation to constituent elements, and to elements in
which the current element appears as a constituent. The XML DTD
mode of SchemeDoc is of particular importance for documentation
of the major and well-known XML languages, such as the different
versions of XHTML and SVG, for which LAML provides mirrors
in Scheme.

The augmented XML DTD mode makes it possible to combine
manually authored contributions with the documentation extracted
from the XML DTD. In that respect, this mode is a mixture of the
Manual mode and the XML DTD mode, as described above. More
specifically, SchemeDoc is able generate an initial documentation
file (in the format used in Manual mode). By filling in the con-

4

Figure 3: The frame layout of a SchemeDoc index.

tents of element and attribute descriptions, the intuitive meaning of
the elements can be documented. It is, in addition, often helpful
to add some sectioning to provide for better structure and overview.
At SchemeDoc processing time, the manually authored documenta-
tion is added to the information from the parsed XML DTD. In this
way, the information from the parsed XML DTD always controls
the final documentation. All substantial LAML document styles,
including SchemeDoc and the Scheme Elucidator (see Section 4)
are documented by use of SchemeDoc in Augmented XML DTD
mode. Examples of such documentation can be seen via the LAML
home page [18].

3.2 SchemeDoc Indexing

A collection of SchemeDoc manuals can be indexed and organized
with use of the SchemeDoc Indexing tool. Based on an enumer-
ation of a number of SchemeDoc manuals, this tool produces a
browser with three frames (see Figure 3). The browser is made
available as a frameset in XHTML. The Manual frame lists the in-
volved SchemeDoc manuals. The Name frame shows a sorted list
of the defined names from a selected manual, or from all the man-
uals taken together. The SchemeDoc frame shows selected details
from the selected manual.

The SchemeDoc indexing tool is also able to produce a useful in-
dex of the Scheme Report [6] (either R4RS or R5RS). The list
of Scheme procedures and syntactic forms can either be shown
separately, or it can be merged with the names from the involved
SchemeDoc manuals.

3.3 Tool Support

The SchemeDoc tool can be used in several different ways. The
primary way is to execute a LAML script, which parameterizes
SchemeDoc appropriately. The LAML script, which extracts and
creates the documentation in Figure 2 from the Scheme source pro-
gram in Figure 1, is shown here:

(load (string-append laml-dir "laml.scm"))
(laml-style "xml-in-laml/manual/manual")

(manual
(manual-front-matters
’css-prestylesheet "compact"
’css-stylesheet "original"
’laml-resource "true"
’documentation-commenting-style "multi-semicolon"

)

(manual-from-scheme-file ’src "../prog1.scm")
)

Figure 4: The decomposition of the SchemeDoc tool.

The LAML script can be executed via the operating system shell,
from a Scheme read-eval-print loop, or via an Emacs command.
Following the loading of laml.scm (first line) and the SchemeDoc
manual stuff (second line) the manual clause contains tool setup
parameters (the manual-front-matters clause) and specification
of tool functionality (the manual-from-scheme-file clause). In
this particular example, the element manual-from-scheme-file
causes SchemeDoc to be used in Source Extraction mode. Typi-
cally, we organize LAML scripts, like the one shown above, in a
man subdirectory of the Scheme source file directory.

SchemeDoc can also be used without LAML scripts. As one al-
ternative, it is possible to activate a schemedoc procedure from a
(LAML-enabled) Scheme read-eval-print loop. Another alterna-
tive is to activate SchemeDoc on a Scheme source file by use of
the schemedoc command from Emacs. This can be done by M-x
schemedoc, or via the menu attached to Scheme mode in Emacs.
In these cases, the manual-front-matters attributes can be given
in the documentation abstract comment. In that way, the Scheme-
Doc setup parameters (processing options) can be given as part of
the Scheme source program.

3.4 Implementation Issues

The Source Extraction mode of SchemeDoc is implemented as
documentation extraction followed by documentation presentation,
both of which are managed by a documentation control layer. This
architecture is illustrated in Figure 4. The top-level control part, the
documentation extraction part, and the documentation presentation
part are physically separated in the LAML software package. All
parts are written in Scheme.

The documentation control layer manages the LAML authoring for-
mat (the mirror of the XML SchemeDoc language in Scheme). As
it appears in Figure 4, the documentation extraction layer is sub-
divided in a source file pre-processing part and a proper extrac-
tion part. In the source file pre-processing part, lexical comments
are transformed to syntactic comments. As an example, the lex-
ical comment ;This is a comment is transformed to a list like
(comment 1 "This is a comment"). The second element of the
list represents the categorization of the comment (here 1-semicolon
comment).

With this pre-processing it is a matter of simple Lisp parsing
(reading) to access the documentation comments in other parts of
SchemeDoc. The proper extraction and parsing part examines the
comment forms and parses the comment strings relative to the doc-
umentation markup language. The documentation extraction phase
delivers an internal representation in terms of a list of association

5

lists. As an example, the contribution from the fac function in Fig-
ure 1 is the (slightly elided) association list

((kind "manual-page")
(parameters (parameter "n" "An integer."))
(description "The factorial function...")
(pre-condition "n >= 0.")
(returns "n * (n-1) * ... * 1")
(title "fac")
(form (fac n))
)

The documentation presentation part generates an XHTML docu-
ment (with use of CSS styling) from the information in the list of
association lists. The internal manual representation is written to
an auxiliary file with extension ‘manlsp’ such that other tools eas-
ily can access the details of a SchemeDoc manual. This information
is essential for the SchemeDoc indexing tool (see Section 3.2). The
Scheme Elucidator (see Section 4) does also make use of the inter-
nal manual representation.

3.5 Similar work

There exists a number of tools which are similar to SchemeDoc.
Schematics SchemeDoc [26] is work in progress, primarily oriented
towards PLT Scheme, and only scarcely documented. As a novel
aspect, this tool uses Scheme lists for markup purposes within doc-
umentation comments. Documentation comments are initiated with
an exclamation mark. The following slightly elided example (from
the web site of Schematics SchemeDoc) illustrates this:

;;!
;; (function map
;; (form (map fn list) -> list)
;; (contract ... -> ...)
;; (example (map (lambda (elt) ...) ...))
;;
;; Apply fn to every element of list.
(define (map fn list) ...)

Scmdoc [27], which is a contribution to Bigloo, uses documentation
comments distinguished by an exclamation mark after the semi-
colons of each comment line. Scmdoc is documented clearly and
concisely. Directives within a Scmdoc documentation comment are
prefixed with ’@’. The following example is from the Scmdoc doc-
umentation:

;! @description
;! The documentation generation function.
;! @param iport The input port.
;! @param oport The output port.
;! @return Returns <CODE>#f</CODE>.
(define (scm->html iport oport) ...)

Docscm [3] is another similar system, which generates DocBook
XML. Docscm is implemented in the Chicken Scheme system.
Here is an example, which illustrates that ’@’ is used to distinguish
documentation comments from other comments.

;;@
;; Returns <varname> arg <varname> * 2
(define (double arg) (* arg 2))

In addition, Docscm supports a number of directives prefixed with
’@’, and it supports a notion of documentation sections.

It should be noticed that the documentation-mark style in source ex-
traction mode of LAML SchemeDoc is similar to the commenting

conventions supported by Schematics SchemeDoc and Docscm.

Finally, Schmooz [4] is a Texinfo markup language embedded in
Scheme comments. Schmooz works with Jaffer’s SCM, and it is
used to extract documentation from Scheme source files for subse-
quent Texinfo processing. Schmooz has been used for documenta-
tion of SLIB [5].

4 The Scheme Elucidator

The Scheme Elucidator can be used to write about a program. Doc-
umentation generated by the Scheme Elucidator typically addresses
the internal program details, as a contrast to SchemeDoc documen-
tation of the external interface. Elucidative programs are related
to literate programs [9], at least in the sense that both can be con-
sidered as program essays. Whereas a literate program organizes
program fragments as constituents of the documentation, programs
and documentation are represented separately in an elucidative pro-
gram.

4.1 The basic approach

An elucidative program relies on relations between the documen-
tation and the program. The relations are represented in the doc-
umentation, but presented as links from the documentation to the
programs as well as the other way around. The initial conception
of Elucidative Programming, and its relations to Literate Program-
ming, is described in a requirements paper [14]. The paper Elu-
cidative Programming [13] gives additional descriptions, including
details about the original version of the Scheme Elucidator. The
Java Elucidator [22] is a tool inspired by the original Scheme Elu-
cidator.

This paper addresses the Scheme Elucidator 2, which uses an XML
language as the front-end format, and XHTML (with CSS) in the
back-end. The actual documentation can either be written in the
special purpose markup language of the original elucidator [13] or
by use of an XML documentation language (via LAML expres-
sions in Scheme). The latter approach is recommended, because it
is aligned with the approach of SchemeDoc and other XML lan-
guages in LAML, but not least because of the power of program-
matic authoring [15]. In this paper we will stick to documentation
authored via the XML language, used via LAML.

The Scheme Elucidator can handle a single documentation file and
an arbitrary number of Scheme source files. Together, these files
form a documentation bundle. In addition, an arbitrary number of
SchemeDoc manuals can be taken into account. If a procedure p,
documented by SchemeDoc, is applied in a program or mentioned
in the documentation, there will be links to the interface documen-
tation of p from the places where p is called or mentioned. In
addition, all applications of R4RS/R5RS procedures and syntactic
forms are linked the to appropriate locations in the Scheme Report
[6].

An elucidative program is presented as a collection of frames in
a web browser, using the layout shown in Figure 5. The basic
and novel idea related to the presentation of an elucidative pro-
gram is the mutual navigation between the Documentation frame
and the Program frame. Given some documentation d shown in the
Documentation frame, a program fragment described in d may be
scrolled into view in the Program frame. Symmetrically, given a
program abstraction p shown in the Program frame, a section of
documentation which mentions or explains p may be scrolled into

6

Figure 5: The Scheme Elucidator frame layout.

view in the Documentation frame. The Menu frame provides for
selection of source programs in a documentation bundle, and the
Control frame holds the main navigational icons as well as a struc-
tural index of the documentation.

4.2 An example

As a concrete illustration of the Scheme Elucidator 2 we show
a small demo of an elucidative Scheme program. The demo in-
cludes a single LAML documentation file and two Scheme source
files, namely prog1.scm from Figure 1 and another program,
prog2.scm, with a few simple, higher-order Scheme functions. The
entire documentation source file is shown in Appendix A. A snap-
shot of the elucidative program, which makes use of the frame lay-
out shown in Figure 5, can be seen in Figure 6.1 Notice that only a
few links are underlined in the two large frames of Figure 6.

The documentation frame of Figure 6 contains a large number of
references to abstractions in prog1.scm and prog2.scm. There are
links from the documentation to the definitions of the Scheme pro-
grams. The other way around, the documented definitions in the
program frame are decorated with links to the documentation sec-
tions with relevant explanations. (These links are anchored in the
small icons shown just above the define forms). Applied names
are linked to their definitions in the Scheme source programs. Re-
versely, the definitions are, via cross reference tables, linked to the
abstractions that apply the definitions. To provide for a natural
source-like appearance of the Scheme programs, the links are not
underlined, and they are shown in selected dark colors.

The small colored circles, called source markers, denote details
within a Scheme abstraction. Source markers are used for identi-
fication of program details, which are discussed in the documenta-
tion. In a Scheme source program the source markers are written as,
for instance, ‘@a’ in a comment. Pairs of similar source markers (in
the documentation and in a source program file) provide for a visual
correspondence, but they are also navigatable in both directions.

The elucidative program source in Appendix A shows an
elucidative-front-matters clause and the documentation in-
tro, sections, and entries in between (begin-documentation)
and (end-documentation). The source-files clause in
elucidative-front-matters enumerates the Scheme source
programs of the documentation bundle and the Scheme-
Doc files that should be taken into consideration. The
color-scheme clause defines the background colors which are
used to group related source files to each other in a visual
way. The documentation-intro, documentation-section, and

1For better viewing and color presentation please bring up Fig-
ure 6 in your own Internet browser using the link on the web re-
source page [21] of this paper.

documentation-entry clauses represent the actual documenta-
tion, and they hold the references to the abstractions of the Scheme
programs.

Within the documentation it is possible to address a Scheme defini-
tion via the name of the definition, both with and without source file
qualifications. The XML element mirror functions weak-prog-ref
and strong-prog-ref are used for this purpose. A strong program
reference is intended as a reference to a Scheme definition from a
context, which explains the definition. A weak program reference
is used when a definition is mentioned in other contexts. It should
be noticed that a source marker in the documentation is implicitly
related to the closest preceding strong program reference. The dis-
tinction between weak and strong program references is not always
objective.

Due to the many occurrences of weak and strong program refer-
ences, the author may choose to introduce “flexible abstractions” on
top of these, either ordinary Scheme functions or XML-in-LAML
abstractions (see Section 2).

The bodies of documentation entries and sections are typically
HTML paragraphs. At the most detailed level, textual content is
represented as string constants. As a consequence of the LAML
parameter passing rules discussed in Section 2, there is white space
in between element content items, unless suppressed by the under-
score symbol.

4.3 Tool Support

The Scheme Elucidator tool processes a documentation bundle, as
defined in Section 4.1. The result of the processing is a collection
of HTML files, which can be presented and explored in an Internet
browser.

During program development, it is important to support elucida-
tive programming in the programming environment. Without tool
support it is difficult and error prone to manage the linking process
between the documentation and the abstractions in the source pro-
grams. We have developed Emacs tools that support Elucidative
Scheme programming. The tools support the creation of links and
they make it possible to follow links within the editing environment.

If the programming is done in an integrated development environ-
ment (IDE) it is attractive to integrate Elucidative Programming
(development as well as browsing) in the IDE. It is a non-trivial
task to come up with a good integration. The integration of the Java
Elucidator and the TogetherJ IDE shows how this can be done [32].

4.4 Implementation issues

Like the SchemeDoc tool, the Scheme Elucidator is implemented
in Scheme. The most challenging aspect of the implementation is
the rendering and the linking of the Scheme source programs, i.e.,
the creation of the program frames. The rendering is done by a si-
multaneous traversal of the textual Scheme program and the parsed
Scheme program. Thus, the Scheme Elucidator processes both the
textual and the structural representation of the program. The source
program text holds the information about the program layout. The
parsed Scheme program makes it convenient to look ahead, for in-
stance into the actual definition following a definition comment.
The handling of quotations and quasiquotations calls for particular
attention during the traversals, because of differences between the
textual and the structural representations.

7

Figure 6: A snapshot of an elucidative Scheme program.

The current version of Scheme Elucidator is not aware of name
binding effects caused by use of syntactic abstractions (macros).
However, the Scheme Elucidator is aware of the syntactic forms
that introduce local name bindings (define, lambda, let, let*,
and letrec).

4.5 Limitations and extensions

We have a number of ideas of future improvements of the Scheme
Elucidator, some of which remedy weaknesses of the current ver-
sion of the tool.

As noticed in Section 4.4, the Scheme Elucidator does not expand
macros during the processing of Scheme source programs. It im-
plies, for instance, that the Scheme Elucidator does not take defi-
nitions into account which are caused by macro expansion. As a
remedy, it has been proposed that the Scheme Elucidator can be

told about macros that expand into definitions, and how to extract
the names defined by applications of such macros [24].

The Scheme Elucidator can refer to a particular version of a Scheme
source file, typically the most recent version. During a long pro-
gram development process it will often be useful to address the
way the program is evolving, more specifically the differences be-
tween an early version and the current version of a program. We
have clearly felt the need for such facilities in the Elucidative Pro-
gram that documents the Scheme Elucidator itself (accessible via
the accompanying web resource page [21]). Due to this reasoning,
it would be relevant to include some support of versioning, at least
in a way such that an early version of a program source file can be
accessed in a flexible way.

The addressing scheme, realized as a relation between the entities
of the documentation and the definitions in the source programs, is

8

not perfect. In the current tool, it is only possible to address top
level entities in the source programs. It would be desirable to be
able to address local name bindings as well. The main price to be
paid for this would be a more complicated addressing mechanism,
and a potential additional burden on the documentation writer.

The Scheme Elucidator uses mutual navigation between the Docu-
mentation frame and the Program frame (see Figure 5) based on a
bidirectional linking scheme. A literate program [9] presents pro-
gram fragments within sections of the documentation. In a future
development of the Scheme Elucidator we wish, as a supplemen-
tary means, to be able to extract program fragments from the source
program and to inline these in the documentation. Such a facility is
already supported by the Java Elucidator [31], and it resembles the
extraction idea of L2T [23], which we briefly review in Section 4.6
of this paper.

The Scheme Elucidator supports a single monolithic documentation
node, with two levels of sectioning (sections, and subsections which
are called entries). As a minor and relatively easy extension, some
programmers call for a more general hypertextual structuring of the
documentation in multiple nodes. The Java Elucidator [22] supports
multiple documentation nodes.

4.6 Similar work

A variety of work has been done for Scheme, which loosely can
be categorized under the umbrella of Literate Programming. Most
of this work is oriented towards printed output, typically via use of
LaTeX.

SchemeWEB [25] is characterized as “a Unix filter that allows you
to generate both Lisp and LaTeX code from one source file”. As
the novel aspect, SchemeWEB is able to identify Scheme (Lisp)
expressions in a LaTeX text. A Scheme expression starts with a ’(’
at the beginning of a line, and it ends with the matching ’)’. The
text outside Scheme expressions is considered as documentation.
The SchemeWEB tool provides for simple weaving, tangling, and
untangling in the web sense [10] of these words.

STOL [11] is tool for presenting a Scheme Program as a LaTeX
document. STOL is described as a Literate Programming Tool, and
it uses specialized markup as well as LaTeX markup in ordinary
Scheme comments. During processing, Scheme code is outputted
unaltered, whereas the Scheme comments are transformed relative
to specialized markup rules. STOL cannot control the orderinging
of the program explanations relative to the ordering of the program
constituents, and it is therefore somewhat misleading to call it a
literate programming tool. STOL is like a SchemeDoc tool which
presents the full source code.

L2T (Lisp to Tex) [23] is a literate programming tool created by
Christian Queinnec. L2T is able to extract program fragments from
Scheme source files and to insert them in a TeX context, which
serves as a program essay. L2T allows the source programs and
the documentation to be represented separately. Program fragments
are extracted and inserted in the TeX document upon preprocessing
of the TeX document with the Lisp2TeX tool. L2T has been used
extensively by its author (and by others) for books and papers about
Scheme programs.

Mole [12] is Kirill Lisovsky’s system for analyzing, repositing, and
presenting Scheme source programs. Mole recognizes chapters,
sections and units of Scheme definitions. The analysis leads to

an SXML [8, 7] representation of a Scheme program. A variety
of different queries and extracts can easily be made on the basis
of the SXML representation. The presentation, which is currently
supported by Mole, is targeted at HTML. The presentation makes
use of outlining for presentation of the programs and the program
comments at various levels of abstraction.

5 Conclusions

A tool with the properties of SchemeDoc is essential for commu-
nication of library interfaces. LAML SchemeDoc supports ex-
traction of distinguished documentation comments from Scheme
source programs, and presentation of these as HTML documents.
The separate SchemeDoc Indexing tool supports the indexing and
organization of a set of SchemeDoc manuals in a 3-framed browser.
As the most novel contribution, SchemeDoc is able to document
XML DTDs. Due to the difficulties of reading many XML DTDs
this is a valuable facility in its own right. However, the documenta-
tion of XML DTDs is of particular importance for LAML, because
XML languages are represented as libraries of Scheme functions in
LAML.

There is no common agreement on the conventions, formats, and
the markup of documentation comments in Scheme. This has lead
to a number of mutually incompatible tools, as discussed in Sec-
tion 3.5. Based on this observation it might be worthwhile for the
Scheme community to come up with a recommended format for
documentation comments in Scheme source programs.

Seen from the standpoint of traditional program documentation, and
in comparison with SchemeDoc, the Scheme Elucidator is a tool for
documentation of internal aspects of a Scheme program. From a
more open minded point of view, the Scheme Elucidator is a tool for
program exploration. The exploration can be done within a single
source file, between program source files (following chains of name
usages both forward and backward), between the program files and
the authored documentation, between a program and SchemeDoc
interface documentation, and between the program and the Scheme
Reference Manual. We find that the Scheme Elucidator is a valu-
able contribution whenever there is a need to write about Scheme
programs, for tutorial, educational or scientific reasons.

Both LAML SchemeDoc and the Scheme Elucidator are bound to
the LAML software package. Both tools make use of particular
XML front-end languages, as well as XHTML in the back-end.
All involved XML languages are represented as mirrors in Scheme.
Due to the LAML connection, both tools can be used on all the
platforms and Scheme Systems where LAML is running. Thus, in
contrast to many similar tools (see Section 3.5 and 4.6) the tools dis-
cussed in this paper are not bound to any particular Scheme system.
Whereas some other similar systems, such as Scribe [28], support
multiple back-ends (and thus multiple target formats) our documen-
tations tools can only generate HTML files.

LAML SchemeDoc has been indispensable for the documentation
of LAML libraries (including the mirrors of XML languages in
Scheme). The Scheme Elucidator 2 has been used by the author
for writing a comprehensive LAML tutorial [19] which currently
consists of seven elucidative program parts. The original Scheme
Elucidator has also had external users.2

2See Anton van Straaten’s documentation of “An Executable
Implementation of the Denotational Semantics for Scheme” at
http://www.appsolutions.com/SchemeDS/ds.html.

9

The Scheme documentation tools discussed in this paper can be
downloaded as free software from the LAML home page [18]. The
details reflected in this paper pertain to LAML version 25.10.

Acknowledgements

I wish to thank the reviewers for useful comments on the initial
version of this paper.

6 References

[1] World Wide Web Consortium. Extensible markup language
(XML) 1.0, February 1998. http://www.w3.org/TR/-
REC-xml.

[2] Lisa Friendly. The design of distributed hyperlinked program-
ming documentation. In Sylvain Frass, Franca Garzotto, Toms
Isakowitz, Jocelyne Nanard, and Marc Nanard, editors, Pro-
ceedings of the International Workshop on Hypermedia De-
sign (IWHD’95), Montpellier, France, 1995.

[3] Tony Garnock-Jones. Docscm documentation: ver-
sion 0.1. Available via http://homepages.kcbbs.gen.-
nz/∼tonyg/chicken/, September 2002.

[4] Aubrey Jaffer. Schmooz. http://swissnet.ai.mit.-
edu/∼jaffer/Docupage/schmooz.html, 2002.

[5] Aubrey Jaffer. SLIB - the portable Scheme library ver-
sion 2d3. http://www-swiss.ai.mit.edu/∼jaffer/-
slib.pdf, 2002.

[6] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme. Higher-
Order and Symbolic Computation, 11(1):7–105, August 1998.

[7] Oleg Kiselyov. SXML specification. Sigplan Notices,
37(6):52–58, June 2002. Also available from http://-
okmij.org/ftp/papers/SXML-paper.pdf.

[8] Oleg Kiselyov and Kirill Lisovsky. XML, XPath, XSLT im-
plementations as SXML, SXPath, and SXSLT. 2002. Pre-
sented on International Lisp Conference 2002 (ILC 2002).
Available from http://okmij.org/ftp/papers/SXs.pdf.

[9] Donald E. Knuth. Literate programming. The Computer Jour-
nal, May 1984.

[10] Donald E. Knuth and Silvio Levy. The CWEB System of Struc-
tured Documentation, Version 3.0. Addison Wesley, 1993.

[11] Daniel Kobler and Daniel Hernández. STOL—literate pro-
gramming in Scheme. Lisp Pointers, 5(4):21–30, October-
December 1992.

[12] Kirill Lisovsky. Scheme program source code as a semistruc-
tured data. In 2nd Workshop on Scheme and Functional Pro-
gramming, September 2001. http://kaolin.unice.fr/-
Scheme2001/article/lisovsky.ps.

[13] Kurt Nørmark. Elucidative Programming. Nordic Journal of
Computing, 7(2):87–105, 2000.

[14] Kurt Nørmark. Requirements for an elucidative program-
ming environment. In Eight International Workshop on Pro-
gram Comprehension, pages 119–128. IEEE, June 2000. Also
available via [16].

[15] Kurt Nørmark. Programmatic WWW authoring using Scheme
and LAML. In The proceedings of the Eleventh International
World Wide Web Conference - The web engineering track,

May 2002. ISBN 1-880672-20-0. Available from http://-
www2002.org/CDROM/alternate/296/.

[16] Kurt Nørmark. The Elucidative Programming home
page, 2003. http://www.cs.auc.dk/∼normark/-
elucidative-programming/.

[17] Kurt Nørmark. Web programming in Scheme with LAML.
To appear in Journal of Functional Programming, April 2003.
Available via [18].

[18] Kurt Nørmark. The LAML home page, 2004. http://www.-
cs.auc.dk/∼normark/laml/.

[19] Kurt Nørmark. The LAML tutorial. Part of the LAML system,
April 2004. Available via [18].

[20] Kurt Nørmark. The SchemeDoc home page, 2004. http:-
//www.cs.auc.dk/∼normark/schemedoc/.

[21] Kurt Nørmark. Web resources of the current pa-
per, August 2004. http://www.cs.auc.dk/-
∼normark/scheme/examples/elucidator-2/-
scheme-documentation-tools.

[22] Kurt Nørmark, Max Rydahl Andersen, Claus Nyhus Chris-
tensen, Vathanan Kumar, Søren Staun-Pedersen, and Kris-
tian Lykkegaard Sørensen. Elucidative programming in Java.
In The Proceedings on the eighteenth annual international
conference on Computer documentation (SIGDOC). ACM,
September 2000.

[23] Christian Queinnec. L2T: a literate programming tool.
Available via http://www-spi.lip6.fr/∼queinnec/-
WWW/l2t.html.

[24] Matthias Radestock. Use of the Scheme Elucidator with SISC.
personal correspondence, July 2003.

[25] John Ramsell. SchemeWEB. http://www.tug.org/-
tex-archive/web/schemeweb/.

[26] Schematics SchemeDoc. http://schematics.-
sourceforge.net/schemedoc.html.

[27] A Scheme documentation generator. Contained in ftp://-
ftp-sop.inria.fr/mimosa/fp/Bigloo/contribs/-
scmdoc.tar.gz, 1998.

[28] Manuel Serrano and Erick Gallesio. This is Scribe! Pre-
sented at the ‘Third Workshop on Scheme and Functional Pro-
gramming’, October 2002. http://www-sop.inria.fr/-
mimosa/fp/Scribe/doc/scribe.html.

[29] Sun Microsystems. Javadoc tool home page (sun microsys-
tems). Available from http://java.sun.com/products/-
jdk/javadoc/index.html, 2004.

[30] Dimitri van Heesch. Doxygen. http://www.doxygen.org,
2004.

[31] Thomas Vestdam. Generating consistent program tu-
torials. In Proceedings of NWPER’2002 - Nordic
Workshop on on Programming and Software Develop-
ment Tools and Techniques, 2002. Available via
http://dopu.cs.auc.dk/publications/.

[32] Thomas Vestdam. Elucidative Programming in open inte-
grated development environments for Java. In Proceedings of
the 2nd International Conference on the Principles and Prac-
tice of Programming in Java, pages 49–54, June 2003. Avail-
able via http://dopu.cs.auc.dk/publications/.

10

A The elucidative program source

In this appendix we show the LAML source of the elucidative demo program, which we discussed in Section 4, and illustrated in Figure 6.

(load (string-append laml-dir "laml.scm"))
(laml-style "xml-in-laml/elucidator/elucidator")

(elucidator-front-matters

’laml-resource "true"
’scheme-report-version "r5rs"

; OVERALL attributes
’table-of-contents "shallow" ; detailed or shallow
’shallow-table-of-contents-columns "3"
’detailed-table-of-contents-columns "2"
’source-marker-presentation "image" ; image, text, colored-text
’source-marker-char "@"
’browser-pixel-width "1100"
’control-frame-pixel-height "120"

; INDEX attributes
’cross-reference-index "aggregated" ; per-letter, aggregated
’defined-name-index "aggregated" ; per-letter, aggregated

; PROGRAM attributes
’initial-program-frame "blank" ; blank, first-source-file
’large-font-source-file "true"
’small-font-source-file "true"
’default-source-file-font-size "small" ; small or large
’program-menu "separate-frame" ; inline-table, none, separate-frame
’processing-mode "verbose"

(color-scheme
(color-entry ’group "doc" (predefined-color "documentation-background-color"))
(color-entry ’group "index" (predefined-color "documentation-background-color"))
(color-entry ’group "core" (predefined-color "program-background-color-1"))
(color-entry ’group "others" (predefined-color "program-background-color-2"))

)

(source-files
(program-source ’key "prog1"

’file-path "../../manual-xml-in-laml/scheme-documentation-tools/prog1.scm"
’group "core" ’process "true")

(program-source ’key "prog2" ’file-path "src/prog2.scm"
’group "others" ’process "true")

(manual-source ’key "laml-lib"
’file-path "../../../lib/man/general"
’url "../../../lib/man/general.html")

(manual-source ’key "prog1-man"
’file-path "../../manual-xml-in-laml/scheme-documentation-tools/man/prog1"
’url "../../../manual-xml-in-laml/scheme-documentation-tools/man/prog1.html")

)
)

(begin-documentation)

(documentation-intro
(doc-title "Elucidator Demo")
(doc-author "Kurt Normark")
(doc-affiliation "Aalborg University, Denmark")
(doc-email "normark@cs.auc.dk")
(doc-abstract

(p "This is a brief demo example of an Elucidative Program")))

11

(documentation-section
’id "overview-sect"
(section-title "Overview")
(section-body

(p "This Elucidative program consists of two tiny source programs:"
(weak-prog-ref ’file "prog1")"and" (weak-prog-ref ’file "prog2") _ "."
"The first of these was used for illustration of SchemeDoc, in terms of"
(weak-prog-ref ’file "prog1-man" "a prog1 interface manual")_ ".")

)
)

(documentation-entry
’id "intro"
(entry-title "Introduction")
(entry-body

(p (strong-prog-ref ’file "prog1" "prog1.scm") "contains the factorial function"
(weak-prog-ref ’name "fac")_ "," "and the two functions" (weak-prog-ref ’name "head") "and"
(weak-prog-ref ’name "tail")_ "," "which are aliases of" (weak-prog-ref ’name "car") "and"
(weak-prog-ref ’name "cdr")_ ".")

(p (strong-prog-ref ’file "prog2" "prog2.scm")
"shows a collection of classical higher-order functions," (weak-prog-ref ’name "compose") _
"," (weak-prog-ref ’name "filter") _ "," "and" (weak-prog-ref ’name "zip") _ ".")

)
)

(documentation-section
’id "higher-order-sec"
(section-title "Higher-order functions")
(section-body

(p "In this section we explain some details of the higher-order functions, namely"
(weak-prog-ref ’name "filter")"and" (weak-prog-ref ’name "compose") _ "."
"We do not go into the details of" (weak-prog-ref ’name "zip") _ "," "however.")

)
)

(documentation-entry
’id "filtering"
(entry-title "Filtering")
(entry-body
(p "The function" (strong-prog-ref ’name "filter") "makes use of the tail-recursive function,"

(strong-prog-ref ’name "filter-help")_ ","
"which iteratively carries out the filtering. Due to use of iterative processing in"
(weak-prog-ref ’name "filter-help")_ "," "we need to reverse the result in" (strong-prog-ref ’name "filter") _ ","
(source-marker ’name "a")_ ".")

)
)

(documentation-entry
’id "composing"
(entry-title "Function composition")
(entry-body
(p "Composition of two or more functions can be done by the function"

(strong-prog-ref ’name "compose")_ "."
"The function handles two special cases first, namely the trivial composition of a single
function" (source-marker ’name "b") _ ","
"the typical composition of two functions" (source-marker ’name "c") _ ","
"and composition of more than two functions" (source-marker ’name "d") _ ".")

)
)

(end-documentation)

12

13

A Framework for Memory-Management Experimentation

Stephen P. Carl
Department of Mathematics and Computer Science
The University of the South, Sewanee, Tennessee

Abstract

Phobos is a framework for experimenting with memory manage-
ment systems. This framework provides two types of operation –
profiling program allocation behavior and simulating the actions of
memory management systems. Profiling is used to generate data
about a program’s allocation behavior including total memory al-
location and memory object lifetimes. Simulation is used to mea-
sure the performance of different memory management strategies
on particular program runs. In both cases, Phobos takes its input
from a trace file generated during execution of a targeted applica-
tion which lists the memory events of interest.

This paper describes the design of the Phobos system. In particular,
it shows how the system takes advantage of the code structuring
facilities provided by PLT Scheme, highlighting the use of signed
units, mixin classes, and other features of this system.

1 Introduction

We are developing Phobos, a framework for studying memory man-
agement systems. Most popular functional languages, such as
Scheme [15], and object-oriented languages, such as Java [1], use
some form of garbage collection to implement automatic memory
management [13]. While there are a number of garbage collection
algorithms, most systems today have some form of generational
collection available. Some languages best known for scripting ca-
pabilities, such as Perl [24] and Python [23], use reference counting
systems for automatic memory management, while implementa-
tions such as Jython [14] benefit from advances in the Java language
runtime. Our goals for Phobos include classifying the memory al-
location patterns of different types of applications and determining
how well or poorly different memory management algorithms in-
teract with these patterns.

The framework has two modes of operation: profiling, which can be
used for studying the allocation behavior of applications, and simu-
lation, which can be used to determine how well different garbage

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Stephen P. Carl.

collection algorithms perform when matched with applications ex-
hibiting these behaviors. Information about an application’s use of
memory comes from memory trace files, which contain information
about object allocations, object deallocations (for profiling), pointer
stores and pointer reads (for simulation), and so on. Trace files are
produced by instrumented virtual machines or interpreters which
log events of interest as they occur.

This paper describes the design of Phobos and simple examples
of how it is used. The framework design is based on the pro-
gram structuring features provided by PLT MzScheme, a R5RS-
compliant Scheme implementation featuring a number of useful ex-
tensions including a fully integrated module system, units for creat-
ing separately-compilable components, and a Java-like class system
which supports mixin-based programming [5]. We describe how
use of these language features helped create a system capable of
specifying various simulator configurations from information pro-
vided by the user.

2 Simulator Design

2.1 Design Goals

Phobos has been designed with the following goals in mind:

• Experimental Control. The user controls the system through
a script for specifying experimental parameters such as heap
size, input format, memory management components used in
simulation, and statistics to collect.

• Prototype Development. Implementations of new memory
managers can be prototyped to quickly explore the design
space.

• Language independence. While initial experiments are tar-
geted at Java programs, other languages can be accomodated
by providing an execution environment instrumented to pro-
duce trace files.

• Extensibility. Phobos can be extended to handle new types of
trace file formats, new memory management algorithms, and
new types of statistics to collect.

2.2 Structuring the System

The framework is divided into two sets of modules: the engine and
the simulation components. The engine is made up of the main
driver, handlers for reading trace files, and an interface for exper-
iment scripts. Simulation components are defined as MzScheme
classes and represent the heap and heap partitions, basic memory

14

management systems, and statistics generators.

The engine and components are combined according to informa-
tion in an experiment script which is written by the user to control
the simulator. Information from the script tells the system how to
combine the main driver with the functions which read a specific
trace file format. The script further specifies the memory manage-
ment functionality to be used; the script interface determines which
classes from the simulation components are needed and loads them
at startup time. The memory manager is made by combining classes
encapsulated in units that represent allocation and collection sys-
tems with the heap classes. A detailed description of how and why
units are used in our framework is given in Section 5.

Trace handlers are functions which deal with specific memory trace
events given in a trace file. The framework currently supports three
formats, one for manual memory management, one for a JVMPI-
compliant profiling agent for Java programs [22], and one for gen-
eral simulation. New formats can be accomodated by developing a
new set of handler implementations. As each memory event is read
from the trace file, the driver transfers control to the appropriate
handler function for checking that the event is in the proper format
and creating an object that represents the trace. Such objects in turn
cause some change in the heap by sending it a message correspond-
ing to the event type (e.g., object allocation, object deallocation,
pointer store, etc.).

When profiling, the heap is used to simply store allocated objects,
then remove them when deallocated, while maintaining a set of
counters which track basic statistics. When doing simulation, the
heap object sends messages to one or more heap frames which it
manages. A heap frame is conceptually just a range of addresses in
(simulated) memory, coupled with a specific set of methods for han-
dling allocation or collection; these impose a logical organization
on the heap frame. This organization allows us to model monolithic
heaps which use a single allocator and collector, and also heaps that
are partitioned into regions which are managed differently, such as
in generational garbage collectors.

The simulation components that report statistics log basic informa-
tion in each memory object allocated. The system produces two
files of raw data. The log file contains allocation time,1 size, and
deallocation time for each object allocated. The lifetimes file con-
tains the lifetimes of each object, where lifetime is the difference
between deallocation time and allocation time. The information in
these files is suitable for processing by external tools such as Matlab
for producing graphs, such as object type and lifetime distributions.

3 Profiling Applications

The simplest use of the system is to profile the memory usage of
an application. A trace file to be used for profiling records the ac-
tions of the memory manager used by the system which executes
the application, including GC start and stop events, per-object al-
location and deallocation events, and object copy events. In profile
mode, Phobos simply replays these events in a shadow heap and
tracks information about each object and the events which affect
them. It also computes statistics about each object when they are
deallocated or the trace file ends, and displays the amount of heap
space needed by the application being profiled, the total amount of
allocation both in number of objects allocated and size of memory

1Per the GC literature, allocation time is measured in bytes al-
located so far – the first object is allocated at time 0, the next is
allocated at time 0 + (size of first object), and so on.

used, and the number of garbage collections required including the
number of objects and total memory collected at each.

The following simple script runs a single profiling experiment:

(experiment
(connect ’PROFILE "˜/traces/robo-trace"))

The connect form specifies the trace format type and the full path-
name to the trace file. When an experiment run begins, the sys-
tem selects the trace handlers to use based on the trace format type
(though this can be overridden in the script) and combines these
with the main driver and the simulation components used for pro-
filing. When invoked, the driver first attempts to open the trace
file specified, and then calls the trace handler functions to read and
respond to memory events stored in the trace file.

Once the trace file processing is completed, the system displays the
global heap statistics it has computed:

For this trace file run:
Total types recorded: 1022
Total amount of allocation: 98993720 bytes
Total number of objects allocated: 2350147
Total number of objects collected: 2237897

4786686 Events Processed

Also, the statistics component produces the object lifetimes and al-
location log.

4 Simulating Memory Managers

In simulation, the trace file produced when an application is run
contains allocation events, pointer update events, and enough in-
formation about the execution to drive the actions of a simulated
memory management system. A typical simulation script describes
each experiment to be run, including the trace file to be used, the
memory management system (or systems) to simulate, and the char-
acteristics of the simulated heap.

For example, the following script runs a single experiment using
a trace file robo-trace on a typical heap managed by a best-fit
allocator and mark/sweep garbage collector:

(experiment
(connect SIM "˜/traces/robo-trace")
(base-heap 64 0 (allocator first-fit)

(collector mark-sweep)))

The simulation is again driven by the memory trace file in the path
specified in the connect form. The second part of the experiment
script specifies the characteristics of the heap: size is 64 Mbytes,
the base of the heap (conceptually) starts at address 0, and it is
managed by a first-fit allocator and a mark/sweep garbage collector.
This script runs the experiment and reports the statistics just as in
the profiler.

The names first-fit and mark-sweep are predefined. In general,
the names are used to choose the module in which the particular
class definition implementing these algorithms is found. For ex-
ample, first-fit is defined in a module in the file first-fit.scm,
which provides a class that implements the first-fit allocation pol-
icy. Actually, the algorithms are defined as mixin classes, and what
is provided is a function which creates a new class representing a

15

heap frame extended with the mixins. Section 6 describes this in
more detail.

Experimental setups can be defined and saved singly or in groups.
Saving an experimental setup by associating it with a name allows
results to be labeled with experiment names rather than with exper-
iment characteristics. In the example shown in Figure 1 we define
a set of experiments, called an experiment suite, which will be run
one after the other by the simulator. The suite is defined by the form
define-experiment-suite.

5 Under the Hood

In MzScheme, a unit is a separately compilable component which
can be linked to other units to create a (as yet unevaluated) pro-
gram. Units may import external variables which are used in the
body of the unit, and may export its own variables to be imported
by other units. When the list of variables imported or exported is
long, signed units are used instead as a convenience. In this case,
the programmer provides signatures to specify those names to be
exported to other units, and import using other unit’s signatures.
The program formed by linking units is evaluated when invoked
with the invoke-unit (with regular units) or invoke-unit/sig
forms (with signed units).

In Phobos, evaluating an experiment script selects those units
whose code is to be used to handle specific types of traces and
construct the simulated heap. Scripts are processed by passing the
script file name on the MzScheme command line. The script is then
evaluated as Scheme code, using the definitions provided by Pho-
bos. The experiment form is a macro which uses the information
in its body forms to select the appropriate units (representing the
engine and required components) and link them together to create
a compound unit at runtime. Invoking this compound unit starts the
main driver.

The simple profiling experiment script shown in Section 3 elabo-
rates to the let* form shown in Figure 2. This code creates and
invokes a compound-unit out of a set of signed units; the signa-
tures (defined elsewhere) are given by the symbols which end with
a caret (ˆ). The compound-unit is the result of linking the indi-
vidual units htprof-handlers@, unit-heap@, sim-driver@, and
exp@ together. The first three of these are loaded into the system at
runtime by a form (elided in the figure) called dynamic-require.

The unit exp@, which comes first in the let* form, defines the
“command line” for the engine, using parameters from the script.
The compound-unit form then links the units which define the spe-
cific trace handlers used by engine together with the simulated heap,
the driver unit, and the unit which defines the command line. The
driver unit exports the procedure name sim-driver used by the
new unit exp@. The link step returns the compound unit prg@ that
is invoked in the let*. Invoking the compound unit has the effect
of calling sim-driver and running the simulation in profiler mode.
The results produced will be labeled with the experimental charac-
teristics, that is, the name of the trace file, the memory manager
used, and the heap size and layout.

6 Structure of the Simulated Heap

The simulated heap is made up of one or more heap frame objects.
For modeling monolithic heaps one heap frame is sufficient. How-
ever, in modern runtime systems heaps tend to be partitioned. Gen-
erational garbage collectors partition by age; other recently pro-

posed systems partition by type [17] or by connectivity [9]. To
model these systems, each heap frame represents a different parti-
tion of the heap. Global attributes of the heap are captured by the
heap% class, which also holds the first heap frame. The structure of
the definition (minus method code) is as follows:

(define heap%
(class* object% (heap<%>)

(init-field
;; an object that collects statistics
stats
;; default heap size is 32 Mbyte
(initial-size (expt 2 25))
(max-size initial-size)
(alloc-frame

(make-object heap-frame% initial-size)))

(field (bytes-allocated 0))
(field (total-allocated 0))
(field (total-objects 0))

(define/public (allocate trace)
;; updates global properties of the heap
;; sends allocate message to alloc-frame

...)

(define/public (deallocate object-id)
;; updates global properties of the heap

...)

...)))

This definition creates the class heap% consisting of a set of fields
(three defined by the init-field form and four by the field
forms) along with a set of methods (only a subset of the class meth-
ods are shown). The field alloc-frame refers to the initial heap
frame. Each heap frame refers to the “next” heap frame in the sys-
tem. For example, to define a semi-space copying collector, two
frames are used, each refering to the other. For generational collec-
tors, each generation is a separate heap frame which each refer to
the succeeding generation in the system.

Each heap frame is defined by a class heap-frame% which includes
methods for allocating blocks, collecting unreachable objects, and
handling pointer reads and writes as shown:

(define (heap-frame% %)
(class* % (heap-wrapper<%>)

(inherit store! lookup remove!)
(rename (super-terminate terminate))
(init-field

initial-size
(next-frame ’()))

(field (frame-bytes-allocated 0))
(field (start-addr 0))
(field (end-addr (- initial-size 1)))
(field (roots ’()))

;; Method Declarations
(define/public (allocate-slot obj size)
;; allocates the next available block
;; large enough to store obj of given size
...)

(define/public (collect-slots)
;; dummy collector

16

(define-experiment-suite gc-suite
"run experiments on two tracefiles"
(experiment

(connect SIM "˜/traces/robo-trace")
(base-heap 32 0 (allocator first-fit)

(collector mark-sweep)))

(experiment
(connect SIM "˜/traces/kaffe-trace")
(base-heap 32 0

(partition (name nursery 16)
bump-pointer
(copy-promote (partition (name old 16) best-fit mark-sweep))))))

(simulate gc-suite) ;; kicks off experiments

Figure 1.

(let* ((exp@ (unit/sig () (import sim-driver)
(sim-driver "/traces/robo-trace" JVMPI (expt 2 24))))

(prg@ (compound-unit/sig (import) (link [HANDLE : trace-handlersˆ htprof-handlers@]
[SIMHEAP: unit-heapˆ unit-heap@]
[DRIVER : sim-driverˆ (sim-driver@ HANDLE SIMHEAP)]
[RUN : () (exp@ (DRIVER sim-driver))])

(export))))
(invoke-unit/sig prg@))

Figure 2. Elaboration of experiment form

...)

(define/public (read addr)
;; pointer read
...)

(define/public (write addr ptr)
;; pointer write
...)))

The default heap frame object implements the NoGC storage man-
ager, which creates new objects in the next available chunk of
memory and removes objects without making the newly-freed
space available for future allocations. More useful allocator and
collector mechanisms are provided in the form of mixin classes
which extend heap-frame% by overriding the allocate-slot and
collect-slots methods. The read and write functions can also
be overridden for implementing read or write barriers as needed.
When a specific type of heap manager is chosen for simulation, the
heap frames are created by choosing appropriate allocator and col-
lector subclasses, creating extensions by mixing these in, and then
instantiating the resulting classes.

This organization is accomplished as follows: a mixin is created in
MzScheme by defining a class whose superclass is specified as a
parameter, using the define form. For example:

(define (make-mixin super-class)
(class super-class ...extension...))

The actual class is created by calling the resulting procedure and
passing in the name of the superclass to be extended.

There are two main benefits of using mixin classes in this system.
First, allocators and collectors can be combined independently as
long as they are compatible (for instance, the system will gener-

ate an error when processing a script which pairs a non-moving
allocator with a copying collector). Second, when placed in their
own units, mixin extensions can be selected and combined to form
a single unit representing the simulated heap by importing the ac-
tual superclass at link time.2 This allows us to essentially create
different heap frame classes on the fly, combining them to form
a multiple-partition heap where each partition is managed using a
different strategy.

An allocation event only affects a single heap frame. Each alloca-
tion algorithm is defined in a separate unit as a mixin class which
contains at least the method allocate-slot as shown in this ex-
ample:

(define (bump-pointer super%)
(class super%

(init-field
size
(pointer 0))

(define/override (allocate-slot trace)
;; defines new allocator

...)))

The procedure bump-pointer takes an argument super% which is
the superclass of the mixin. The allocate-slot method over-
rides that defined in the superclass. This mixin defines the “bump
pointer” allocator (also known as fast allocation) which reserves the
next free address in the heap frame for the object being allocated.
The init-field form defines two fields; size is the maximum
size of the heap frame, and pointer tracks the next available posi-
tion in the frame.

Collectors are created in the same way. A particular collector com-
ponent overrides the method collect-slots and can include any

2More information on the use of units and mixins in MzScheme
can be found in Findler and Flatt’s ICFP’98 paper [4].

17

other supporting methods or fields necessary. The collector com-
ponents will be combined with some superclass (again, not usually
known in advance) using the same mixin style as with allocators.
In general, the collect-slots method is called by the allocator
when there is no more space available in the heap frame or some
threshold size is reached.

Once defined, units for allocators and collectors become part of a
library of components to be used in experiments. The name of the
module which defines a specific component is given in the experi-
ment script which selects the proper units and evaluates the proce-
dures for each mixin class. When evaluated, these procedures gen-
erate a new class which will extend either heap-frame% or some
subclass of it. The actual superclass does not have to be known in
advance. In this way, classes representing the simulated heap are
created on the fly based on the experiment script.

7 Memory Management Components

In this section we cover some of the forms used in Phobos exper-
iment scripts to generate the memory management classes. New
components are being added as the system matures. Components
are in general added by writing mixin classes built along the same
lines as bump-pointer. In more advanced cases, new macro forms
may be required.

7.1 Allocators

The allocator form specifies the unit to be used for alloca-
tion. Examples of allocators currently available include the de-
fault bump-pointer, simple first-fit allocation, and the more
advanced seg-freelist for implementing a segregated freelist al-
locator. An allocator is specific to a single heap frame.

7.2 Collectors

The collector form specifies a unit to be used for garbage col-
lection. Collectors defined using this form are generally used
to manage a single partition in the heap. The mark-sweep and
mark-compact collectors are two examples of collectors which can
be used with this form.

7.3 Partitioned Heaps

The form partition allows the user to define the way the heap is
divided into heap frames, usually for copying collectors. This form
has the following structure:

(partition (name <identifier> <size>)
<allocator>
<collector>)

The name subform is optional and associates an identifier with the
partition as well as its size (in Mbytes). If name is not used, the
size is specified there instead. The <allocator> and <collector>
parameters are either the unit names as described before, or one of
copy-to or copy-promote, each of which specifies copy collection
between partitions.

The form of copy-to is (copy-to size), where size gives the size
of a second partition, or semispace. This form is used to create
a two-semispace copy collector. Elaboration of this form generates
two heap frames which refer to each other via the next-frame field.

The form of copy-promote is (copy-promote partition-form),
where partition-form is another partition declaration. This is gen-
erally used to create a generational memory manager, though pro-
vision for promoting based on criteria other than age is planned.
The second partition form is the “older” generation which receives
copies of objects which survive collections of the original partition.
Note that partitions defined in copy-promote can themselves de-
clare copy-promote as their collector (and so on) to generate more
than two generations. Currently the form uses a default remem-
bered set write barrier to catch intergenerational pointers.

8 Future Work

8.1 Instrumenting New Implementations

The Phobos framework was originally conceived as a tool to gauge
the allocation characteristics of functional languages designed to
compile to the Java Virtual Machine [20]. This is one reason why
our current set of trace files are generated by executing Java pro-
grams. In the future, we would like to conduct experiments with
trace files generated from progams executed directly by implemen-
tations of Scheme and other languages. This will require modifying
existing execution environments to generate information about the
memory events of interest.

The Garbage Collection website [12] includes a small repository
of memory traces, which is intended to eventually represent many
traces from applications written in different languages. The re-
search community has apparently been slow to contribute to this
repository; we would like to contribute to it soon and encourage
other researchers to do so.

8.2 Visualization

Currently all visualization of data generated by Phobos is done us-
ing Matlab to generate graphs. It would be nice to have a set of
tools for presenting interesting views of the allocation behavior of
the programs and the performance of the memory managers. We
will be evaluating other tools specifically aimed at graphing (such
as PLTplot [6]), and profiling (such as EVOLVE [25]).

8.3 Developing New Managers

The memory manager components defined in Phobos are useful for
studying the behavior of commonly used systems. The scripting
system needs to be more flexible, however, if newly proposed and
researched systems are to be implemented using this approach. In
particular, the copy-promote form needs to be modified or com-
plemented so that alternative write-barriers can be specified as well
as different criterion for promoting objects.

Researchers who develop improved memory managers may want
to develop prototypes to study their high-level performance on ap-
plication traces. While writing allocators and collectors in Scheme
can be an enjoyable exercise, we would like to develop memory
management components in an embedded language built to work
directly with the experiment scripting facility. We would like to
try to develop such a “little language” [16] to aid in the process
of building up the framework. The more allocators and collectors
added to the library of components, the more experience we will
have to better understand the abstractions and interfaces that the
language must support.

18

9 Related Work

Simulators are used to study both the allocation behavior of specific
applications and the behavior of memory management techniques.
One of the first described systems was MARS, the Memory Alloca-
tion Research Simulator, described in Ben Zorn’s dissertation [26].
This simulator was attached to a running LISP system and allowed
the user to study the impact of using different (simulated) garbage
collection algorithms with a set of applications. Zorn also proposed
using a language specific to this domain for describing manage-
ment systems to be simulated, but did not define one himself. To
our knowledge this has not yet been attempted.

Simulation is also a key component in the work of Darkovic [19],
who studied age-based (generational) collectors in the context of
Smalltalk and Java, and Hansen [8], who studied older-first genera-
tional collectors in the context of Scheme.

Hölzle and Dieckmann developed a trace-driven simulator to pro-
vide data about the memory behavior of Java programs to the
garbage collection research community [3]. The system was driven
by memory traces generated from applications in the SPECjava98
benchmark suite. The simulator generated data for computing sta-
tistical information about object lifetime distributions, size varia-
tions, and the amount of heap space required to run each program.
Few if any such simulators have been made publically available to
the research community.

In the JikesTMResearch Virtual Machine, new memory manage-
ment mechanisms can be implemented directly (not simulated) by
subclassing a set of provided Java GC classes which provide the
base garbage collector. This allows the programmer to experiment
with and determine the effects of different managers on an applica-
tion or set of applications directly, without the need for generating
trace files. However, the entire virtual machine must be rebuilt (a
lengthy process) before testing a new manager [10].

Beltway is a framework built on top of Jikes which generalizes
copying garbage collection, such that each of semispace, genera-
tional, and older-first collection schemes can be defined in a com-
mon framework [2]. The simulated heap is divided into some num-
ber of partitions called belts. Each belt is made up of a number of
increments; an increment is the unit of allocation. Varying the size
and number of belts allows the user to construct any existing copy-
ing collector, or create entirely new ones. Furthermore, the system
supports partitioning objects in the heap by size, type, or call-site,
so several different object characteristics can be exploited at once.

10 Conclusion

This paper has described the design of a framework for profil-
ing the memory allocation behavior of applications and simulat-
ing memory-management systems. The framework uses program-
structuring features provided by PLT Scheme to build representa-
tions of the simulated heap from components chosen by an exper-
imenter at runtime. The use of units to compartmentalize code,
specify import and exports in a disciplined way, and link compo-
nents at runtime makes it possible to specialize the system based on
an experiment script.

This approach has given us the ability to build simulations for a
number of popular memory managers. It is not clear, however, that
building components in this way will be useful for alternative de-
signs currently being researched. It may turn out that some designs

may be more difficult to render given the high level of abstraction
represented by signed units and mixin classes. But for systems im-
plemented thus far, the approach has allowed us the flexibility of de-
veloping components for different allocation and collection mech-
anisms and make them available to the simulator.

11 References

[1] Ken Arnold and James Gosling. The JavaT M Programming
Language, 2nd Edition. Addison-Wesley, 1998.

[2] Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley,
and J. Eliot B. Moss. Beltway: Getting Around Garbage Col-
lection Gridlock. Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation. In SIGPLAN Notices. Vol. 37, No. 5, pp. 153–164,
May 2002.

[3] Sylvia Dieckmann and Urs Hölzle. A Study of the Allocation
Behavior of the SPECjvm98 Java Benchmarks. Technical Re-
port 1998-33, UCSB Computer Science Department. Decem-
ber, 1998.

[4] Robert Bruce Findler and Matthew Flatt. Modular Object-
Oriented Programming with Units and Mixins. Proceedings
of the International Conference on Functional Programming
(ICFP ’98). In SIGPLAN Notices, Vol. 34, No. 1, January
1999.

[5] Matthew Flatt. Programming Languages for Reusable Soft-
ware Components. Ph.D. thesis, Rice University, June 1999.

[6] Alexander Friedman and Jamie Raymond. PLoT Scheme.
Fourth Workshop on Scheme and Functional Programming,
November 7, 2003, Boston, MA.

[7] Richard P. Gabriel, Performance and Evaluation of Lisp Sys-
tems. MIT Press, Cambridge, MA, 1985.

[8] Lars T. Hansen. Older-first garbage collection in practice.
Ph.D. thesis, Northeastern University, November 2000.

[9] Martin Hirzel, Johannes Henkel, Amer Diwan, and Michael
Hind. Understanding the connectivity of heap objects. In
The 2002 International Symposium on Memory Management
(ISMM 2002), pp. 36–49, Berlin, Germany, June 2002. ACM
Press.

[10] Jikes Research Virtual Machine from IBM.
http://www.ibm.com/developerworks/oss/jikesrvm.

[11] Richard Jones’ Garbage Collection Bibliography.
http://www.cs.kent.ac.uk/people/staff/rej/gcbib.

[12] Richard Jones’ Garbage Collection Pages.
http://www.cs.kent.ac.uk/people/staff/rej/mtf/traces.

[13] Richard Jones and Rafael Lins. Garbage Collection: Algo-
rithms for Automatic Dynamic Memory Management. John
Wiley and Sons, 1996.

[14] Jython Homepage.
http://www.jython.org/

[15] R. Kelsey, W. Clinger, and J. Rees (Eds). The Revised5 Re-
port on the Algorithmic Language Scheme. ACM SIGPLAN
Notices, Vol. 33, No. 9, September 1998.

[16] Olin Shivers. A universal scripting framework, or Lambda:
the ultimate “little language.” In Concurrency and Paral-
lelism, Programming, Networking, and Security, Lecture
Notes in Computer Science #1179, pages 254–265, Editors
Joxan Jaffar and Roland H. C. Yap, 1996, Springer.

19

[17] Y. Shuf, M. Gupta, R. Bordawekar, and J.P. Singh. Exploit-
ing prolific types for memory management and optimizations.
Proceedings of the 2002 SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’02). In SIG-
PLAN Notices, Vol. 37, No. 1, pp. 295–306, January 2002.

[18] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, Release 1.0. August 1998.
http://www.spec.org/osg/jvm98/jvm98/doc/index.html.

[19] Darko Stefanovic. Properties of Age-based Memory Recla-
mation Algorithms. Ph.D. thesis, University of Mas-
sachusetts, February 1999.

[20] Robert Tolksdorf. Languages for the Java VM.
http://www.robert-tolksdorf.de/vmlanguages.html.

[21] Sun Microsystems Inc. The HotSpotT M Performance Engine.
http://java.sun.com/products/hotspot.

[22] Sun Microsystems Inc. Java Virtual Machine Profiler Inter-
face (JVMPI).
http://java.sun.com/products/jdk/1.2/docs/guide/
jvmpi/jvmpi.html.

[23] Guido von Rossum. Python Tutorial.
http://www.python.org/doc/current/tut.

[24] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Pro-
gramming Perl, 2nd edition. O’Reilly & Associates, Inc.,
1996.

[25] Qin Wang, Wei Wang, Rhodes Brown, Karel Driesen, Bruno
Dufour, Laurie Hendren and Clark Verbrugge. EVolve, an
Open Extensible Software Visualization Framework. Sable
Technical Report SABLE-TR-2002-12. McGill University,
School of Computer Science, 2002.

[26] Benjamin Zorn. Comparitive Performance Evaluation of
Garbage Collection Algorithms. Published as CSD-89-544
from University of California, Berkeley.

20

21

trx: Regular-tree expressions, now in Scheme

Ilya Bagrak
University of California, Berkeley

ibagrak@eecs.berkeley.edu

Olin Shivers
College of Computing

Georgia Institute of Technology
shivers@cc.gatech.edu

Abstract

Regular-tree expressions are to semi-structured data, such as XML
and Lisp s-expressions, what standard regular expressions are to
strings: a powerful “chainsaw” for describing, searching and trans-
forming structure in large data sets. We have designed and imple-
mented a little language, trx, for defining regular-tree patterns. We
discuss the design of trx, its underlying mathematical formalisation
with various kinds of tree automata, and its implementation tech-
nology. One of the attractions of trx is that, rather than being a
complete, ad hoc language for computing with trees, it is instead
embedded within Scheme by means of the Scheme macro system.
The features of the design are demonstrated with multiple motivat-
ing examples. The resulting system is of general use to program-
mers who wish to operate on tree-structured data in Scheme.

1 LCD data representations

Semi-structured and tree-structured data has become an important
topic in the world of software engineering in the past few years, due
to the widespread adoption of XML as a generic representation for-
mat for data. While this may be news to rest of the world, it is a very
familiar picture to programmers in the Lisp family of languages.
The Scheme and Lisp community has long been aware of the ben-
efits of fixing on a general-purpose data structure for representing
trees, and specifying a standard concrete character representation
for these trees. Lisp s-expressions are essentially XML trees; the
Lisp community has worked within the s-expression framework for
representing data since the inception of the language in the 1960’s.

Part of the power of the Lisp family of languages comes from this
focus on s-expressions as the central data structure of the language.
A Perlis aphorism [16] captures the benefit well: “It is better to have
100 functions operate on one data structure than 10 functions on 10
data structures.” S-expressions are the “least common denomina-
tor” (LCD) representation for data in the Lisp family of program-
ming languages, in the same sense that strings are the LCD repre-
sentation in the world of Unix tools: the multitude of functions that

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Ilya Bagrak and Olin Shivers.

operate upon and produce results in this form can therefore easily
be connected together to construct larger computations, providing
for a large degree of code reuse. In the world of Scheme program-
ming, s-expressions are the universal interchange format.

The charm of s-expressions as an LCD representation is that, un-
like strings, they come with some degree of existing structure. This
eliminates much of the parsing/unparsing overhead that is typically
required when computational agents interact using string interme-
diate representations (parsing that, in the Unix-tools setting, is fre-
quently done by means of heuristic, incomplete, error-prone hand-
written parsers). Another Perlis aphorism makes clear the down-
sides of using strings as an LCD form: “The string is a stark data
structure and everywhere it is passed there is much duplication of
process. It is a perfect vehicle for hiding information.” The prob-
lem with strings as a least-common denominator is that they are too
“least,” that is, too low level. We operate upon strings a character at
a time—a level where it is all too easy to break the invariants of the
associated grammar that typically imposes structure and meaning
on the strings.

Even when s-expressions may not be the appropriate representation
for the core data structures of an application, they still frequently
find use around the application’s “fringe,” being converted to and
from the internal, more highly-engineered core structures as they
move across the application’s boundary—with the associated ben-
efit that it is much simpler and more robust to parse a tree than a
string.

2 Regular trees, little languages and Scheme

Given that Lisp and Scheme programmers have been working with
“semi-structured” tree data roughly three and half decades longer
than XML has even existed, it is surprising that this community
has never bothered to adopt one of the great, expressive tools for
manipulating such data: regular trees and their associated patterns.
Just as traditional regular expressions are an expressive tool for de-
scribing structure occurring within strings, regular trees can serve a
similar role when dealing with recursively defined patterns occur-
ring within trees—trees such as ones we frequently represent using
Scheme s-expressions.

We have long grumbled about the lack of such tools. Each time
we write a low-level Scheme macro, for example, and we find our-
selves writing an incomplete and awkward syntax-checker/parser
for our new form directly in Scheme (Is the form exactly four el-
ements long? Is the second element a list of identifier/expression
pairs? Etc.), we pause to wish for a better way. When the XML
world began wisely to exploit the extensive theoretical machinery

22

developed to describe regular trees and their recognisers, we were
finally pushed to carry out the design and implementation exercise
we had put off so long.

The result is trx, a language for describing regular-tree patterns.
Embedding our “little language” within Scheme provides for sev-
eral benefits, which we’ve described elsewhere in detail [17]. On
one hand, it made our task as designers and implementors easier.
We only needed to design and implement tree patterns; we didn’t
need to implement the machinery already provided by Scheme:
floating-point numbers, first-class functions, variables, loops, etc.
On the other hand, for our programmer clients, the result was a tool
that allowed regular-tree pattern matching to be tightly integrated
with Scheme programs, instead of forcing this kind of operation
out into a separate, distinct program written in some distinct, ad
hoc, self-contained domain-specific language.

The rest of this paper traces out the following arc. First, we will
survey the basic elements of tree automata, the underlying math-
ematical formalism that connects the static, declarative world of
regular-tree patterns to the computational or algorithmic paradigm
of their recognisers. Then we will consider the particular needs
of tree pattern matching that arise when working in the setting of
Scheme s-expressions. This exploration of design requirements and
design rationale, plus the useful constraints imposed by the compu-
tational power of tree automata, allow us to proceed to a design
for regular-tree patterns that integrates with Scheme s-expressions.
The syntax and semantics of trx are provided in the next section,
followed by examples of trx patterns in use. Then we will examine
some details the current implementation, before concluding with a
description of related and future work.

3 Overview of tree automata

Every interesting programming language is just a cover for an in-
teresting model of computation: regular expressions and finite au-
tomata; context-free grammars and push-down automata; SQL and
the relational calculus; Smalltalk and message-passing; APL and
SIMD array processing; and, of course, Scheme and the λ calculus.
The interesting formal model of computation underlying the design
of trx is finite tree automata. The short overview that follows will
spell out some of the fundamental concepts of these formal ma-
chines.

In the following sections we differentiate between traditional tree
automata and simplified tree automata. This paper uses the “sim-
plified” and “traditional” qualifiers for differentiation only; they are
not part of the established nomenclature. Elsewhere in the litera-
ture, both classes of automata are referred to as tree automata inter-
changeably.

3.1 Traditional tree automata

Tree automata operate on labelled, finite trees: trees where every
node is assigned a label f drawn from some alphabet F . Traditional
automata also require the label alphabet to be ranked, that is, each
label has an associated natural number. Each tree node must have
exactly as many children as the rank assigned its label; thus, leaf
nodes are marked with rank-zero labels. We write Fn for the set of
rank-n labels in alphabet F .

A traditional finite tree automaton (FTA) over a ranked alphabet
F is a tuple A = (Q ,F ,Q f ,∆), where Q is a set of states, Q f ⊆ Q

is a set of final states, and ∆ is a set of transition rules of the form:

f (q1, . . . ,qn) → q,

where n ≥ 0, f ∈ Fn, and q,q1, . . . ,qn ∈ Q. The symbols q1, . . . ,qn
and q are called the initial and final states of the transition, respec-
tively.

The operation of a tree automaton involves propagating state infor-
mation up (or down) through the tree. Transition rules determine
how this propagation takes place. Whenever a label f is seen at a
tree node and that label has the states q1, . . . ,qn “bubbled-up” to its
children, and a rule f (q1, . . . ,qn) → q exists in ∆, state q is prop-
agated to the f -labelled node. In turn, the bubbled-up state then
feeds into its parent node. The propagation continues until some
state is bubbled up to the root node of the tree. If this state is in Q f ,
then the tree term is accepted. If no final state bubbles up to the top,
the tree is rejected.

In addition to the type of transition rule described above, tradi-
tional tree automata allow for ε-move transitions q → q′, that oc-
cur spontaneously, changing the state assigned to a node from q to
q′. Equivalence of tree automata with and without ε rules is a well-
established result [6]; establishing the equivalence involves work-
ing with the ε-closure of states, i.e., the set of states reachable from
a state via ε-rules.

Fundamentally, every tree automaton A is a machine corresponding
to some tree language. The tree language L(A) recognized by A is
the set of all trees accepted by A .

We’ve described the operation of an FTA in a bottom-up manner,
but it can also be operated in a top-down manner, starting with an
accept state for the root, and running the transition rules “back-
wards” to find the labels assigned to children, etc.

3.2 Simplified tree automata

A simplified finite tree automaton (SFTA) over an unranked al-
phabet F is a tuple As = (Q ,F ,Qi,∆), where Q is a set of states,
Qi ⊆ Q is a set of initial states, and ∆ is a set of transition rules.
Transition rules can be either be labelled or empty:

f (qin),qout → q or () → q.

In order to understand the way a simplified tree automaton com-
putes, we must change our mental model of how individual nodes
are “wired” together in the tree. Each node now includes a ref-
erence to its closest sibling to the right, and its leftmost child (if
any, in both cases). This setup implies that at any given point in
an automaton’s operation, state-directed control can flow along two
pathways—down to children and right to siblings. This is in con-
trast to traditional tree automata where state information is propa-
gated to/from all children simultaneously.

A simplified automaton begins at the root of the tree, nondetermin-
istically selecting a start state from Qi. If the automaton is visit-
ing an f -labelled node n while in state q, the machine selects an
f (qin),qout → q transition. (If there is no such transition, the ma-
chine halts, reporting failure.) If n has children, the machine at-
tempts to recursively accept them, starting in state qin with n’s left-
most child; if this succeeds, it then proceeds to n’s siblings. If n is
a leaf node, the machine checks for an empty transition () → qout,
then proceeds to n’s siblings. If the children-match attempt fails,
or there is no empty rule handling the leaf node, the machine halts,
reporting failure.

23

Figure 1
Nondeterministic simplified finite tree automaton

matchnode(n,q) {
f := n.label

/* Fail if no rule selectable. */
Select f (qin),qout → q from ∆

if n is leaf
then matchempty(qin)
else matchnode(n.leftchild, qin)

if n has closest right sibling s
then matchnode(s,qout)
else matchempty(qout)
}

matchempty(q) {
if () → q ∈ ∆ then return
else fail
}

To proceed to n’s siblings, the machine jumps to n’s closest right
sibling and changes state to qout. If n has no right sibling, the ma-
chine accepts iff there is an empty transition qout → (). Thus empty
transition rules are needed to terminate an automaton’s recursive
descent over a tree. Pseudocode for an SFTA is shown in figure 1.

As a trivial example, consider a regular-tree language consisting of
a single term: a root node labelled with a and three child nodes
labelled with b, c, d. A simplified tree automaton for recognizing
such a language would have transitions

a(q1),q2 → q0 b(q2),q4 → q1

c(q2),q6 → q4 d(q2),q2 → q6

() → q2

with Qi = {q0}.

Note that the label alphabet F is unranked in the sense that when a
node labelled f is processed, the automaton is only concerned with
the presence of the node’s leftmost child and closest right sibling.
Nothing in the rule format enforces how many children or siblings
a given node is allowed to have. A simplified automaton can fix
the number of children permitted a tree node by encoding this in
the states traversed as it scans across the siblings, but it may also
permit a child to have an arbitrary number of children, a degree
of power not available with traditional automata. Thus simplified
automata are strictly more powerful than traditional automata. This
power is useful for the kinds of s-expression and XML trees we
process in the real world.

3.3 Converting between models

A traditional tree automaton can be converted to an equivalent sim-
plified tree automaton in the following way. Starting from each
state q of the initial states, the algorithm selects all the rules that
have q as their final state. For each rule f (q1, . . . ,qn) → q, a la-
belled rule f (q1),q′ → q and an empty rule () → q′ are added to
the simplified automaton, for fresh state q′. Then a new state q′′
and empty rule () → q′′ are added to the automaton, for fresh state
q′′. The children states are processed similarly, except that instead

of generating a fresh “out” state as we did for the rules starting in
q, the rules starting in qn are processed recursively with their “out”
state as their right sibling’s final state qn+1. The “out” state for the
rightmost sibling is the newly-generated q′′.

A simplified tree automaton resulting from the conversion recog-
nizes the same language as its traditional equivalent. However, the
arity information is now encoded directly in the rules; symbols no
longer have an intrinsic arity attached to them.

A conversion of a simplified tree automaton to an equivalent tradi-
tional tree automaton is not possible in the general case: as we’ve
seen, traditional tree automata cannot handle symbols with un-
bounded arity, and thus are strictly less powerful.

3.4 Nondeterminism in tree automata

Both of the above definitions describe non-deterministic automata,
i.e., automata that can “fork” in a number of directions if multiple
transitions can be applied in a given machine configuration. As with
regular-string languages, a deterministic variant of tree automata
can be defined as a subset of the general nondeterministic one.

The equivalence of deterministic and non-deterministic automata
has been established for traditional tree automata [6]. A traditional
tree automaton is said to be deterministic (DFTA) if there are no
rules with the same left-hand side, and no ε-rules.

The construction of an equivalent automaton proceeds as follows.
Let A = (Q ,F ,Q f ,∆) be a non-deterministic tree automaton. Then
there is an equivalent DFTA, Ad = (Qd ,F ,Qd f ,∆d) such that (1)
every state in Qd is a non-empty set of original states in Q , and (2)
every rule in ∆d is computed with

f (s1, . . . ,sn) → s′ ∈ ∆d iff
s ={q | q1 ∈ s1, . . . ,qn ∈ sn, f (q1, . . . ,qn) → q ∈ ∆}
s′=ε-closure(s)

Just as with regular-string expressions and their associated finite-
state automata, this power-set construction of an equivalent deter-
ministic tree automaton may, in the worst case, result in exponential
state explosion [6]. And just as with regular-string expressions, this
negative effect is offset by the fact that deterministic tree automata
are considerably faster at parsing certain regular-tree languages [6],
in the standard space vs. search trade-off.

We are not aware of any results pertaining to equivalence of deter-
ministic and non-deterministic simplified tree automata. Our SFTA
technology works strictly with non-deterministic machines—that
is, it manages non-determinacy at run time by performing back-
tracking search.

4 S-expressions, XML, and regular trees

Lisp s-expressions are frequently used to represent labelled trees,
using the encoding that an internal tree node is represented by a
list whose head is its label and whose tail is the list of its children;
leaf nodes are simply represented by non-list data. The following
schematics illustrate the mapping:

24

(expt i j) ⇐⇒
i j

expt

(if a (cons a nil) b) ⇐⇒
a

a nil

cons b

if

(set! a (+ 1 2)) ⇐⇒
a

1 2

+

set!

In the domain of XML, the delimiting characters (and) are re-
placed with <tag attr-list> and </tag>, with tag serving as the
node’s label. This treatment slightly oversimplifies the way XML
documents are put together, but it exposes the features common
to labelled-tree languages at large, which is what the trx language
is intended to process. The XML community has developed a
plethora of language tools for describing regular-tree patterns as
well as transducers operating on the trees matched by these pat-
terns [12, 4, 6, 21, 3]. Although these tools are outside the scope of
this paper, their existence reaffirms the utility of convenient, robust
tools for regular-tree processing.

4.1 Variable-arity constructors

One issue that arises when considering tree structure in XML and
symbol-labelled s-expression trees is the possibility of variable-
arity constructors (that is, variable-rank tree labels). Both (+ 3
7) and (+ 2 6 3 1) are legal Scheme expressions, yet the + la-
bel must be assigned a fixed arity in order for a traditional tree-
automata to be able to match it. These cases arise in both XML and
s-expression trees, and when they do, we must resort to the more
powerful model of simplified tree automata.

4.2 Unlabelled tree nodes

Another issue we find in the context of interpreting s-expressions
as labelled trees is that in some s-expressions, not all tree nodes
are labelled. For example, consider the structure of a Scheme let
form, which has the following syntax:

(let ((var exp) ...) body ...)

The first child of a let node, the bindings list ((var exp) ...),
has no label. (As we discussed above, it is also variable-arity.) We
can find the same problem in the syntax of the individual clauses of
a cond expression, or even in the “default” syntax of Scheme func-
tion calls, which are not introduced by any kind of call keyword.

It is not technically difficult to handle unlabelled nodes within the
finite-automaton model; our implementation does so by introducing
special anonymous symbols that have unique names with respect to
the rest of the automaton’s label set. The critical point is that, to
handle this tree idiom, which occurs in common practice with s-
expressions, we must account for them in the design of our pattern
notation.

4.3 Factoring pattern, automaton and data

One theme in the design of trx is factoring the layers of the de-
sign. Whether the terms under consideration are s-expressions,
XML documents, or some other form of tree data, the basic pat-
tern notation and the underlying abstract automata models, which
specify the basic processing engine for tree terms, should remain
unaltered. We’ll return to this factoring in the discussion of the
implementation.

Another design concern was abstracting over the nuts and bolts
of finite-tree automata or other possible semantic engines for trx.
(E.g., is a pattern implemented as a non-deterministic traditional
FTA using search, as a deterministic traditional FTA without back-
tracking, or with an SFTA?) Where possible, we kept the notation
and its semantics independent of these implementation pragmatics
(adding variable-arity patterns in the pattern notation does restrict
the space of possible implementations, however, so this is not 100%
possible).

4.4 Escapes to Scheme

We’ve found it useful in previous little-language designs to pro-
vide mechanisms not only for embedding the little language within
Scheme, but for embedding general Scheme within the little lan-
guage. This, of course, dramatically changes the power of the pat-
tern model, allowing us to define pattern matchers whose top-level
control skeleton is an FTA, but who may invoke arbitrary compu-
tation at the “leaves” of the computation. Adding such a facility
has an impact on the implementation of the system, restricting our
ability to statically analyse patterns (a price we pay for the increased
computational power), and requiring the implementation to be writ-
ten so it can simply pass the embedded Scheme code through the
pattern compiler, to be dropped into place in the final output.

As we’ll see, the ability to invoke arbitrary Scheme at the leaves of
the pattern matcher in particular allow us to have trees whose leaf
nodes are not just symbols, but any kind of data. This is important
in the world of Scheme s-expressions, which are frequently com-
posed of more than symbols and parentheses—they may, for exam-
ple, contain records or booleans or strings. We might, in some con-
texts, wish to permit only leaves that are positive integers between
0 and 100—something which does not fit the basic tree-automata
model, which discriminates only on the symbols that label nodes,
including leaf nodes.

Similarly, when a user writes down a regular-tree expression to de-
scribe the syntax of the Scheme let form, he will want to capture
in the pattern the fact that the left-hand sides of the binding forms
can be any symbol at all. . . but only a symbol, not a general sub-
tree.1 Allowing escapes to general Scheme code permits us to write

1If he wants to capture the constraint that these bound identi-
fiers must be distinct from one another, he’s completely outside the
power of the regular-tree model. The price we pay for specialised
notations and restricted computational models is that we can’t solve
all possible problems. Note that our hypothetical programmer could
always use a more complex escape to Scheme to check this distinct-
identifier constraint, or defer it to a later check. This is analogous
to the way compilers detect some illegal programs while parsing
(i.e., syntax errors), leaving others for later static analysis to find
(e.g., type errors). This distinction happens for the same reason—
the expressiveness of context-free grammars and the power of the
associated push-down automata that recognise their languages are
restricted, making them unable to encode all the static constraints

25

such patterns, yet remain in the tree-automaton/declarative-pattern
model for the most part. This functionality is conceptually aligned
with the Scheme’s own type system where types are typically de-
fined by means of general Scheme predicates which discriminate
between members and non-members of the type, e.g., functions
such as list?, string?, symbol?, and so forth.

4.5 Dynamic patterns

Besides inlining Scheme predicates to match tree leaves, we might
also want to escape to Scheme code within a pattern in order to
compute a sub-pattern. This allows users to dynamically stitch tree
automata together, or construct patterns which may have a run-time
dependency on particular computations or input data.

4.6 Collecting submatch data

We frequently want our patterns to do more than simply recognise
trees, reporting only a “yes” or a “no.” In many cases, we want to
use our patterns to select indicated parts of a tree. One mechanism
for doing so is to add elements to the pattern language for mark-
ing components of a tree that match particular pieces of a pattern.
On a successful match, the selected sub-trees are then returned to
the programmer as a result. String regular expressions frequently
have similar kinds of support for picking out elements of a matched
string. Providing submatches in the pattern notation complicates
the implementation of the pattern matcher; in particular, the pattern
optimiser has to be careful not to optimize away subpatterns that
contain a submatch.

5 The trx language

The syntax of trx patterns takes the form of the familiar s-expression
and borrows extensively from the SRE regular-expression notation
introduced in scsh [19, 18]. The grammar is given in figure 2.

A regular-tree expression (or pattern) denotes a set of trees. A pat-
tern which is simply a literal, such as the number 5, is a pattern
matching only the leaf tree 5. Similarly, the pattern ’fred (or,
equivalently, (quote fred)) matches the leaf which is the sym-
bol fred.

The pattern (@ symbol rte ...) matches a tree whose root is la-
belled with symbol, and whose children match the rte sub-patterns.
When symbol doesn’t conflict with one of the pattern keywords, the
@ can be elided. A tree with an unlabelled root can be matched with
a (^ rte ...) pattern.

We introduce choice with the pattern (| rte ...) which matches
any tree matched by any of the rte subforms.

The pattern (any) matches any tree. We can write a match which
matches no tree with the empty-choice pattern (|). This is not
particularly useful for user-written patterns, but could be useful for
patterns produced mechanically, either from higher-level macros or
dynamically in response to program input.

The sequence operators *, + and ? match zero-or-more, one-or-
more and zero-or-one trees matching their subpattern, respectively.

of a well-formed legal program. The role of a little language is to
make the common cases easy; the role of a general purpose lan-
guage (such as our escapes to Scheme) is to make the rest of the
cases possible.

What makes regular-tree patterns interesting is recursion in the pat-
terns. This is introduced with the rec and letrec forms. The
pattern (rec ident rte) matches a tree that matches rte, with the
proviso that free references to ident in rte must recursively match
the pattern, as well. Thus we can describe a pattern that matches
binary trees whose internal nodes are labelled + and whose leaves
are 42 with the pattern

(rec t (| 42 (@ + t t)))

This would match any of the trees 42, (+ 42 42), (+ 42 (+ 42
42)), (+ (+ 42 42) 42) and so forth.

The letrec form allows mutual recursion by binding the pattern
identifiers in a recursive scope. We can also bind pattern identifiers
with simple lexical scope with the let form.

The (submatch rte) form lets us mark a part of a larger pattern
to indicate to the pattern matcher that, in the event of a complete
match, the sub-trees matching rte should be retained for later re-
trieval. Note that a single submatch can match more than a single
tree term. For instance, the patterns

(rec t (| 42 (@ + (submatch t) t)))
(@ + (* (submatch 42)))

would produce, upon a successful match, a variable number of sub-
matches depending on the height and width of the tree term. The
matcher produces a list of terms for any single submatch form, or-
dered according to the pre-order position of submatched terms in
the original tree. Thus for pattern

(rec t (| ,number? (submatch (@ + t t))))

and tree term (+ (+ 1 2) (+ 3 4)), the list of saved items for
the submatch will consist of every internal node in the source tree:

((+ (+ 1 2) (+ 3 4))
(+ 1 2)
(+ 3 4))

Finally, we can escape to general Scheme code in two different
ways. The pattern ,exp allows us to write a Scheme expression
providing a general predicate which accepts or rejects trees. Thus
we can change our sum-of-42s example above to be a sum tree for
general numbers with the pattern

(rec t (| ,number? (@ + t t)))

or a sum tree of even numbers with the pattern

(rec t (| ,(λ (x) (and (number? x)
(even? x)))

(@ + t t)))

The pattern ,@scheme-exp, allows us to write a Scheme expression
that itself evaluates to a trx pattern value, which is then plugged into
the enclosing pattern. This allows us to dynamically construct trx
patterns, instead of restricting them to patterns that are completely
fixed at compile time. (Consequently, this feature has major impli-
cations on the compile-time handling of patterns—when it is used,
we must do a kind of “partial evaluation” of the pattern, deferring
the processing of dynamic components to run time. Fortunately, we
can statically determine if a particular pattern uses this feature of
the language, and so only need defer such processing with patterns
that do so. So the extra overhead of dynamic pattern construction is
only invoked as needed, making it a pay-as-you-go feature.)

26

Figure 2 Syntax of trx regular-tree expressions.
rte ::= literal | ’symbol ;Literal atom

| (@ symbol rte ...) ;Tree with root labelled symbol
| (symbol rte ...) ;As for @, when no ambiguity.
| (^ rte ...) ;Tree with unlabelled root
| (any) ;Matches any tree
| (| rte ...) ;Choice
| (* rte) ;Matches a sequence of [0,∞) rte’s
| (+ rte) ;Matches a sequence of [1,∞) rte’s
| (? rte) ;Matches a sequence of [0,1] rte’s
| (rec ident rte) ;Recursively defined pattern
| (let ((ident rte) ...) rte) ;Lexical pattern binding
| (let* ((ident rte) ...) rte) ;Lexical pattern binding
| (letrec ((ident rte) ...) rte) ;Pattern with mutual recursion
| ident ;Reference to pattern bound by rec, let or letrec
| (submatch rte) ;Matched subtree saved for subsequent retrieval
| ,scheme-exp ;General predicate
| ,@scheme-exp ;Dynamically computed tree automaton

ident ::= symbol
literal ::= number | string | boolean | char

As an example putting multiple components of the language to-
gether, a pattern which specifies the syntax of the Scheme let ex-
pression is

(@ let (^ (* (^ ,symbol? (any))))
(+ (any)))

or, with components of the pattern let-bound for clarity,

(let* ((binding (^ ,symbol? (any)))
(bindings (^ (* binding)))
(body (+ (any))))

(@ let bindings body))

Notice how the unlabelled-tree patterns are used to match each
(var exp) binding form as well as the list of these bindings. As
an exercise, you may wish to extend the pattern to handle named-
let forms used for iteration.

6 Static semantics

Our informal description of the trx language has glossed over a dis-
tinction between the language’s various constructs. While an oper-
ator such as @ produces a pattern that matches a tree, the *, + and
? operators produce patterns that match a sequence of trees. These
sequence or “forest” patterns can appear anywhere in the language
a tree pattern can appear, with the restriction that a complete, top-
level pattern cannot be a sequence pattern. We cannot encode this
directly in the grammar due to the presence of the pattern-binding
forms (let, letrec and rec)—there’s no way to design the gram-
mar to guarantee that a particular identifier reference is made to a
tree-pattern binding and not a forest-pattern binding. This is the sort
of restriction that one typically manages in the post-parse static-
semantics phase of a compiler, in a type-system-like manner. This
is exactly what we do. The macros that process tree patterns check
them to ensure that the top-level pattern has a “tree-pattern” type.
Similarly, because identifier references are resolved lexically, refer-
ences to unbound identifiers are checked for and rejected at macro-
expansion time.

7 Examples

At last, we present a set of examples which work to illustrate the ca-
pabilities of the trx language. We embed patterns into Scheme code
by means of the Scheme form (trx rte). This is a Scheme expres-
sion whose body rte is not Scheme code, but rather a trx regular-tree
pattern. The trx form produces a tree-automaton value which can
be passed to the trx-match pattern matcher. It is implemented as
a macro that compiles its pattern body to a tree automaton, repre-
sented with an abstract data type. More details of the implemen-
tation are given in the following section. The matcher function is
invoked as (trx-match pat s-exp), taking a tree automaton pat
(produced by a (trx rte) form), and a tree s-exp to which it should
be applied. It returns a non-false value for a successful match, and
#f otherwise.

Example 1 We begin with a set of Scheme expressions that con-
struct nested lists of numbers. The number leaves are matched us-
ing the Scheme number? procedure. The example demonstrates
escaped Scheme code and the use of the rec operator.

(let ((p (trx (rec q (| (cons q q)
(cons ,number? q)
nil)))))

(trx-match p ’(cons 1 nil)) ; match
(trx-match p ’(cons nil nil)) ; match
(trx-match p ’(cons (cons a nil) ; fail

(cons 1 nil))))

Example 2 A somewhat more interesting use of escapes to
Scheme code involves user input. The language is similar to the
first example, except that numbers must be divisible by the user-
specified divisor.

(let* ((i (read))
(idiv? (λ (n) (= (modulo n i) 0)))
(p (trx (rec q (| (cons q q)

(cons ,idiv? q)
nil)))))

(trx-match p ’(cons nil nil)) ; match
(trx-match p ’(cons (cons a nil) ; fail

(cons 1 nil))))

27

Example 3 The purpose of this example is to illustrate the use of
the letrec construct. The pattern below matches any Scheme ex-
pression that consists solely of applications of + and * such that + is
never applied to a + expression, and vice versa. In other words, the
constructors must alternate within the tree. This example also illus-
trates the use of variable-arity constructors and labels that collide
with reserved keywords.

(let ((p (trx (letrec ((m (| n (@ * (* a))))
(a (| n (@ + (* m))))
(n ,number?))

(| m a)))))
(trx-match p ’(* 2 (+ 3 4))) ; match
(trx-match p ’(* 2 (* 3 4)))); fail

Example 4 We now consider a pattern for recognizing XML-like
data sets capturing data entered into an online purchase-order form.

(trx (order (date ,string?)
(shipto (name ,string?)

(address ,string?))
(? (comment ,string?))
(+ (item (part ,number?)

(quantity ,number?)
(price ,number?)))))

The pattern will match

(order (date "2004-06-11")
(shipto (name "Bill")

(address "1 Main Street"))
(comment "Please, hurry!")
(item (part 111)

(quantity 1)
(price 1.00))

(item (part 222)
(quantity 2)
(price 2.00)))

but not

(order (date "2004-06-11")
(comment "Please, hurry!")
(shipto (name "Bill")

(address "1 Main Street"))
(item (part 111)

(quantity 1)
(price 1.00))

(item (part 222)
(quantity 2)
(price 2.00)))

or

(order (date "2004-06-11")
(shipto (name "Bill")

(address "1 Main Street"))
(comment "Please, hurry!"))

Example 5 Building on the previous example, we illustrate how
the submatch operator can be used to transduce tree terms. Specif-

ically, we want to match a sequence of orders, but we also want
to add a free gift from the company to every order in the sequence
which includes two or more distinct items. We augment the pre-
vious definition of an order-matching pattern to match “sequence-
of-orders” datasets. Figure 3 shows how we can match a suitable
sequence of orders against this new pattern, alter submatched terms,
and reconstitute them into a new list of orders.

Example 6 As a final example of trx, figure 4 shows the gram-
mar of trx, expressed as a trx pattern. It’s not an accident that
this is so straightforward to encode: the long-standing conven-
tion s-expression language designers use for their syntax design2

is exactly the labelled-tree model processed by tree automata. So
this example gives away one of the elements of our development
agenda. We are interested in the use of trx to provide more precise
syntax specification and error-checking for the kinds of languages
we like: the s-expression-based ones.

8 Implementation

We have implemented the trx system as a module in the scsh
Scheme environment [19]. The code is fairly portable; its most
significant element of non-portability is its use of a non-R5RS low-
level macro system. Our implementation can be subdivided into
following components:

• A macro embedding applications of the trx notation into
Scheme forms. Basically, the macro simply interfaces the trx
compiler to the underlying Scheme compiler.

• A set of Scheme data-type definitions encoding the abstract
syntax of the trx language as well as the resulting automata
values. This establishes a set of ADTs around which process-
ing of regular-tree patterns takes place.

• A pair of Scheme procedures for parsing tree patterns from
their s-expression concrete syntax into their representation us-
ing the internal AST structures; and for unparsing from an
AST value back to its external, printable s-expression repre-
sentation.

• A procedure that translates a trx AST into an automata value.
This is the heart of the trx compiler.

• Pattern-matching procedures. One of these procedures is
the pattern matcher; the other is a routine that extracts sub-
matched terms from a result of a successful match.

8.1 The trx macro

As mentioned above, the trx compiler is invoked on every occur-
rence of the trx macro in Scheme source code. In our imple-
mentation, we utilize Scheme 48’s low-level macro facility, the
Clinger/Rees “explicit renaming” macros [5], which allows both
full control of hygiene and permits macros to be written in general
Scheme code. The latter feature is particularly important, as the
trx machinery is fairly complex—at the complexity level of a small
compiler, as opposed to the kind of simple pattern-directed exten-
sions usually implemented via the R5RS high-level macro facility.
The macro simply invokes the rest of the machinery, which parses
the pattern into an AST, performs static-semantics checks, simpli-
fies the pattern, compiles it to a value in the automata ADT, and
finally renders the result automaton as a block of Scheme code.

2Barring certain regrettable exercises in syntactic excess, such
as the Common Lisp loop form.

28

Figure 3 A simple tree transducer.

(let ((pat (trx (order (date ,string?)
(shipto (name ,string?)

(address ,string?))
(? (comment ,string?))
(submatch (+ (item (part ,number?)

(quantity ,number?)
(price ,number?))))))))

(map (λ (order) (cond ((trx-match pat order) =>
(λ (match) (let ((items (trx-submatch match 1)))

(if (>= (length items) 2)
(cons ’(item (part 001)

(quantity 1)
(price 0))

items)
items))))

(else (error "Illegal order"))))
orders))

Figure 4 The trx grammar as a trx pattern.

(rec rte (| ,string? ,number? ,character? ; Literals
,(λ (x) (or (not x) (eq? x #t))) ; boolean?
(@ quote ,symbol?) ; ’symbol
(@ @ (* rte)) ; (@ rte ...)
(^ ,(λ (x) ; (symbol rte ...)

(and (symbol? x)
(not (member? x ’(quote @ ^ any or * + ?

rec let let* letrec submatch
unquote splicing-unquote)))))

(* rte))
(@ ^ (* rte)) ; (^ rte ...)
(@ any) ; (any)
(@ | (* rte)) ; (| rte ...)
(@ * rte) ; (* rte)
(@ + rte) ; (+ rte)
(@ ? rte) ; (? rte)
(@ rec ,symbol? rte) ; (rec id rte)
(@ let (^ (* (^ ,symbol? rte))) rte) ; (let ((id rte) ...) rte)
(@ letrec (^ (* (^ ,symbol? rte))) rte) ; (letrec ((id rte) ...) rte)
(@ submatch rte) ; (submatch rte)
(@ unquote (any)) ; ,scheme-exp
(@ unquote-splicing (any)))) ; ,@scheme-exp

29

If the pattern contains dynamically-computed components, then
those parts of the pattern are not known at compile time. In these
cases, the macro expands into Scheme code that is essentially a
template for the AST—code which will compute the dynamic com-
ponents and then assemble the rest of the AST around them. This
AST-assembly code is then inserted into code which will invoke
the pattern compiler on the AST. Essentially, the macro arranges
for the compiler invocation it represents to be delayed to run time,
thus deferring production of the final automaton to run time. With
this exception of handling dynamic components, compiling a trx
pattern happens entirely at macro-expansion time (that is, compile
time). By run time, a source trx pattern has already been converted
to an equivalent automaton value.

8.2 Abstract syntax

Abstract syntax consists of a handful of record definitions that en-
code nodes of a trx abstract syntax tree (AST). Employing an AST
allows us to make the trx tool chain independent of the details of
our concrete notation; one could try out alternate syntaxes without
much work. Furthermore, processing that can be done on the AST
can be shared by distinct back-ends that might target different au-
tomata models or implementations of those automata.

The AST is defined using a set of record types. Some examples are

(define-record ast-sym-node
symbol ; Label of root
children ; Child patterns
private)

(define-record ast-seq-node
quantifier ; One of * + ?
child ; Child node
private)

(define-record ast-choice-node ; (| ...) node
children ; List of nodes
private)

(define-record ast-code-node ; ,<scheme> node
code ; The <scheme> exp (as an s-exp)
private)

Note that each of the records contains a special private field. This
field is used by the compiler to manage accounting information. For
instance, the private field tells us, among other things, whether a
node has already been visited by the compiler (which is not uncom-
mon due to prevalence of cycles).

Another interesting datatype that is there purely for the convenience
of the compiler developers is the AST “handle” node.

(define-record ast-handle
ref) ; a reference to actual AST

Handle nodes are useful when translating recursive patterns, i.e.,
patterns that begin with rec and letrec. When these patterns are
compiled it is common for one part of the pattern to refer to another
part of the pattern that has not been compiled yet. We address this
problem by referencing all recursive patterns through a handle node
which is first created without a reference field set and is later filled
with the reference to the actual abstract syntax tree.

8.3 Automata values

Once an AST is constructed, it must be converted to an automata
value. An automata value is represented with yet another record
datatype.

(define-record sfta
states ; Symbol list
alphabet ; Symbol list
labeled-rules
empty-rules
final-states)

The labelled rules are encoded with

(define-record label-rule
sym-name
in-state
out-state
final-state)

and empty rules with

(define-record empty-rule
final-state)

Note that the sfta record doesn’t have fields to support the full
requirements of the trx notation, such as dynamically-created au-
tomata, escapes to Scheme code, and submatches. We delegate
tracking of this information to another record datatype:

(define-record complex-fta
sfta ; Finite tree automaton
special-states ; State->inlined-code alist
submatch-states); Submatched states

The special-states field is an association list of states and sus-
pended lambda values that correspond to individuals chunks of
Scheme code inlined in the trx notation. The submatch-states
field is a list of states at which submatches are to be saved for later
retrieval.

Note that the simplified automata ADT permits multiple backends
for different models of execution. The one we have implemented
uses the automaton itself as a run-time value which is passed, along
with a subject tree, to a backtracking SFTA interpreter for execu-
tion, which proceeds in a top-down manner. One could consider,
alternatively, compiling an SFTA directly to Scheme code; this is
something we would like to do.

An earlier version of the system had support for both traditional
and simplified automata. The choice in the type of automata value
was guided by whether the source pattern included variable-arity
constructors. If it did, a simplified automaton would be produced;
otherwise, a traditional automaton would be produced by default.
Keeping traditional automata in the system allowed for the possi-
bility of “compiling away search” by expanding a non-deterministic
TFTA to a deterministic one, buying execution speed for the price
of extra compile time and potential state-space explosion. The im-
plementation left the choice of whether to search with a small non-
deterministic machine or do fast, non-backtracking execution with
an expanded deterministic one in the hands of the application pro-
grammer.

We subsequently dropped traditional automata as one of the alter-
native backend models of computation. (The factoring of the au-

30

tomata ADT into the sfta and complex-fta records is, in fact, a
relic of this earlier implementation—both traditional and simplified
FTAs shared inlined-code and submatch annotations by means of
the common complex-fta record.) As mentioned in Section 3.2,
traditional automata are strictly less powerful than simplified tree
automata. Keeping two backends to the trx compiler did nothing
to expand the semantic power of the notation, while it did consid-
erably increase the complexity of our code. Simplifying the im-
plementation made it easier for us to focus on the design of the
language; we may revisit automata determinisation as an imple-
mentation technology at a later date.

8.4 Compilation

Thus far we have described the way the trx compiler is invoked
and the types of intermediate and final values it generates. We now
describe how these AST and automata ADT values are generated.

The source-level concrete-syntax pattern s-expression is parsed into
an AST with a simple recursive translation; the static semantics of
the AST are likewise checked with a simple recursive tree-walk that
“type checks” the identifier bindings and references.

Translation between ASTs and automata values is a bit more com-
plex. We provide a high-level description of the algorithm, which
generates a set of labelled and empty rules for an SFTA from a given
abstract-syntax tree.

In the case of a ast-sym-node, this entails generating a fresh state
that is the “out” state for the label, and a fresh state that is the “out”
state for the rightmost child of the AST node. We add empty transi-
tions leading to both of these states. We then obtain the label’s “in”
state by folding states, beginning with the rightmost child’s “out”
state, across the children nodes processing each one of the children
recursively. Given a label’s “out” and “in” states, we generate a
fresh final state and add the corresponding rule for that label.

When processing ast-seq-node nodes, we restrict the compiler
to generate only rules with the same “out” and “final” state. This
restriction is necessary to capture the fact that for patterns of the
form (* pattern), the final state after parsing one term matching
pattern is the same as the “out” state used in translating the term’s
left sibling. Translation of other AST datatypes is straightforward
and follows the same general template.

Macros must produce concrete s-expressions—that is, Scheme
source to be handed to the Scheme compiler. Automata values,
which are defined as records, do not qualify as such. As a final
step, then, the compiler translates the automaton, represented with
the ADT, into a Scheme expression describing the direct construc-
tion of that value, as a tree of calls to the record constructors. So the
trx macro finally expands into Scheme code that, when executed at
run time, will construct the automaton (as an ADT) used to match
the pattern.

8.5 AST-to-AST optimizations

In addition to pattern-to-automaton translation, our compiler also
performs some simple optimizations on pattern ASTs. These opti-
mizations are beneficial because the reduced ASTs result in smaller
equivalent automata. Some example optimizations are:

• Propagating (any) matches
If an (any) match is encountered in one of the arms of a

choice clause, then the whole clause may be replaced with
an (any) node. This simplification can bubble up the tree.

• Propagating dead matches
A dead match (|) usually allows its containing form to be
reduced to a dead match, as well. This simplification also
bubbles up through the tree.

• Merging choice nodes
If (| ...) forms are nested, they can be flattened into a sin-
gle such form.

The presence of submatch forms in deleted code can allow an ob-
server to detect some of the transformations, so care must be taken
in these cases not to simplify away submatch forms that might bind
data in the original pattern.

8.6 Executing automata

Our implementation provides a single pattern matcher, the proce-
dure trx-match, that takes an tree automaton and an s-expression.
The result of a successful match is a match record that contains for
every submatch (in order of occurrence of the submatch clause in
the original pattern) a list of submatched terms. We provide a spe-
cial procedure (trx-submatch m i) for retrieval of submatched
information, where m is the match record, and i is the index of a
particular submatch form in the original pattern. Submatch forms
are assigned a match-record index in the top/down, left-to-right pre-
order of the pattern.

The implementation of trx-match is a simple SFTA interpreter,
which is a pretty direct transcription of the pseudocode of figure 1
into Scheme.

9 Related work

Trx closely follows the choices made in the design of rx low-level
macro and its associated sre regular-expression forms, originally
conceived for the scsh environment [18]. Similar high-level seman-
tic features, such as choice, repetition, submatches, and the inlin-
ing of Scheme code, have similar syntactic encodings in both lan-
guages. We were thus able to leverage the design work that went
into the sre system, and wel also hope that this will make it easier
for programmers familiar with the sre notation to read and write
trx patterns, mapping intuition gained from dealing with string-
matching patterns to problems in the completely different domain
of trees and their patterns.

Tree automata, which provide the foundation of trx’s semantics,
have enjoyed a consistent flow of research contributions over the
last three decades [20, 10, 8, 9]. A resurgence of interest in the
late 90s coincided with emergence of semi-structured and tree-
structured data, especially in reference to XML [1, 12, 2]. Inci-
dentally, the programming languages built to describe and manipu-
late tree-structured data have been consistently targeted at handling
XML [11, 7]. trx differentiates itself from these efforts by combin-
ing the benefits of a domain-specific language with the benefits of
being able to leverage the functionality of the host language. The
authors are not aware of another regular-tree pattern language that
is not a standalone domain-specific language.

While we have chosen to embed our little language within Scheme
due to the ease of inventing new constructs and translating them into
the host language, the functional-programming paradigm is equally
valuable to the parsing algorithm, its utility already recognized in

31

the context of XML validation [13]. As evident from the descrip-
tion of the way tree automata process their input, the subsequent
application of automata rules to the top-level term and its subterms
is naturally recursive.

10 Future work

We are currently developing an SFTA-to-Scheme compiler that will
allow static trx patterns to be expanded directly into executable
Scheme code, rather than requiring an SFTA interpreter. Although
there is an existing SFTA-to-Scheme compiler [15], it operates on
a more restrictive language than trx. For instance, that language
does not handle patterns of the form (| (@ l1 ...) (@ l2 ...))
when the labels l1 and l2 are identical. We are currently investigat-
ing ways to overcome this limitation.

One clear limitation of trx is that it builds upon but a tiny fraction of
the research work available in the domain of tree automata, semi-
structured and tree-structured data, and XML processing. In the
future we would like to mine the designs of the existing Scheme-
based XML-processing tools SXML and SXSLT [14] to enhance
the feature set of trx. These systems already employ the functional-
programming paradigm to manipulate XML data and have a facility
for encoding XML data as s-expressions. Both of these features are
consistent with the design goals for trx.

We also wish to extend trx to incorporate functionality such as ML-
style pattern matching and richer functionality for tree matching
and transformation. For example, it would be very useful for certain
classes of tree structures (such as the mail-order structures given in
example 4), to have a pattern that matches, not a sequence of child
patterns occuring in a fixed order, but rather the set of child patterns
allowed to occur in any order. For example, we could specify that
an order node must have a date, shipto, optional comment, and item
child node—but that these children may occur in any order. This
would provide logarithmic compression of unordered-sequence pat-
terns, greatly simplifying these kinds of patterns. Some XML
pattern-matchers provide this kind of functionality; we’d like to add
it to the trx notation.

Finally, application of the notation to help write real programs will
provide the most valuable feedback on the design of the language,
exposing shortcomings and potential areas of extension. (In fact,
we’re already dissatisfied with the submatch facility and intend to
redesign it.) We look forward to gaining more experience with uses
of trx.

11 Conclusions

Now that the rest of the world has caught on to the benefits of work-
ing with semi-structured data with a fixed concrete representation,
the importance of tools that help operate on this kind of data is
only going to increase—it’s reasonable to assume that in the very
near future, a significant percentage of the world’s data is going
to be stored in XML format. The trx pattern language, or some
future revision of it, can help Scheme programmers describe and
operate on this data. Note that while our implementation of trx
provides for matching patterns against trees that come in the form
of s-expressions, neither the design nor the implementation is s-
expression specific. Using the notation and adapting our imple-
mentation to allow matching and transforming other kinds of la-
belled trees—such as XML—would not be difficult. Almost the
entire code base could be reused in a modular way. The implemen-
tor would only need to write a new SFTA interpreter (or compiler)
that allows SFTAs to operate upon the new tree structures.

Note also that, just as the Lisp community stole a 40-year march
on the rest of the world by adopting semi-structured data early,
we have other technologies that continue to bring advantage to
the Scheme-programming experience. Chief among these is the
ability of Scheme programmers to tightly integrate little languages
within Scheme by means of the powerful Scheme macro system.
This means that (1) domain-specific extensions can focus on their
domain-specific components without needing to re-invent the entire
wheel of a general-purpose programming language, and (2) differ-
ent components of a system written with different domain-specific
extensions can be closely coupled within the same program, rather
than needing to appear in two completely distinct programs written
in two completely distinct domain-specific languages.

This is exactly the story of trx—exploiting the domain-specific ex-
pressiveness of regular-tree patterns within the powerful, general-
purpose framework of the Scheme language.

12 References

[1] T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible
markup language (XML). The World Wide Web Journal,
2(4):29–66, 1997.

[2] F. Bry and S. Schaffert. Pattern queries for xml and semistruc-
tured data. Technical report, Institute for Computer Sciences,
University of Munich, 2002.

[3] R. D. Cameron. Rex: Xml shallow parsing with regular ex-
pressions. Technical report, Simon Fraser University, 1998.

[4] B. Chidlovskii. Using regular tree automata as xml schemas.
In Proc. IEEE Advances in Digital Libraries, pages 89–104,
2000.

[5] W. Clinger and J. Rees. Macros that work. In Proceedings of
Conference on Principles of Programming Languages, pages
155–162, 1991.

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Available on: http://www.
grappa.univ-lille3.fr/tata, 1997. released October,
1 2002.

[7] V. Gapeyev and B. Pierce. Regular object types, 2003.

[8] F. G. Gécseg and M. Steinby. Tree automata. Akademiai
Kiado, 1984.

[9] F. G. Gécseg and M. Steinby. Handbook of Formal languages,
volume 3, chapter Tree languages. Springer-Verlag, 1997.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[11] H. Hosoya and B. C. Pierce. “XDuce: A typed XML process-
ing language”. In Int’l Workshop on the Web and Databases
(WebDB), Dallas, TX, 2000.

[12] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
types for XML. ACM SIGPLAN Notices, 35(9):11–22, 2000.

[13] O. Kiselyov. A better XML parser through functional pro-
gramming. Lecture Notes in Computer Science, 2257, 2001.

[14] O. Kiselyov and K. Lisovsky. XML, XPath, XSLT implemen-
tations as SXML, SXPath, and SXSLT. In International Lisp
Conference, New York, NY, 2003.

[15] M. Y. Levin. Compiling regular patterns. In Proceedings of

32

the eighth ACM SIGPLAN international conference on Func-
tional programming, pages 65–77. ACM Press, 2003.

[16] Alan J. Perlis. Epigrams on programming. SIGPLAN Notices,
17(9), September 1982.

[17] O. Shivers. A universal scripting framework or lambda: the
ultimate “little language”. In Proceedings of Concurrency and
Parallelism, Programming, Networking, and Security: Sec-
ond Asian Computing Science Conference, ASIAN, volume
1179 of Lecture Notes in Computer Science, pages 254–265.
Springer, 1996.

[18] O. Shivers, B. D. Carlstrom, M. Gasbichler, and M. Sperber.
Scsh Reference Manual, 0.6.4 edition, April 2003.

[19] Olin Shivers. A scheme shell. Higher-order and Symbolic
Computation. To appear.

[20] J. Thatcher. Currents in the Theory of Computing, chapter
Tree automata: An informal survey. Prentice-Hall, 1973.

[21] TREX. TREX—Tree regular expressions for XML http:
//www.thaiopensource.com/trex/, 2004.

33

Topsl: A domain-specific language for on-line surveys

Mike MacHenry
Northeastern University
dskippy@ccs.neu.edu

Jacob Matthews
University of Chicago

jacobm@cs.uchicago.edu

Abstract

There are currently few choices for social scientists who want to
employ web-based surveys in their studies. They can either use
a special-purpose language whose notion of flow control may be
too limiting to express advanced survey designs, or use a general-
purpose language that gives them the freedom to make complicated
survey designs but makes them reimplement infrastructure code for
saving questions to disk, generating HTML, and so on with each
new survey. In this paper, we introduce Topsl, a domain-specific
language embedded in PLT Scheme that takes the middle road, giv-
ing survey authors a way to reuse survey infrastructure for new sur-
veys while also allowing them to express complicated survey de-
signs easily.

1 Introduction

As social scientists have become more aware of the practical and
theoretical benefits of gathering information online [2], the demand
for web-based surveys has grown significantly in recent years. Un-
fortunately, technology has not improved to meet this demand. So-
cial scientists want to design surveys that interact with participants
in complicated ways that current survey languages are not capable
of expressing.

Existing domain-specific languages (DSLs) for on-line surveys
such as SuML [1] and QPL [10] have a limited notion of con-
trol flow. In all domain-specific survey languages the authors have
found, the fundamental notion of the flow from one piece of a sur-
vey to the next is built-in and unchangeable. That means that while
simple surveys are easy to implement, if a programmer wants to
add a seemingly minor extension that affects the survey’s flow, he
or she may find the task impossible.

For example, the authors were introduced to this problem by Dr.
Eli Finkel, assistant professor of psychology at Northwestern Uni-
versity, in the fall of 2003. Finkel found that while a plethora of
contracting companies thought it would be technically feasible to

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Mike MacHenry and Jacob Matthews.

loop over a user-provided input list if the user provided all items
at once, none could provide the same looping facility if the user
provided the items one at a time over multiple survey sessions.1

When studies run into these limitations, programmers resort to im-
plementing them in a general-purpose language (GPL) such as PHP
or Perl that allow them to express anything they want (as evidence
that this is a popular approach, Fraley recently published a how-to
guide on the subject for psychologists [4]). Unfortunately, if they
make that choice, they become responsible for handling HTML
generation, CGI, and data storage, all of which is unrelated to the
specific survey being written. In the authors’ direct experience, on-
line surveys are plagued by bugs in this non-domain-specific code.
For instance, in one case an on-line sociology survey implemented
from scratch had a bug in its answer-saving routines that caused it
to lose a significant portion of answers. When the bug was discov-
ered, the researchers had to contact all the participants and ask them
to fill the survey out again; only a fraction of the participants actu-
ally did. Such incidents, though common, are an unacceptable risk
in expensive research.

It is natural that these two general strategies for solving the survey
problem should emerge. Survey programs exist to collect answers
to questions that will then be put into rows in a database or an-
alyzed by a statistics program, and that might be printed out for
copy-editing or for handing out to off-line survey participants. To
make those operations possible, all the questions a particular survey
could ask must be statically identifiable. Of course if a survey pro-
gram had complete freedom at runtime to generate questions, that
identification would be impossible. So, the problem must be made
easier, and two simple ways to make it easier are to restrict the lan-
guage in which programmers write surveys to the point where ques-
tions are statically identifiable, or restrict analysis to one particular
survey and do the analysis by hand.

Both available options have serious problems, though: current
DSLs afford too little flexibility in their models of flow control, and
GPLs make programmers implement substantial amounts of non-
domain-specific code for each survey. In this paper, we demon-
strate a way to take the middle path with Topsl, a domain-specific
language for writing on-line surveys embedded into the general-
purpose language PLT Scheme. We arrange the embedding so that
programmers can write survey code without having to worry about
non-survey-specific concerns, but can use the full power of PLT
Scheme when it becomes necessary.

We begin by explaining our design goals for the language, then

1Since survey authoring companies use similar in-house survey
creation software they suffer from the same limitations.

34

present the language’s syntax and semantics, and then discuss its
implementation. Afterwards we discuss how the unique features
of Scheme and PLT Scheme proved useful to our implementation,
assess our results and point out some directions for future work.

2 Design Goals

Topsl’s primary design goal is to provide a layer of abstraction that
allows programmers to express surveys clearly and without hav-
ing to write non-domain-specific code while still being expressive
enough to write surveys with novel control-flow elements. Further,
it should be easy-to-use in the sense that valid programs cannot fail
to save data or otherwise malfunction and a program’s final prod-
uct, a series of answers, should be immediately ready for analysis
in regular statistics programs.

2.1 Interoperability

One major motivation for Topsl is to eliminate the need for a pro-
grammer to write code that connects the fundamentally novel as-
pects of a particular survey to the technologies that manage pre-
senting that survey to participants and saving their responses. To
that end, the language must make that management invisible and
unbreakable; it must not require any special action on the program-
mer’s part for a survey to appropriately interact with participants
and save results.

Topsl also needs to interface with existing technology used by so-
cial scientists in order to be useful. When social scientists conduct
surveys, they store results in statistics program databases to ana-
lyze results. Importing results into a statistics program requires
prior knowledge of the questions since a column will need to be
created in the database for each possible question. So when so-
cial scientists design on-line surveys, they need the systems they
use to create static summaries of their surveys, containing a set of
all possible questions. Each question needs an identifier consistent
with the dynamic implementation and question text with possible
place holders where dynamic information will be filled in at run-
time. Topsl must ensure that all surveys can be analyzed to produce
a static summary.

2.2 Expressiveness

Handling web-programming details and interfacing with statistics
programs is not enough. Social science surveys commonly use
complex designs with control flow such as that present in Finkel’s
survey. For instance, the authors recently heard of a novel survey
design in which husband and wife pairs participated cooperatively.
Within each pair, one participant’s answers affected the questions
the other was asked. Topsl should allow programmers to express
such complicated calculations using full Scheme where necessary.

In his paper, ”A Universal Scripting Framework” [11], Shiv-
ers advocates the embedding of domain-specific languages within
general-purpose languages to increase the expressiveness of the
DSL. Topsl needs to allow programmers to “break out of the [DSL]
in order to express complex computations in a [GPL]” so that com-
plicate surveys are possible to write.

Unfortunately, allowing full Scheme in Topsl programs is at odds
with our goal of automatically generating static summaries. Al-
lowing the programmer to generate surveys using arbitrary Scheme
makes statically listing all possible questions undecidable for many
surveys, so some compromise is inevitable. However, since in prac-

tice even surveys with exotic designs have an obvious and pre-
dictable set of questions that will be asked, Topsl can realistically
enforce a restriction that all surveys written in the language be ana-
lyzable to produce a static summary while still letting programmers
write surveys with complicated control flow.

2.3 Language Growth

Languages that try to guess up-front everything their users will ever
want to do tend to find that they’ve guessed wrong. In “Growing
a Language,” Steele writes that “. . . a main goal in designing a lan-
guage should be to plan for growth” [7]. Topsl programmers should
be able extend the language with new features to meet these needs.
Just as in Scheme, Topsl users should be able to extend Topsl’s syn-
tax and add new functions as necessary — in addition, they should
be able to add new question types and formatting options if need be.
Topsl must be carefully designed to let programmers create these
extensions in such a way that surveys using them remain statically
analyzable.

3 Design

A Topsl survey contains a definitions context and any number of
Topsl forms which make up the survey’s control flow. The most ba-
sic Topsl form is the page, which is constructed from any number of
page elements. The most basic page element is the question (writ-
ten ?). Questions take a question type and any number of strings or
variables that make up the question text. Topsl provides basic ques-
tion types like free (for free response questions) and yes-no as well
as functions that produce new question types like radio and multi-
select for selecting from a list of responses. A simplified Topsl
syntax is as follows:

survey ::= <definition>* <survey-element>*
definition ::= (define <variable> <scheme>)
survey-element ::= (page <page-element>*)
page-element ::= (? <question-type> <question-text>*)
question-type ::= <variable>
question-text ::= <string> | <variable>

We present Topsl as a series of example surveys, augmenting the
syntax with new forms as examples become more complicated. We
start with a trivial example survey and show how to add abstraction
and control flow to the language while still retaining the ability to
generate a static summary.

3.1 A Simple Survey

We can use page and ? along with a few question types to create
a simple example of a complete Topsl program. In the following
example, we define a new question type, enjoy, and then create two
pages containing two questions each.

(define enjoy (radio "A lot" "Some" "Not at all"))
(page (? free "Where did you go to high school?")

(? enjoy "How did you like it?"))
(page (? free "Where did you go to college?")

(? enjoy "How did you like it?"))

When a participant visits the web page associated with this survey,
the survey will display a page containing the appropriate questions
(see figure 1). When the participant fills out the form and submits
it, a second similar page will be presented, followed by a page in-
dicating that the survey is over.

35

Figure 1. Example minimal HTML from a Topsl survey

Every time a participant fills out a Topsl survey, Topsl creates a
response file where that participant’s responses will be stored. Re-
sponse files are a partial mapping from question identifiers (deter-
mined statically using the survey’s static summary) to responses
that represents the answers to all questions that were asked during
execution. Similarly, a survey’s static summary is a mapping from
question identifiers to question text for all questions that could pos-
sibly be asked. The static summary of the above survey would look
something like:

’((q1 "Where did you go to high school?")
(q2 "How did you like it?")
(q3 "Where did you go to college?")
(q4 "How did you like it?"))

The question identifiers from the static summary can then be used
to create a database table or a statistics file. Using the static sum-
mary and any number of response files, Topsl can create comma-
separated value files suitable for importing into most typical spread-
sheet and statistics programs used by social scientists. With the
static summary and a particular response file, Topsl can correlate
questions and responses in a browser for easy reading. The static
summary is also useful for proofreading question text and for cre-
ating printable surveys for off-line participants.

3.2 Page Construction

Since Topsl is a domain-specific language for on-line surveys rather
than a web-page construction language, survey authors should be
able to express their surveys as surveys and not have to use any
HTML or otherwise specify presentation. To support that, Topsl’s
design factors the presentation of a question from the question itself
by making use of values we call page elements (? being one exam-
ple). A page element is a value with a particular meaning in the
domain of web surveys (e.g. a question, a grouping of questions, or
a block of instruction text) that contains information about how to
render itself and how to determine what answers a user submitted
that correspond to it. The separation is general enough that it al-
lows page elements to represent questions that correspond directly
to individual HTML form elements, questions that correspond to
multiple form elements, and even question groupings that alter pre-
sentation but that do not directly correspond to form elements at
all.

In addition to providing several built-in page elements, the language
must allow advanced users to create their own: we cannot predict
every kind of question any researcher might ever want to ask, so we
should not restrict them to only the kinds of questions we thought
of when we designed the language.

3.3 Abstract Pages

Surveys frequently ask sets of questions in which each question
differs from the other only in very small ways. For instance, the
survey in the first example asks the participant the same set of two
questions twice, once asking participants whether they enjoyed high
school and the next time asking whether they enjoyed college. In
the survey we built for Finkel, a block of four questions asking the
participant to predict how he or she would feel about a particular
topic two weeks, one month, two months, and three months in the
future was repeated seven times in the course of the survey with the
same phrasing each time, varying only in the topic the questions ad-
dressed. In situations like these we need to be able to make an ab-
straction over a page parameterized over the pieces that vary. Topsl
is designed to handle such situations using a form of abstraction that
looks syntactically just like a normal Scheme function definition:

definition ::= ... as before ...
| (define (<variable>+) <survey-element>+)

We can now use this new define syntax to abstract the original ex-
ample survey.

(define enjoy (radio "A lot" "Some" "Not at all"))
(define (where-attended school)

(page (? free "Where did you go to " school "?")
(? enjoy "How did you like it?")))

(where-attended "high school")
(where-attended "college")

Here where-attended is an abstraction over a page parameterized
over the school to ask the participant about — it takes a school
as input and produces a page as output. The definition of where-
attended can make use of variables in question text, and the param-
eterized page can be applied to arguments multiple times to yield
multiple different pages. However, despite appearances, define in
Topsl is not the same as the normal Scheme define and does not
bind where-attended to a normal Scheme procedure. Instead, it de-
fines it as a Topsl procedure that runs at compile-time rather than at
run-time, and can only be used in contexts that accept Topsl.

3.4 Dynamic Surveys

In order to write surveys whose question responses affect survey
control-flow we need a way to access the question responses while
the survey is still running. Topsl allows this with another page ele-
ment, ?/named, that allows a programmer to name a question, and
bind, which binds the response of a named question to an identifier
which is accessible by other Topsl code. The bind form takes a
list of identifiers to bind to named question responses and a page in
which the named questions can be found.

36

We have now seen two ways of displaying pages in example sur-
veys: simple page expressions constructed with the page form, and
applications, which apply a parameterized page to arguments. To
allow both mechanisms of page displaying in bind expressions we
lift the page syntax into a new production, page-expr, and make it
a new survey element:

survey-element ::= ... as before ...
| <page-expr>
| (bind (<variable>*) <page-expr>)

page-expr ::= (page <page-element>*)
| (<variable> <scheme>*)

The ?/named form is identical to ? except that it takes an additional
identifier as its first argument which will be used as the question’s
name, significant only to bind and to the survey’s static summary
(which uses it as the question’s reported name rather than automat-
ically generating a name for it).

The bind form displays the page in its page expression to the par-
ticipant and then binds the given names to the values the participant
supplied in any subsequent expressions. The page is required to
provide at least those names extracted by bind. The behavior of
questions that exist on the page but which are not answered by the
participant is specified by the question type. For this paper, we use
only mandatory question types, which Topsl requires the participant
to answer or it will redisplay the page. We can use the ?/named and
bind forms to construct the following survey:

(bind (fav-num)
(page (?/named fav-num free "What’s your favorite number?")))

(page (? free "Why do you like " fav-num "?"))

This survey asks a participant two questions, the second of which
has text that cannot be determined until the first one is answered.
When this survey is visited on the web it will ask the participant
for his or her favorite number. When the page is submitted, the next
page will have one question which will ask the participant why they
like the number he or she submitted, which will be contained in the
question text.

Clearly Topsl cannot know the complete text of dynamically-
determined questions when generating a static summary. In such
cases, the static summary uses the identifier in the question text as a
placeholder for the dynamic value. For instance, the static summary
of the above survey looks like this:

’((fav-num "What is your favorite number?")
(q2 "Why do you like " fav-num "?"))

3.5 Adding Control Flow

If we did not need to support static summaries, then making the ?,
page and related Topsl forms behave exactly as normal functions
would be ideal. However, were we to make that design decision,
static summaries would be impossible to build. For instance, the
following program would be legal even though the number of ques-
tions on any given page cannot be determined:

(define (problem n)
(if (zero? (random 2))

’()
(cons (? yes-no "Is " n " prime?")

(problem (add1 n)))))
(apply page (problem 0))

We could use a static-flow analysis algorithm such as the set-based
analysis (SBA) system developed by Meunier et al to indicate what
values could possibly flow into questions and pages [9], but even the
best of those techniques are too conservative for our needs. Using
the values obtained from SBA to construct a static summary would
generate possibly infinite number of questions that would never ac-
tually appear in the survey, making it impossible to construct the
static summary in some cases.

To be able to generate static summaries reliably, we restrict the syn-
tax of Topsl so that the contents of every page and every question a
Topsl program will display is syntactically apparent (perhaps with
information that does not affect the number of questions on a page),
and let the static summary include all questions that appear syntacti-
cally in the program. This restriction does not eliminate all analysis
errors since questions that a Topsl program can never reach will be
included in its static summary, we believe errors of that nature will
not be important in practice.

The biggest impact of that restriction is that Topsl code cannot in-
termingle arbitrarily with Scheme code. To ameliorate that situa-
tion, Topsl includes its own control-flow forms that enforce syn-
tactic restrictions to allow for analysis but give programmers sig-
nificant power over the flow of their surveys. We will show two
examples of control-flow forms, when and for-each:

survey-element ::= ... as before ...
| (when <scheme> <survey-element>+)
| (for-each <variable> <scheme>+)

Both forms behave similarly to their Scheme namesakes. If the test
position of the when form is a true Scheme value then the conse-
quent Topsl expressions are executed. The for-each form takes a
variable which must be defined as a parameterized page. All sub-
sequent Scheme expressions must evaluate to list values whose el-
ements will be used as arguments to the parameterized page. For
instance, arbitrary Scheme is allowed in the test position of Topsl’s
when form, but the consequents must be Topsl forms. This re-
striction allows us to easily extract the static summary by listing the
questions found in all control paths without having to perform static
evaluation of full Scheme to determine what those paths could be.

We can now construct a more interesting survey where the re-
sponses affect control flow. The survey in figure 2 uses the multi-
select function to create a new question type countries which will
allow the participant to select any number of countries from an
HTML selection box. We then define a page, about, which takes
a string, country, and asks a participant the questions we are inter-
ested in. The survey then uses the bind form to bind two variables,
england?, a boolean value from the yes-no question, and been-to,
which is a list of strings selected from the multi-select box. The
survey uses when to ask the participant about England if england?
is true and then loops over the other countries the participant has
been to, asking about those.

3.6 Finkel’s Loop and the Typical Expression

In the previous example we loop over the return value of a multi-
select box, but Topsl also needs to be able to loop over values gen-
erated from arbitrary computations such as lookup in a database.2
We support this feature by allowing programmers to define arbi-
trary Scheme functions and apply them in control-flow forms where

2It was this specific feature that professional survey authoring
companies could not provide Finkel.

37

(define countries (multi-select "Germany" "France" "Spain"))
(define (about country)

(page (? yes-no "Did you like " country "?")
(? yes-no "Is it cold in " country "?")))

(bind (england? been-to)
(page (?/named england? yes-no "Have you ever been to England?")

(?/named been-to countries "Where else have you been to?")))
(when england? (about "England"))
(for-each about been-to)

’((q1 "Have you ever been to England?")
(q2 "Which other countries have you been to?")
(q3 "Is it cold in England?")
(q4 "Did you like England?")
(q5 "Is it cold in " country "?")
(q6 "Did you like " country "?"))

Figure 2. A complete Topsl survey with static summary

Scheme is allowed. In the following example we use a Scheme
function, get-all-other-countries, which takes the list of countries
the participant was asked about above and returns all the other coun-
tries found in a database.

;; definition of get-all-other-countries elided
(for-each about (get-all-other-countries been-to))

We have now shown both extremes of how a Topsl programmer can
use Topsl forms to control flow. In the simple example the program-
mer branched and looped over the responses of questions. In the
most recent example the programmer wrote a complicated Scheme
program to loop over. In the authors’ experience, the complexity of
most conditionals fell somewhere in the middle. It was particularly
common to have a nested boolean expression with a few common
Scheme predicates on the question results. For example, the code
snippet below can be used to decide whether the subject has a pass-
port and then ask pertinent questions. For the sake of example, the
authors assume that if a participant has been to more than one coun-
try then he or she has a passport.

(when (or (> (length been-to) 1)
(and england? (not (empty? been-to))))

(page (? free "When did you get your passport?")))

Allowing simple expressions like the one in the predicate position
above gives Topsl a simple learning curve. It is not necessary for
Topsl programmers to understand full Scheme, just the functions
they want to use. As a result a Topsl programmer’s knowledge can
scale with his or her increasingly complex surveys.

3.7 Growing Topsl

Topsl provides the require from, taken from mzscheme, which al-
lows Topsl programs to import other modules containing new Topsl
forms. The modules the surveys require can be written in Topsl but
it is not required. As such programmers can extend the Topsl lan-
guage in languages other than Topsl itself, including full Scheme.
In doing so, the author of that module makes a trade off. He or
she gives up the safety ensured by Topsl forms and must take on
the responsibility of ensuring that static analysis is maintained and
that the new core forms behave as expected. However, he or she is
no longer restricted to what Topsl is able to express to create new
forms. This mechanism for extending a language using another
language, pointed out by Krishnamurthi [8], provides Topsl with
unbounded expressibility even the in presence of the static analysis
restriction, allowing the language to grow in ways not anticipated
by its authors.

4 Implementation

Implementation of the “dynamic” portion of Topsl — that is, the
portion that presents web pages to a user and stores that user’s re-
sponses — is reasonably straightforward. The user’s program be-
comes a servlet for the PLT web server [6]. The server handles
session management and other HTTP-related issues and allowed us
to think of the web as a normal input/output device, greatly simpli-
fying our development effort. Topsl programs are the composition
of Scheme macros and functions that generate XHTML pages en-
coded as S-expressions and hand them off to the PLT web server for
shipping to the users. We prevent programmers from using other
Scheme code in arbitrary positions with the PLT module system,
which allows us to provide an alternate language for programs.

While this approach works very well, it does have one important
problem. The semantics of the PLT web server do not exactly match
those we need for Topsl programs: we found that a user answering
a question was most naturally modeled with a destructive update to
a global record, with the caveat that if a participant hits the back
button the answer is erased. Unfortunately, the PLT server does
not undo destructive updates to variables when a user hits the back
button. However, it does restore the values of lexically-bound vari-
ables, so we solved the problem by principled use of state-passing
style in our implementation: a record representing the current an-
swers to all questions is passed in to every function that needs to
read or alter them. After the survey is completed, the Topsl frame-
work passes this “result monad” to the data-storage module, which
writes it out. We were initially worried that this strategy might be
too memory-intensive on the server and that an approach in which
the framework immediately stored all answers in a database would
be necessary, but in practice even our relatively modest server (a
Pentium III-800 MHz with 128MB RAM) handled the load with no
problems.

Implementation of the static summary feature turns out to be mostly
trivial as a result of restricting Topsl’s syntax to only Topsl forms.
In a survey without abstraction, static analysis is trivial, the sum-
mary is essentially just the syntax of that survey minus any Scheme
expressions. Allowing parameterized pages means we need to stat-
ically expand any parameterized pages where they are applied. To
enable this, Topsl provides a special define form which behaves
differently from the normal Scheme behavior when defining Topsl
values. The define form expands its body and checks to see if that
body expands to a Topsl core form. If it does, the define expands
to a define-syntax. If not, it expands to a regular Scheme define.
Macros cannot be higher-order; however, parameterized pages are
only available from within Topsl, and the Topsl forms such as for-
each that treat pages as higher-order functions can be written to
cope with the altered interface.

38

5 What Does Scheme Give Us?

Scheme has a powerful macro system that allows us to write Topsl
forms in terms of Scheme in a very clear and easy-to-maintain man-
ner while avoiding the need to write a parser and compiler from
scratch. Scheme’s macro system also provides us two very impor-
tant additional advantages. First, since Topsl is defined as a collec-
tion of macros over Scheme, we get seamless escapes into Scheme
without any complications. That is, we do not have to marshal data
or define a communication “wrapper” layer for communicating be-
tween Topsl and Scheme: under the hood, it’s all just Scheme. Sec-
ond, extending the language with new syntactic forms is a simple
process of defining a macro over existing Topsl forms. That allows
us to grow our language to meet the unforeseen requirements of
future surveys without having to edit the Topsl compiler.

6 What Does PLT Scheme Give Us?

The PLT Scheme suite provides two tools that make our work eas-
ier: the PLT module system and the PLT web server.

The PLT module system gives us a flexible way to build languages
from other languages [3]. Writing Topsl as a module language gives
us the ability to compile Topsl code in any way we choose, taking an
entire program at once rather than dealing with one subexpression
at a time as we would have to with normal macros. It also allowed
us to reuse existing Scheme code in our implementation without
having to handle name space collisions.

The continuation-based PLT web server [6] made it much easier
for us to make language constructs that query a web user for in-
put. Topsl is an imperative language where presenting a page to a
participant is implemented as a call to a function that returns the
participant’s answers and presents the page to that participant as a
side effect. The PLT web server allows us to ignore the complica-
tion of web-based communication and implement that feature in a
natural way, without worrying about implementing the complicated
transformations that would otherwise be necessary to make it work
properly [5].

7 Experience

Topsl’s first application, and our motivation for developing it, was
an on-line survey used in a longitudinal study of dating relation-
ships at Northwestern University. The survey had 70 participants
each of whom was asked to visit the survey site once every two
weeks and answer some subset of the survey’s 248 unique questions
that depended on his or her answers from all previous sessions and
from the current one: for instance, if the participant had reported
that they started dating someone in one session and said they were
single in the next, the survey would proceed to a page of questions
about the breakup. Also, every time a participant broke up with
someone, that person’s initials were added to a list; on every subse-
quent session the survey would present a few questions about each
person on that list.

We found Topsl to be an invaluable asset in developing the survey.
It let us focus on the survey’s particular unique features without
needing to worry about our changes introducing bugs in the under-
lying mechanisms that handled sessions and data storage. For that
reason, we were able to develop the survey extremely rapidly given
its complexity: we developed prototypes of both the language and
the survey in two days, and afterward we were able to modify the
survey easily to suit the various revisions its designer requested.

For instance, one early revision requested was that we randomize
the order in which questions in certain groups were presented to
participants. We accommodated that request by writing a Topsl ex-
tension that introduced a new page element that randomly shuffled
its sub-elements when it presented them on-screen. Data storage
and other aspects of presentation were unaffected, so we were able
to make the change and be confident of its functionality in only a
few hours.

The static summary technique discussed in this paper was devel-
oped as a result of failings in that prototype. Our original design
required giving every question a unique name and further required
a redundant listing of that name in some situations. We found the
burden of naming each question quickly became a maintenance
nightmare: a request to insert or remove a question would ruin our
naming strategy, and changing a name in one place but not another
would cause apparent data loss. The survey summary technique
avoids this problem while still giving us more than enough flexi-
bility to implement our original survey and every other survey we
have seen since.

8 Related Work

There are a considerable number of mechanisms for creating on-
line surveys apart from implementing them in a general-purpose
language. Two domain-specific languages, SuML and QPL, stand
out as being the closest to the goals the authors set for Topsl.

SuML is an XML/Perl-based survey language in which the pro-
grammer describes a survey in an XML document which follows
the SuML Schema. The SuML Schema has a question element
which contains question text and a sequence of allowable responses,
much like Topsl. The root survey element contains any number of
questions and a routing element that describes control flow. The
routing element contains any number of if and ask elements which
are composed to ask questions in the survey and branch on their
responses.

The programmer creates two files in addition to the content of the
survey: an XSLT stylesheet and a front-end Perl CGI program. The
style sheet is responsible for describing what a survey will look like
when presented on the web to a participant, and multiple stylesheets
can be written for different mediums. The front-end is a Perl CGI
program that acts as the entry point to the survey.

SuML’s most significant problem for our purposes is its notion of
control-flow is very limited, providing its users with only an if state-
ment with which to branch to different parts of the survey. Further-
more, the test position of the if is written in language for accessing
various fields of the XML allowing the programmer to reference
question responses. This approach limits control flow to being af-
fected by only responses given in the current survey execution.

In addition, SuML is somewhat too generic for our purposes. The
user-written Perl CGI is in charge of driving the survey by using
SuML’s Perl API to get the next questions to be asked and then
present them as well as storing the results of the questions asked.
Putting the burden on the programmer makes survey development
more difficult, time-consuming, and error-prone.

QPL is another domain-specific language for creating surveys that
suffers from very similar problems to SuML’s. QPL’s semantics
are reminiscent of BASIC: it is an imperative language using if and
goto for control flow along with a large set of built-in predicates

39

used for conditional testing. Current distributions provides users
with a large set of comparison functions for use with if; however, it
lacks an means of growing to meet programmers’ changing needs.

9 Further Work

One major avenue of future work we plan on pursuing is mak-
ing it easier for non-programmers to develop simple surveys in
Topsl. While programmers who want a rapid way to develop sur-
veys and are experienced with Scheme should find Topsl intuitive,
social scientists who have no programming experience may have
difficulty with it. To that end, we suspect that providing a graphi-
cal syntax with a WYSIWYG page construction to make the syn-
tax more like word processing would make Topsl more natural for
social scientists. Syntax for forms like when and for-each have
been taken from Scheme to meet our programmer audience’s ex-
pectations of how they should be used, but a graphical syntax that
relates pages with flow-control arrows would be more natural for
non-programmers. We expect to be able to implement this syntax
with the help of PLT Scheme’s MrEd toolkit and the substantial
graphical editing features of DrScheme.

We would also like to investigate the possibility of adding shared
question and page libraries to Topsl. Since social scientists often
include the same questions verbatim on multiple surveys to make
the surveys more easily comparable, shared libraries are a natural
fit. However, they pose some interesting problems: with our cur-
rent design, for instance, every question whose answer is important
to a survey’s flow control must be named explicitly in its declara-
tion. In a library, this would not work out well since library authors
would have to give every question a name (which is impractical in
our experience) or guess which questions will be important to fu-
ture surveys (which would force users to copy the library and make
source code modifications if the library author guesses wrong). A
solution to this problem would be quite useful, so we consider it an
important topic to investigate.

10 Contributions

We have designed and implemented a survey language system that
uses Scheme’s capacity to build new languages to solve a pressing
problem in many of the social sciences. In the process, we have
illustrated the power of building new languages to simultaneously
make programs easier to write and less error-prone.

11 Acknowledgments

The authors would like to thank Matthias Felleisen for invaluable
guidance throughout the development of this project.

12 References

[1] Barclay, Lober, Huq, Dockery, and Karras. SuML: A survey
markup language for generalized survey encoding. In AMIA
Annual Symposium, 2002.

[2] Michael Birnbaum, editor. Psychological Experiments on the
Internet. Academic Press, 2000.

[3] Matthew Flatt. Composable and compilable macros. In ICFP,
October 2002.

[4] R. C. Fraley. How to conduct behavioral research over the In-
ternet: A beginner’s guide to HTML and CGI/Perl. Guilford,
2004.

[5] Graunke, Findler, Krishnamurthi, and Felleisen. Automati-
cally restructuring programs for the web. In Automated Soft-
ware Engineering, 2001.

[6] Graunke, Krishnamurthi, Van der Hoeven, and Felleisen. Pro-
gramming the web with high-level programming languages.
In ESOP, 2001.

[7] Guy L. Steele Jr. Growing a language. Journal of Higher-
Order and Symbolic Computation, 12:221 – 236, October
1999.

[8] Shriram Krishnamurthi. Linguistic Reuse. PhD thesis, Rice
University, May 2001.

[9] Meunier, Findler, Steckler, and Wand. Selectors make anal-
ysis of case-lambda too hard. In Scheme and Functional
Programming, 2001.

[10] U.S. General Accounting Office. QPL. Software:
http://www.gao.gov/qpl/.

[11] Olin Shivers. A universal scripting framework or lambda: the
ultimate ‘little language’. Concurrency and Parallelism, Pro-
gramming, Networking, and Security, Lecture Notes in Com-
puter Science, 1179:254–265, 1996.

40

41

Lexer and Parser Generators in Scheme

Scott Owens Matthew Flatt
University of Utah

Olin Shivers Benjamin McMullan
Georgia Institute of Technology

Abstract

The implementation of a basic LEX-style lexer generator or YACC-
style parser generator requires only textbook knowledge. The im-
plementation of practical and useful generators that cooperate well
with a specific language, however, requires more comprehensive
design effort. We discuss the design of lexer and parser genera-
tors for Scheme, based on our experience building two systems.
Our discussion mostly centers on the effect of Scheme syntax and
macros on the designs, but we also cover various side topics, such
as an often-overlooked DFA compilation algorithm.

1 Introduction

Most general-purpose programming systems include a lexer and
parser generator modeled after the design of the LEX and YACC
tools from UNIX. Scheme is no exception; several LEX- and YACC-
style packages have been written for it. LEX and YACC are popu-
lar because they support declarative specification (with a domain-
specific language), and they generate efficient lexers and parsers.
Although other parsing techniques offer certain advantages, LEX-
and YACC-style parsing remains popular in many settings. In this
paper, we report on the design and implementation of LEX- and
YACC-style parsers in Scheme. Scheme’s support for extensible
syntax makes LEX- and YACC-style tools particularly interesting.

• Syntax allows the DSL specifications to reside within the
Scheme program and to cooperate with the programming en-
vironment. We can also lift Scheme’s syntactic extensibility
into the DSL, making it extensible too.

• Syntax supports code generation through a tower of lan-
guages. Breaking the translation from grammar specification
to Scheme code into smaller steps yields a flexible and clean
separation of concerns between the levels.

Additionally, lexer and parsers are examples of language embed-
ding in general, so this paper also serves as an elaboration of the
“little languages” idea [13].

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Owens, Flatt, Shivers, and McMullan.

We base our discussion on two parsing tools, PLT and GT, and
present specific design notes on both systems along with discussion
on why certain ideas work well, and how these systems differ from
others. The PLT system most clearly demonstrates the first point
above. PLT’s novel features include an extensible regular expres-
sion language for lexing and a close interaction with the DrScheme
programming environment. The GT system most clearly illustrates
the second point. In GT, a parser’s context-free grammar is trans-
formed through a target-language independent language and a push-
down automaton language before reaching Scheme, with potential
for optimization and debugging support along the way.

2 Background

We briefly describe the essential design of LEX and YACC and how
it can fit into Scheme. We also discuss how the existing LEX- and
YACC-like systems for Scheme fit into the language.

2.1 LEX and YACC

A text processor is constructed with LEX and YACC by specifying
a lexer that converts a character stream into a stream of tokens with
attached values, and by specifying a parser that converts the to-
ken/value stream into a parse tree according to a context-free gram-
mar (CFG). Instead of returning the parse tree, the parser performs
a single bottom-up computation pass over the parse tree (synthe-
sized attribute evaluation) and returns the resulting value, often an
abstract-syntax tree (AST). LEX generates a lexer from a regexp
DSL, and YACC generates a parser from a CFG DSL.

regexps−→ LEX YACC ←− CFG
↓ ↓

chars−→ lexer tokens
−→ parser −→ AST

From a programmer’s perspective, building a text processor takes
three steps:

• Creation of regular expressions (regexps) that describe the to-
ken structure. These are typically defined outside the lexer
with a regexp abbreviation facility.

• Creation of the lexer by pairing the regexps with code to gen-
erate tokens with values.

• Creation of the parser with a CFG that describes the syn-
tax, using token names as non-terminals. Attribute evaluation
code is directly attached to the CFG.

A lexer is occasionally useful apart from a parser and can choose
to produce values other than special token structures. Similarly, a

42

Figure 1 Lexical scope in a lexer

parser can operate without a lexer or with a hand-written lexer that
returns appropriate token structures. Nevertheless, LEX and YACC
(and the lexers and parsers they generate) are used together in most
cases.

Operationally, LEX converts the regexps into a deterministic finite
automaton (DFA) and YACC converts the CFG into a push-down
automaton (PDA). These conversions occur at lexer and parser gen-
eration time. The DFA can find a token in linear time in the length
of the input stream, and the PDA can find the parse tree in linear
time in the number of tokens. The transformation from regexps and
CFG can be slow (exponential in the worst case), but performing
these computations once, at compile time, supports deployment of
fast text-processing applications.

2.2 The Scheme Way

UNIX LEX and YACC operate in a file-processing batch mode.
They read a lexer or parser specification from an input file and write
a program to an output file. With batch compiled programming lan-
guages, e.g., C or Java, this is the best that can be done. The build
system (such as a makefile) is told how to convert the specification
file into a code file, and it does so as needed during batch compila-
tion.

The file-processing approach does not fit naturally into Scheme’s
compilation model. Instead of using an external batch compila-
tion manager, most Scheme programs rely on a compilation strat-
egy provided by the language implementation itself. The simplest
way to cause these compilation managers to execute a Scheme pro-
gram is to package it in a macro. The compilation manager then
runs the program while it macro-expands the source. Specifically,
when a lexer or parser generator is tied into the Scheme system
via a macro, the macro expander invokes the regexp or grammar
compiler when the internal compilation system decides it needs to.
Each of the PLT and GT parser tools syntactically embeds the lexer
or parser specification inside the Scheme program using lexer and
parser macros. This solution easily supports LEX- and YACC- style
pre-computation without breaking Scheme’s compilation model.

With a macro-based approach, a lexer or parser specification can
appear in any expression position. Hygiene then ensures that vari-
ables in embedded Scheme expressions refer to the lexically enclos-
ing binding (see Figure 1). Furthermore, the embedded code auto-
matically keeps source location information for error reporting, if
the underlying macro expander tracks source locations as does PLT
Scheme’s (see Figure 2). A stand-alone specification achieves nei-
ther of these goals easily.

Source-location tracking and lexical scoping lets refactoring tools,
such as DrScheme’s Check Syntax, assist programmers with their

Figure 2 Source highlighting of a runtime error

parser and lexer actions. Check Syntax draws arrows between stat-
ically apparent binding and bound variable occurrences and can α-
rename these variables. It also provides assistance with the declar-
ative part of a parser specification, correlating non-terminals on the
right and left of a production and correlating uses of $n attribute
references with the referent terminal or non-terminal.

2.3 Previous Work

We categorize the many lexer and parser generators written in
Scheme as follows: those that do not use s-expression syntax, those
that use s-expressions but do not provide a syntactic form for inte-
grating the specifications with Scheme programs, and those that do
both.

Danny Dubé’s SILex lexer generator [6] fits in the first category,
closely duplicating the user interface of LEX. Mark Johnson’s
LALR parser generator [10] and the SLLGEN system [9] fall into
the second category. Both provide a function that consumes a
list structure representing a grammar and returns a parser. With
Scheme’s quasiquote mechanism, programmers can write the gram-
mar in s-expression format and generate grammars at run time. This
approach sacrifices the efficiency of computing the parser from the
grammar at compile time and also hampers compile-time analysis
of the CFG and attached code.

Dominique Boucher’s original lalr-scm system [3] falls into the
second category, encoding the CFG in an s-expression. It uses
DeRemer and Pennello’s LALR algorithm [5] to process the gram-
mar and, unlike previous tools, supports ahead-of-time compila-
tion of the CFG. However, it does not integrate specifications into
Scheme via macros, instead it provides a compiler that maps CFG
s-expressions to a parse table. The table is printed out and incorpo-
rated into source code along with an interpreter to drive the parser.
In this sense, the parser development cycle resembles YACC’s.
Boucher’s original implementation is also missing some important
functional elements, such as associativity declarations to resolve
shift/reduce ambiguities.

Design particulars aside, Boucher’s source code was influential,
and his complete, debugged, and portable LALR implementation
provided a foundation for several later efforts in our third cate-
gory. Serrano’s Bigloo Scheme system [11] incorporated Boucher’s
implementation, with extensions. Critically, Bigloo uses macros
to embed the parser language directly into Scheme. (Bigloo also
supports embedded lexers.) Shivers and his students subsequently

43

adopted Serrano’s code at Georgia Tech for compiler work, and then
massively rewrote the code (for example, removing global-variable
dependencies and introducing record-based data structures for the
ASTs) while implementing the GT parser design described in this
paper. Boucher has addressed the above concerns, and the current
lalr-scm system supplies a form for incorporating a CFG in a pro-
gram.

Sperber and Thiemann’s Essence parser generator [16] also falls
into the third category, using an embedded s-expression based CFG
definition form. Instead of a YACC-style CFG to PDA compila-
tion step, Essence uses partial evaluation to specialize a generic LR
parser to the given CFG. The partial evaluation technology removes
the need for a separate compilation step, while ensuring perfor-
mance comparable to the YACC methodology. Our use of macros
lets us take a compilation-based approach to implementation—a
simpler and less exotic technology for achieving performance.

3 Regular Expressions

Defining regular expressions that match the desired tokens is the
first step in creating a lexer, but regexps are also used as a pattern
language in many other text processing tools. For example, pro-
gramming languages often support regular expression matching as
a computational device over strings. Hence we first consider reg-
exps by themselves.

3.1 Notational Convenience

Many regexp matching libraries use the POSIX regexp syntax em-
bedded in a string. This approach requires the insertion of escape
characters into the POSIX syntax (a veritable explosion of \ char-
acters, since \ is used as the escape character in both POSIX and
Scheme). An s-expression based regexp language fits more natu-
rally into Scheme and can still include a form for string-embedded
POSIX syntax, if desired.

SREs [14], Bigloo Regular Grammars [11, section 9], and PLT lexer
regexps all use s-expression syntax. The SRE notation is oriented
toward on-the-fly regexp matching functions and was developed for
the scsh systems programming environment [12, 15]. Bigloo Reg-
ular Grammars are designed for lexer specification, as are the PLT
lexer regexps. The PLT Scheme lexer generator uses the syntax of
Figure 3,1 and SREs use the syntax of Figure 4. Bigloo uses nota-
tion similar to SREs without the dynamic unquote operation.

3.2 Abstraction

To avoid unnecessary duplication of regular expressions, a regexp
language should support abstraction over regular expressions. Con-
sider the R5RS specification of numbers:

〈uintegerR〉 → 〈digitR〉+#∗

This example suggests naming a regexp, such as digit8 for the
digits 0 to 7, and building a regexp producing function uinteger
that takes in, for example, digit8 and produces the regexp
uinteger8 .

1The regexp language described in Figure 3 is new to version
299.13 of PLT Scheme. The syntax of versions 20x does not sup-
port the definition of new forms and is incompatible with other
common s-expression notations for regexps.

In systems that support runtime regexp generation, the abstraction
power of Scheme can be applied to regexps. String-based regexps
support run-time construction through direct string manipulation
(e.g., string-append). The SRE system provides constructors
for SRE abstract syntax, allowing a Scheme expression to directly
construct an arbitrary SRE. It also provides the (rx sre ...)
form which contains s-expressions compiled according to the SRE
syntax. Think of rx in analogy with quasiquote, but instead of
building lists from s-expressions, it builds regexps from them. The
unquote form in the SRE language returns to Scheme from SRE
syntax. The Scheme expression’s result must be a regexp value
(produced either from the AST constructors, or another rx form).
The R5RS example in SRE notation follows.

(define (uinteger digit)
(rx (: (+ ,digit) (∗ "#"))))

(define (number digit)
(rx (: (? "-") ,(uinteger digit)

(? ".") (? ,(uinteger digit)))))
(define digit2 (rx (| "0" "1")))
(define digit8 (rx (| "0" ... "7")))
(define number2 (number digit2))
(define number8 (number digit8))

A lexer cannot use the unquote approach, because a lexer must
resolve its regexps at compile time while building the DFA. Thus,
PLT and Bigloo support static regexp abstractions. In both sys-
tems, the regexp language supports static reference to a named
regexp, but the association of a regexp with a name is handled
outside of the regexp language. In Bigloo, named regexp ap-
pear in a special section of a lexer definition, as in LEX. This
prevents sharing of regexps between lexers. In PLT, a Scheme
form define-lex-abbrevs associates regexps with names. For
example, consider the define-lex-abbrevs for a simplified
uinteger2 :

(define-lex-abbrevs
(digit2 (union "0" "1"))
(uinteger2 (repetition 1 +inf.0 digit2))))

Each name defined by define-lex-abbrevs obeys Scheme’s lex-
ical scoping and can be fully resolved at compile time. Thus, mul-
tiple PLT lexers can share a regexp.

To support the entire R5RS example, the PLT system uses macros in
the regexp language. A form, define-lex-trans, binds a trans-
former to a name that can appear in the operator position of a reg-
exp. The regexp macro must return a regexp, as a Scheme macro
must return a Scheme program. The system provides libraries of
convenient regexp forms as syntactic sugar over the parsimonious
built-in regexp syntax. Of course, programmers can define their
own syntax if they prefer, creating regexp macros from any func-
tion that consumes and produces syntax objects [7][8, section 12.2]
that represent regexps.

Using the SRE operator names, the R5RS example becomes:

(define-lex-trans uinteger
(syntax-rules ()
((digit) (: (+ digit) (∗ "#")))))

(define-lex-trans number
(syntax-rules ()
((digit)
(: (? "-") (uinteger digit)

(? ".") (? (uinteger digit))))))

44

Figure 3 The PLT lexer regular-expression language
re ::= ident ; Bound regexp reference

| string ; Constant
| char ; Constant
| (repetition lo hi re) ; Repetition. hi=+inf.0 for infinity.
| (union re ...) ; General set
| (intersection re ...) ; algebra on
| (complement re) ; regexps
| (concatenation re ...) ; Sequencing
| (char-range char char) ; Character range
| (char-complement re ...) ; Character set complement, statically restricted to 1-char matches
| (op form ...) ; Regexp macro

lo ::= natural number
hi ::= natural number or +inf.0
op ::= identifier

Figure 4 The SRE regular-expression language (some minor features elided)
re ::= string ; Constant

| char ; Constant
| (** lo hi re ...) ; Repetition. hi=#f for infinity.
| (* re ...) ; (** 0 #f re ...)
| (+ re ...) ; (** 1 #f re ...)
| (? re ...) ; (** 0 1 re ...)
| (string) ; Elements of string as char set
| (: re ...) ; Sequencing
| (| re ...) ; Union
| (& re ...) ; Intersection, complement, and difference
| (~ re) ; statically restricted
| (- re re ...) ; to 1-char matches
| (/ char ...) ; Pairs of chars form ranges
| (submatch re ...) ; Body is submatch
| ,exp ; Scheme exp producing dynamic regexp
| char-class ; Fixed, predefined char set

lo ::= natural number
hi ::= natural number or #f
char-class ::= any | none | alphabetic | numeric | ...

(define-lex-abbrevs
(digit2 (| "0" "1"))
(digit8 (| "0" ... "7"))
(number2 (number digit2))
(number8 (number digit8)))

The define-lex-trans and define-lex-abbrevs forms
are macro-generating macros that define each given name
with a define-syntax form. The regexp parser uses
syntax-local-value [8, section 12.6] to locates values for these
names in the expansion environment. Unfortunately, many com-
mon regexp operator names, such as + and ∗, conflict with built-in
Scheme functions. Since Scheme has only one namespace, some
care must be taken to avoid conflicts when importing a library of
regexp operators, e.g., by prefixing the imported operators with :
using the prefix form of require [8, section 5.2].

3.3 Static Checking

Both the SRE system and the PLT lexer generator statically check
regexps. The SRE language supports a simple type inference mech-
anism that prevents character set operations, such as intersection
(&), from being misapplied to regexps that might accept more or
less than a single character. This system has two types: 1 and n.

Figure 5 Illustrative fragment of SRE type system
T ::= 1 | n

` char : 1
` re1 : t1 · · · ` rem : tm
` (∗ re1 . . .rem) : n

` re1 : 1 · · · ` rem : 1
` (| re1 . . .rem) : 1

` re1 : 1 · · · ` rem : 1
` (& re1 . . .rem) : 1

` re1 : t1 · · · ` rem : tm
` (| re1 . . .rem) : n

Intuitively, a regexp has type 1 iff it must match exactly one char-
acter and type n if it can match some other number of characters.
Regexps with misapplied character set operations have no type.

Figure 5 presents the type system for ∗, &, |, and char SREs—
the rules for the polymorphic | are most interesting. The macro
that processes SREs, rx, typechecks regexps that contain no ,exp
forms. For dynamic regexps, it inserts a check that executes when
the regexp is assembled at run time.

45

The PLT lexer regexp language also check character set operations.
Instead of using a separate typechecking pass, it integrates the com-
putation with the regexp parsing code. Not only must the lexer
generator reject mis-applications of character set primitives, but it
must internally group character set regexps into a specialized char-
acter set representation. In other words, (| "a" (| "b" "c")) is
internally represented as (make-char-set ’("a" "b" "c")).2
The DFA-construction algorithm usually operates on only a few
characters in each set, whereas it considers each character in a union
regexp individually. Thus the character set grouping yields a requi-
site performance enhancement.

3.4 Summary

Even though a lexer generator must resolve regular expressions stat-
ically, its regexp language can still support significant abstractions.
Syntactic embedding of the regexp language, via macros, is the
key technique for supporting programmer-defined regexp operators.
The embedded language can then have static semantics significantly
different from Scheme’s, as illustrated by the regexp type system.

4 Lexer Generator

After defining the needed regexps, a programmer couples them with
the desired actions and gives them to the lexer generator. The re-
sulting lexer matches an input stream against the supplied regexps.
It selects the longest match starting from the head of the stream and
returns the value of the corresponding action. If two of the regexps
match the same text, the topmost action is used.

A lexer is expressed in PLT Scheme with the following form:

(lexer (re action) ...)

The lexer form expands to a procedure that takes an input-port and
returns the value of the selected action expression.

The PLT lexer generator lacks the left and right context sensitivity
constructs of LEX. Neither feature poses a fundamental difficulty,
but since neither omission has been a problem in practice, we have
not invested the effort to support them. Cooperating lexers usually
provide an adequate solution in situations where left context sensi-
tivity would be used (encoding the context in the program counter),
and right context sensitivity is rarely used (lexing Fortran is the pro-
totypical use). The Bigloo lexer supports left context sensitivity, but
not right.

4.1 Complement and Intersection

In Section 3.2, we noted that a regexp language for lexers has dif-
ferent characteristics than regexp languages for other applications
in that it must be static. In a similar vein, lexer specification also
benefits from complement and intersection operators that work on
all regexps, not just sets of characters. The PLT lexer generator
supports these, as does the lexer generator for the DMS system [2].

Intersection on character sets specializes intersection on general
regexps, but complement on character sets is different from com-
plement on general regexps, even when considering single char-
acter regexps. For example, the regexp (char-complement
"x") matches any single character except for #\x. The regexp

2To handle the large character sets that can arise with Unicode
codepoints as characters, the character set representation is actually
a list of character intervals.

(complement "x") matches any string except for the single char-
acter string "x", including multiple character strings like "xx".

The following regexp matches any sequence of letters, except for
those that start with the letters b-a-d (using a SRE-like sugaring of
the PLT regexp syntax with & generalized to arbitrary regexps).

(& (+ alphabetic)
(complement (: "bad" any-string)))

The equivalent regexp using only the usual operators (including in-
tersections on character sets) is less succinct.

(| (: (& alphabetic (~ "b"))
(∗ alphabetic))

(: "b" (& alphabetic (~ "a"))
(∗ alphabetic))

(: "ba" (& alphabetic (~ "d"))
(∗ alphabetic)))

The formal specification more closely and compactly mirrors the
English specification when using complementation and intersec-
tion. We have used this idiom to exclude certain categories of
strings from the longest-match behavior of the lexer in specific
cases.

As another example, a C/Java comment has the following structure:
/* followed by a sequence of characters not containing */ followed
by */. Complementation allows a regexp that directly mirrors the
specification.

(: "/∗"
(complement (: any-string "∗/" any-string))
"∗/")

The regexp (: any-string "∗/" any-string) denotes all
strings that contain */, so (complement (: any-string "∗/"
any-string)) denotes all strings that do not contain */. No-
tice that (complement "∗/") denotes all strings except the string
"∗/" (including strings like "a∗/"), so it is not the correct expres-
sion to use in the comment definition. For a similar exercise, con-
sider writing the following regexp without complement or intersec-
tion.

(& (: (∗ "x") (∗ "y"))
(: any-char any-char any-char any-char))

4.2 Lexer Actions

A lexer action is triggered when its corresponding regexp is the
longest match in the input. An action is an arbitrary expression
whose free variables are bound in the context in which the lexer
appears. The PLT lexer library provides several variables that let
the action consult the runtime status of the lexer.

One such variable, input-port , refers to the input-port argument
given to the lexer when it was called. This variable lets the lexer
call another function (including another lexer) to process some of
the input. For example,

(define l
(lexer
((+ (or comment whitespace))
(l input-port))
...))

instructs the lexer to call l , the lexer itself, when it matches whites-
pace or comments. This common idiom causes the lexer to ignore

46

whitespace and comments. A similar rule is often used to match
string constants, as in

(#\" (string-lexer input-port))

where string-lexer recognizes the lexical structure of string
constants.

The lexeme variable refers to the matched portion of the input. For
example,

(number2 (token-NUM (string->number lexeme 2)))

converts the matched number from a Scheme string into a Scheme
number and places it inside of a token.

A lexer often needs to track the location in the input stream of the
tokens it builds. The start-pos and end-pos variables refer to
the locations at the start of the match and the end of the match re-
spectively. A lexer defined with lexer-src-pos instead of lexer
automatically packages the action’s return value with the matched
text’s starting and ending positions. This relieves the programmer
from having to manage location information in each action.3

4.3 Code Generation

Most lexer generators first convert the regexps to a non-
deterministic finite automaton (NFA) using Thompson’s construc-
tion [18] and then use the subset construction to build a DFA, or
they combine these two steps into one [1, section 3.9]. The naive
method of handling complement in the traditional approach ap-
plies Thompson’s construction to build an NFA recursively over
the regexp. When encountering a complement operator, the subset
construction is applied to convert the in-progress NFA to a DFA
which is then easily complemented and converted back to an NFA.
Thompson’s construction then continues. We know of no elegant
method for handling complement in the traditional approach. How-
ever, the DMS system [2] uses the NFA to DFA and back method
of complement and reports practical results.4

The PLT lexer generator builds a DFA from its component regular
expressions following the derivative based method of Brzozowski
[4]. The derivative approach builds a DFA directly from the reg-
exps, and handles complement and intersection exactly as it handles
union.

Given a regular expression r, the derivative of r with respect to a
character c, Dc(r), is {s | r matches cs}. The derivative of a regexp
can be given by another regexp, and Brzozowski gives a simple re-
cursive function that computes it. The DFA’s states are represented
by the regexps obtained by repeatedly taking derivatives with re-
spect to each character. If Dc(r) = r′, then the state r has a transi-
tion on character c to state r′. Given r and its derivative r′, the lexer
generator needs to determine whether a state equivalent to r′ already
exists in the DFA. Brzozowski shows that when comparing regexps
by equality of the languages they denote, the iterated derivative pro-
cedure constructs the minimal DFA. Because of the complexity of
deciding regular language equality, he also shows that the process
will terminate with a (not necessarily minimal) DFA if regexps are
compared structurally, as long as those that differ only by asso-
ciativity, commutativity and idempotence of union are considered
equal.

3The return-without-pos variable lets src-pos lexers invoke
other src-pos lexers without accumulating multiple layers of source
positioning.

4Michael Mehlich, personal communication

A few enhancements render Brzozowski’s approach practical. First,
the regexp constructors use a cache to ensure that equal regexps
are not constructed multiple times. This allows the lexer genera-
tor to use eq? to compare expressions during the DFA construc-
tion. Next, the constructors assign a unique number to each regexp,
allowing the sub-expressions of a union operation to be kept in a
canonical ordering. This ordering, along with some other simpli-
fications performed by the constructors, guarantees that the lexer
generator identifies enough regexps together that the DFA building
process terminates. In fact, we try to identify as many regexps to-
gether as we can (such as by canceling double complements and so
on) to create a smaller DFA.

With modern large characters sets, we cannot efficiently take the
derivative of a regexp with respect to each character. Instead, the
lexer generator searches through the regexp to find sets of charac-
ters that produce the same derivative. It then only needs to take
one derivative for each of these sets. Traditional lexer generators
compute sets of equivalent characters for the original regexp. Our
derivative approach differs in that the set is computed for each reg-
exp encountered, and the computation only needs to consult parts
of the regexp that the derivative computation could inspect.

Owens added the derivative-based lexer generator recently. Previ-
ously, the lexer generator used a direct regexp to DFA algorithm [1,
section 3.9] (optimized to treat character sets as single positions in
the regexp). Both algorithms perform similarly per DFA state, but
the derivative-based algorithm is a much better candidate for ele-
gant implementation in Scheme and may tend to generate smaller
DFAs. On a lexer for Java, both algorithms produced (without min-
imization) DFAs of similar sizes in similar times. On a lexer for
Scheme, the Brzozowski algorithm produced a DFA about 2

5 the
size (464 states vs. 1191) with a corresponding time difference.

4.4 Summary

Embedding the lexer generator into Scheme places the action ex-
pressions naturally into their containing program. The embedding
relies on hygienic macro expansion. To support convenient com-
plement and intersections, we moved the lexer generator from a tra-
ditional algorithm to one based on Brzozowski’s derivative. Even
though the derivative method is not uniquely applicable to Scheme,
we found it much more pleasant to implement in Scheme than our
previous DFA generation algorithm.

5 Parser Generators

A parser is built from a CFG and consumes the tokens supplied by
the lexer. It matches the token stream against the CFG and evaluates
the corresponding attributes, often producing an AST.

5.1 Grammars

A CFG consists of a series of definitions of non-terminal symbols.
Each definition contains the non-terminal’s name and a sequence of
terminal and non-terminal symbols. Uses of non-terminals on the
right of a definition refer to the non-terminal with the same name
on the left of a definition. A terminal symbol represents an element
of the token stream processed by the parser.

A parser cannot, in general, efficiently parse according to an arbi-
trary CFG. The bottom-up parsers generated by YACC use a looka-
head function that allows them to make local decisions during pars-
ing and thereby parse in linear time. Lookahead computation has

47

ambiguous results for some grammars (even unambiguous ones),
but the LALR(1) lookahead YACC uses can handle grammars for
most common situations. Precedence declarations allow the parser
to work around some ambiguities. Both the PLT and GT tools fol-
low YACC and use LALR(1) lookahead with precedences.

5.2 Tokens

A parser is almost completely parametric with respect to tokens
and their associated values. It pushes them onto the value stack,
pops them off it, and passes them to the semantic actions without
inspecting them. The parser only examines a token when it selects
shift/reduce/accept actions based on the tokens in the input stream’s
lookahead buffer. This is a control dependency on the token repre-
sentation because the parser must perform a conditional branch that
depends on the token it sees.

Nevertheless, most parser generators, including the PLT system, en-
force a specific token representation. The PLT system abstracts the
representation so that, were it to change, existing lexer/parser com-
binations would be unaffected. The GT system allows the token
representation to be specified on a parser-by-parser basis.

5.2.1 Tokens in GT

The GT parser tool is parameterized over token branch computa-
tion; it has no knowledge of the token representation otherwise.
The GT parser macro takes the name of a token-case macro
along with the CFG specification. The parser generator uses the
token-case macro in the multi-way branch forms it produces:

(token-case token-exp
((token ...) body ...)
...
(else body ...))

The Scheme expression token-exp evaluates to a token value, and
the token elements are the token identifiers declared with the
CFG. Scheme’s macro hygiene ensures that the identifiers de-
clared in CFG token declarations and the keys recognized by the
token-case macro interface properly.

The token-case macro has a free hand in implementing the prim-
itive token-branch computation. It can produce a type test, if tokens
are Scheme values such as integers, symbols, and booleans; extract
some form of an integer token-class code from a record structure, if
tokens are records; or emit an immediate jump table, if tokens are
drawn from a dense space such as the ASCII character set.

The token-case branch compiler parameterizes the CFG to
Scheme compiler. This ability to factor compilers into compo-
nents that can be passed around and dropped into place is unique
to Scheme. Note, also, that this mechanism has nothing to do with
core Scheme per se. It relies only on the macro technology which
we could use with C or SML, given suitable s-expression encod-
ings.

5.2.2 Tokens in PLT

The PLT parser generator sets a representation for tokens. A token
is either a symbol or a token structure containing a symbol and a
value, but this representation remains hidden unless the program-
mer explicitly queries it. A programmer declares, outside of any

parser or lexer, the set of valid tokens using the following forms for
tokens with values and without, respectively.

(define-tokens group-name (token-name ...))
(define-empty-tokens group-name
(token-name ...))

A parser imports these tokens by referencing the group names in its
tokens argument. The parser generator statically checks that every
grammar symbol on the right of a production appears in either an
imported token definition or on the left of a production (essentially
a non-terminal definition). DrScheme reports violations in terms of
the CFG, as discussed in Section 6.2.

The token-declaration forms additionally provide bindings for
token-creation functions that help ensure that the lexer creates token
records in conjunction with the parser’s expectations. For exam-
ple, (token-x) creates an empty token named x , and (token-y
val) creates a non-empty token named y . Thus the single exter-
nal point of token declaration keeps the token space synchronized
between multiple lexers and parsers.

5.3 Parser Configuration

A parser specification contains, in addition to a CFG, directives that
control the construction of the parser at an operational level. For ex-
ample, precedence declarations, in the GT tokens and PLT precs
forms, resolve ambiguities in the CFG and in the lookahead com-
putation.

The PLT start form declares the non-terminal at the root of the
parse tree. When multiple start non-terminals appear, the parser
generator macro expands into a list containing one parser per start
non-terminal. Multiple start symbols easily allow related parsers
to share grammar specifications. (Most other parser generators do
not directly support multiple start symbols and instead require
a trick, such as having each intended start symbol derive from
the real start symbol with a leading dummy terminal. The lexer
produces a dummy terminal to select the desired start symbol [17,
section 10].)

The PLT system end form specifies a set of distinguished to-
kens, one of which must follow a valid parse. Often one of
these tokens represents the end of the input stream. (Other
parser generators commonly take this approach.) In contrast, GT’s
accept-lookaheads clause supports k-token specifications for
parse ends. Thus nothing in GT’s CFG language is specifically
LALR(1); it could just as easily be used to define an LR(k) gram-
mar, for k > 1. Although the current tools only process LALR(1)
grammars, the CFG language itself allows other uses.

GT’s CFG language makes provision for the end-of-stream (eos)
as a primitive syntactic item distinct from the token space. An
accept-lookaheads specification references eos with the #f lit-
eral, distinguishing the concept of end-of-stream (absence of a to-
ken; a condition of the stream itself) from the set of token values.
This was part of clearly factoring the stream representation (e.g., a
list, a vector, an imperative I/O channel) from the token representa-
tion (e.g., a record, a character, a symbol) and ensures that the token
space is not responsible for encoding a special end-of-stream value.

48

Figure 6 The PLT parser language
parser ::= (parser-clause ...)

parser-clause ::= (start nterm ...) ; Starting non-terminals
| (end term ...) ; Must follow parse only
| (tokens token-group ...) ; Declare tokens
| (error scheme-exp) ; Called before error correction
| (grammar (nterm rhs ...) ...) ; Defines the grammar
| (src-pos) ; Optional: Automatic source locationing
| (precs (prec term ...) ...) ; Optional: Declare precedences
| (debug filename) ; Optional: print parse table & stack on error
| (yacc-output filename) ; Optional: Output the grammar in YACC format
| (suppress) ; Optional: Do not print conflict warnings

rhs ::= ((gsym ...) [term] action) ; Production with optional precedence tag
prec ::= left | right | nonassoc ; Associativity/precedence declarator
gsym ::= term | nterm ; Grammar symbol
action ::= scheme-exp ; Semantic action
filename ::= string
term, nterm, token-group ::= identifier

5.4 Attribute Computation

Each production in the grammar has an associated expression that
computes the attribute value of the parse-tree node corresponding
to the production’s left-hand non-terminal. This expression can use
the attribute values of the children nodes, which correspond to the
grammar symbols on the production’s right side. In YACC, the vari-
able $n refers to the value of the nth grammar symbol.

The PLT system non-hygenically introduces $n bind-
ings in the attribute computations. Tokens defined with
define-empty-tokens have no semantic values, so the
parser form does not bind the corresponding $n variables in the
semantic actions. The parser generator thereby ensures that a
reference to a $n variable either contains a value or triggers an
error.

Instead of requiring the $n convention, the GT design places no
restrictions on the variables bound to attribute values. For example,
the subtraction production from a simple calculator language,

(non-term exp
...
(=> ((left exp) - (right exp)) (- left right))
...)

hygienically introduces the left and right bindings referenced
from the attribute computation, (- left right). A grammar
symbol without enclosing parentheses, such as -, specifies no bind-
ing, indicating to downstream tools that the token’s semantic value
may be elided from the value stack when it is shifted by the parser.
(Essentially, the empty-token specification shows up in the CFG
specification.)

As a convenience syntax, if the variable is left unspecified, as in

(=> ((exp) - (exp)) (- $1 $3))

then the $n convention is used. This unhygienic bit of syntactic
sugar is convenient for hand-written parsers, while the explicit-
binding form provides complete control over variable binding for
hygienic macros that generate CFG forms.

For further convenience, the implicit-variable-prefix decla-
ration can override the $ prefix. Thus, a handwritten parser can ar-
range to use implicitly-bound variables of the form val-1, val-2,
. . . , with the declaration

(implicit-variable-prefix val-)

The $n notation is unavailable in the Bigloo parser generator. In-
stead, the grammar symbol’s name is bound to its value in the ac-
tion. Because the same grammar symbol could appear more than
once, the programmer can choose the name by appending it to
the grammar symbol’s name with the @ character in-between. The
Bigloo design provides more naming naming control than the PLT
system, but no more control over hygiene. Additionally, it can lead
to confusion if grammar symbols or attribute bindings already con-
tain @.

5.5 Code Generation

Although the PLT and GT parser generators are based on YACC’s
design, both use a syntactic embedding of the parser specification
into Scheme, much as PLT’s lexer generator does. In the PLT sys-
tem, a programmer writes a parser by placing a specification written
in the language shown in Figure 6 inside of a (parser ...) form.
The (parser ...) form compiles the grammar into a parse table
using LALR(1) lookahead and supplies an interpreter for the table.
These two elements are packaged together into a parser function.
The GT parser system uses the language in Figure 7 for its CFG
specifications. As in the PLT system, a CFG specification is placed
inside of a macro that compiles the CFG form into the target lan-
guage. However, the GT design provides a much wider range of
implementation options than the PLT and other systems.

The GT system factors the parser tool-chain into multiple lan-
guages. The programmer writes a parser using the CFG language
and the parser generator compiles it to a Scheme implementation in
three steps. It transforms the CFG into a TLI (for “target-language
independent”) specification which it then expands to an equiva-
lent parser in a push-down automata (PDA) language which it fi-
nally compiles into Scheme. The continuation-passing-style (CPS)
macro (cfg->pda cfg form ...) packages up the LALR com-

49

Figure 7 The GT CFG language
cfg ::= (clause ...)

clause ::= (tokens token-decl ...) ; Declare tokens and precedence tags
| (non-term nterm rhs ...) ; Declare a non-terminal
| (accept-lookaheads lookahead ...) ; Must come after parse
| (error-symbol ident [semantic-value-proc]) ; Error-repair machinery
| (no-skip token) ; Error-repair machinery
| (implicit-variable-prefix ident) ; Defaults to $
| (allowed-shift/reduce-conflicts integer-or-false)

token-decl ::= token
| (non token ...) ; Non-associative tokens
| (right token ...) ; Right-associative tokens
| (left token ...) ; Left-associative tokens

rhs ::= (=> [token] (elt ...) action) ; Production w/optional precedence tag

elt ::= symbol ; Symbol w/unused semantic value
| (var symbol) ; Symbol binding semantic value to var
| (symbol) ; Symbol w/implicitly bound semantic value

lookahead ::= (token ...[#f]) ; #f marks end-of-stream.
action ::= scheme-exp
symbol, nterm, token, var ::= ident

piler machinery and performs the first two steps. It expands to
(form ... pda), where pda is the PDA program compiled from
the original cfg form. The macro pda-parser/imperative-io
takes a PDA program, along with the token-case macro other
relevant forms specifying the input-stream interface, and ex-
pands it into a complete Scheme parser. An alternate macro,
pda-parser/pure-io maps a PDA program to Scheme code us-
ing a functional-stream model; it is intended for parsing characters
from a string, or items from a list. The main parser macro simply
composes the cfg->pda macro with one of the PDA-to-Scheme
macros to get a Scheme parser; this is a three-line macro.

Exporting the PDA language lets the system keep the token-stream
mechanism abstract throughout the CFG-to-PDA transformation.
The two PDA-to-Scheme macros each provide a distinct form of
token-stream machinery to instantiate the abstraction. In contrast,
the PLT system fixes the token-stream representation as a function
of no arguments that returns a token. Successive calls to the func-
tion should return successive tokens from the stream.

5.5.1 The TLI language

GT system was designed to be target-language neutral. That is,
to specify a parser in C instead of in Scheme using the CFG lan-
guage, we would only need an s-expression concrete grammar for
C in which to write the semantic actions. This means that the CFG-
processing tools for the GT system are also independent of the tar-
get language and the language used for the semantic actions. Note
that Scheme creeps out of the semantic actions and into the rest of
the grammar language in only one place: the variable-binding ele-
ments of production right-hand sides. These variables (such as the
left and right variables bound in the above example) are Scheme
constructs.

To excise this Scheme dependency, the GT system defines a
slightly lower-level language than the CFG language defined in
Figure 7. The lower-level language (called the TLI language)

is identical to the main CFG language, except that (1) the
implicit-variable-prefix clause is removed (having done its
duty during the CFG-to-TLI expansion), and (2) variable binding is
moved from the production rhs to the semantic-action expression.
In the TLI language, the example above is rewritten to

(=> ((exp) - (exp)) ; Grammar
(lambda (left right) (- left right))) ; Scheme

As in the the main CFG language, parentheses mark grammar sym-
bols whose semantic values are to be provided to the semantic ac-
tion. The TLI language is completely independent of the target lan-
guage, except for the semantic actions. In particular, TLI has noth-
ing to do with Scheme at all. This means that the CFG can be com-
piled to its push-down automaton (PDA) with complete indifference
to the semantic actions. They pass through the LALR transformer
unreferenced and unneeded, to appear in its result. Because the TLI
language retains the information about which semantic values in a
production are needed by the semantic action, optimizations can be
performed on the parser in a target-language independent manner,
as we will see below.

5.5.2 The PDA language

A PDA program (see Figure 8) is primarily a set of states, where
each state is a collection of shift, reduce, accept and goto actions.
Shift, reduce and accept actions are all guarded by token lookahead
specifications that describe what the state of the token stream must
be in order for the guarded action to fire. A non-terminal symbol
guards a goto action. Reduce actions fire named rules, which are
declared by rule clauses; a reduction pops semantic values off the
value stack and uses its associated semantic action to compute the
replacement value.

The PDA design contains several notable elements. The looka-
head syntax allows for k-token lookahead, for k = 0,1 and greater,
so the PDA language supports the definition of LR(k) parsers (al-

50

Figure 8 The PDA language
pda ::= (pda-clause ...)

pda-clause ::= (comment form ...) ; Ignored
| (tokens token ...) ; Declare tokens
| (state state-name action ...)
| (rule rule-name non-term bindings semantic-action)
| (error-symbol ident [semantic-value-proc]) ; Error-repair machinery
| (no-skip token ...) ; Error-repair machinery

action ::= (comment form ...) ; Ignored
| (shift lookahead state-name) ; Shift, reduce & accept
| (reduce lookahead rule-name) ; actions all guarded
| (accept lookahead) ; by token-lookaheads.
| (goto non-term state-name) ; Goto action guarded by non-terminal
| (error-shift ident state-name) ; Error-repair machinery

lookahead ::= (token ...[#f]) ; #f marks end-of-stream
bindings ::= (boolean ...) ; #f marks a value not passed to semantic action
state-name, rule-name ::= ident
token, non-term ::= ident

though our tools only handle k ≤ 1). As action-selection is order-
dependent, the zero-token lookahead () is useful as a default guard.

Also notable, the bindings element of the rule form is a list of
boolean literals, whose length determines how many semantic val-
ues are popped off the value stack. Only values tagged with a #t
are passed to the semantic action; values tagged with a #f are dis-
carded. As an example, the reduction rule

;;; ifexp ::= if <exp> then <stmt> else <stmt> fi
(rule r7 ifexp (#t #t #f #t #f #t #t)

(lambda (iftok exp stmt1 stmt2 fitok)
(make-ifexp exp stmt1 stmt2

(token:leftpos iftok) ;Position-tracking
(token:rightpos fitok)))) ;machinery

specifies a rule that will pop seven values off the stack, but only
pass five of them to the semantic action. Thus, the semantic action
is a Scheme procedure that takes only five arguments, not seven.

The bindings element allows a PDA optimizer, via static analy-
sis, to eliminate pushes of semantic values that will ultimately be
discarded by their consuming reductions—in effect, useless-value
elimination at the PDA level. The bindings form specifies the local
data dependencies of the semantic actions. This key design point al-
lows data-flow analysis of the PDA program without requiring any
understanding of the language used to express the semantic action,
which in turn supports strong linguistic factoring. The semantic
action s-expression could encode a C statement, or an SML expres-
sion just as easily as a Scheme expression; a PDA optimizer can
analyse and transform a PDA program with complete indifference.

A great allure of PDA computation is its sub-Turing strength, which
means that we have a much easier time analyzing PDA programs
than those written in a Turing-equivalent language. The moral
might be: always use a tool small enough for the job. We have
designed and are currently implementing a lower-level PDA0 lan-
guage, which allows source-to-source optimizations such as non-
terminal folding, control- and data-flow analysis, and dead-state
elision. This has the potential to make very lightweight parsing
practical, i.e., parsers that parse all the way down to individual char-

acters, yet still assemble tokens at lexer speeds. Again, this can all
be provided completely independent of the eventual target language
by defining CPS macros that work strictly at the PDA0 level.

Factoring out the PDA as a distinct language also supports multiple
producers as well as multiple consumers of PDA forms. One could
implement SLR, canonical LR and other CFG processors to target
the same language, and share common back end.

5.6 Summary

Although the PLT and GT parser generators follow the general de-
sign of YACC, both systems syntactically embed parser specifica-
tions in Scheme. The embedding benefits the PLT parser generator
in the same way it benefits the PLT lexer generator, whereas the GT
system takes advantage of the syntactic embedding to maximize
flexibility. In GT, the token structure is specified on a per-parser
basis through a token-case macro, avoiding any commitment to a
particular lexer/parser interface. (The PLT token strategy could be
implemented as a token-case macro.) Furthermore, the GT sys-
tem provides complete freedom over naming in the grammar and
attributes, without compromising hygiene. We think GT’s attribute
naming system is superior to other Scheme parser generators, in-
cluding Bigloo’s and PLT Scheme’s. By using a language tower,
the GT system can isolate details of one level from the others. This
allows, for example, easily switching between multiple PDA imple-
mentations and token stream representations with the same CFG.
The separation of the token and end-of-stream representations sup-
ports the use of different kinds of token-stream representations.

6 Taking Full Advantage of Syntax

As we have seen, syntactic embeddings of lexer and parser specifi-
cations allow the lexer and parser generator to perform the transla-
tion to DFA and PDA at compile time. The syntactic approach also
supports the debugging of parser specifications and lets the program
development environment operate on them.

51

6.1 Debugging Parsers

Static debugging of an LR parser has two components: detecting
malformed grammars and semantic actions, and detecting gram-
mars that do not conform to the requirements of the parsing method-
ology in use. The PLT system helps programmers with the former
kinds of error using the techniques mentioned in Section 5.2 and
Section 6.2. The GT system’s multi-level design gives program-
mers an elegant way of approaching the latter kinds of problems.

Most parsing methodologies (including LL(k), LR(k), and LALR)
cannot handle all unambiguous CFGs, and each builds ambiguous
PDAs on some class of unambiguous CFGs. Analyzing and fixing
these grammars necessarily requires an examination of the item sets
associated with the conflicted states of the broken PDA—they must
be debugged at the PDA level. In most systems, including YACC
and the PLT system, these errors are debugged by printing out and
then carefully studying a report of the grammar’s ambiguous char-
acteristic finite-state automaton (CFSA), which is essentially the
program defining the PDA.

An ambiguous PDA has multiple shift/reduce/accept transitions
guarded by the same lookahead, so the check for bad grammars oc-
curs statically in the PDA-to-Scheme macro. Because the GT parser
system factors the parser tool chain into multiple language levels,
the report machinery comes for free: the PDA program is the re-
port. Since the LALR compiler is exported as a CPS macro, using
quote for the syntactic continuation shifts from language-level to
data structure. That is, this Scheme form (cfg->pda cfg quote)
expands to (quote pda) so the the following expression produces
an error report.

(pretty-print (cfg->pda cfg quote))

The PDA language includes a comment clause for the LALR com-
piler to record the item-set information for each state. This infor-
mation is critical for human understanding of the PDA. An example
of a state generated by cfg->pda is

(state s15
(comment (items (=> exp (exp () divide exp))

(=> exp (exp () times exp))
(=> exp (exp minus exp ()))
(=> exp (exp () minus exp))
(=> exp (exp () plus exp))))

(reduce (r-paren) r11)
(reduce (semicolon) r11)
(comment (reduce (times) r11))
(shift (times) s11)
(comment (reduce (divide) r11))
(shift (divide) s12)
(comment (reduce (plus) r11))
(shift (plus) s13)
(comment (reduce (minus) r11))
(shift (minus) s14)
(reduce (#f) r11))

A comment clause lists the kernel set of the state’s items. The item
comments are grammar productions with () allowed on the right-
hand sides to mark the item cursor. (We did not use the traditional
dot marker ‘.’ for obvious reasons.) The LALR compiler comments
out ambiguous actions that are resolved by precedence, associativ-
ity, or the allowed-conflict-count declaration. State s15 has four of
these. Had one of them not been resolved by the LALR macro,
the resulting PDA would be ambiguous, causing the PDA macro to
report a static error that the programmer would have to debug.

The GT tools also have small touches to help the programmer focus
in on the problem states. The LALR compiler leaves a simple report
in a comment at the top of the PDA form listing the names of all
conflicted states, e.g.,

(comment (conflict-states s41 s63 s87))

The GT tools also provide a PDA analyser that filters a PDA and
produces a reduced PDA that containing only the ambiguous states
of the original program. Because we can so trivially render the PDA
as a Scheme s-expression, it is easy to comb through a PDA or oth-
erwise interactively manipulate it using the usual suite of Scheme
list-processing functions such as filter, fold, map, any and so
forth—a luxury not afforded to YACC programmers.

Placing PDA static-error detection in the PDA tools, where it be-
longs, has another benefit. Since the LALR compiler will happily
produce an ambiguous PDA, we could produce a generalized LR
(GLR) parser simply by implementing a nondeterministic PDA as
a distinct macro from the current PDA-to-Scheme one. It would
compose with the current cfg->pda macro, handling ambiguous
grammars without complaint allowing reuse of the complex LALR
tool with no changes.

6.2 Little Languages and PDEs

The DrScheme program development environment has several fea-
tures that display feedback directly on a program’s source. Specif-
ically, DrScheme highlights expressions that have caused either a
compile-time or run-time error, and the Check Syntax tool draws ar-
rows between binding and bound variables. Check Syntax inspects
fully expanded Scheme source code to determine arrow placements.
The action and attribute expressions inside the PLT lexer and
parser forms appear directly in the expanded code with their lexi-
cal scoping and source location information intact, so that Check
Syntax can draw arrows, and DrScheme can highlight errors as
demonstrated in Figures 1 and 2 in Section 2.2.

The lexer and parser forms expand into DFA and parse tables,
leaving out the source regular expression and CFG specifications.
Thus, DrScheme requires extra information to fully support these
forms. Run-time error highlighting is not an issue, because the reg-
exp or grammar itself cannot cause a runtime error. The lexer and
parser forms directly signal compile-time errors (e.g., for an un-
bound regexp operator or terminal), including the source location
of the error, to DrScheme. As they parse the input regexp or gram-
mar expression, each sub-expression (as a syntax object) contains
its source location, so they can conveniently signal such errors.

To inform Check Syntax of dependencies in the grammar, the
parser form emits a dummy let form as dead code, along with
the parse table and actions. The let includes a binding for each
non-terminal and token definition, and its body uses each grammar
symbol that occurs on the right of a production. The let intro-
duces a new scope for all of the non-terminals and tokens, ensuring
that they do not interfere with outside identifiers of the same name.
The parser form generates the following let for the example in
Figure 9.

(let ((exp void)
(NUM void)
(− void)
(EOF void))

(void NUM exp − exp))

52

Figure 9 Locating the uses of a token and a non-terminal

Figure 10 Correlating an action with the grammar

We use a different approach for the situation shown in Figure 10.
The parser generator wraps the action with a lambda that binds the
$3 . To cause Check Syntax to draw an arrow, the lambda’s $3 pa-
rameter uses the source location of the referent grammar symbol.
With a GT-style hygienic naming option, we would use the identi-
fier supplied with the grammar symbol in the lambda instead, and
Check Syntax could then draw the arrow appropriately to the binder.
Furthermore, α-renaming could be used to change the name. This
illustrates that hygienic macros interact more naturally with pro-
gramming tools, and not just with other macros.

Like any compiler, a macro that processes an embedded language
must respect that language’s dynamic semantics by generating code
that correctly executes the given program. Also like any compiler,
the macro must implement the language’s static semantics. It can
do this by performing the requisite static checking itself, as in the
SRE type system and the PLT parser form’s check for undefined
grammar symbols, or it can arrange for statically invalid source pro-
grams to generate statically invalid target programs. In this case,
the macro effectively re-uses the target language’s static checking.
This is how the parser form handles unbound $n identifiers, by
letting Scheme’s free variable detection catch them. Even for the
static properties checked directly by the macro, it might need to
emit annotations (such as the let mentioned above) to preserve
static information for tools like Check Syntax.

7 References

[1] A. A. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[2] I. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program trans-
formations for practical scalable software evolution. In Inter-
national Conference on Software Engineering, 2004.

[3] D. Boucher. A portable and efficient LALR(1) parser
generator for Scheme. http://www.iro.umontreal.ca/
~boucherd/Lalr/documentation/lalr.html.

[4] J. A. Brzozowski. Derivatives of regular expressions. Journal
of the ACM, 11(4):481–494, October 1964.

[5] F. DeRemer and T. Pennello. Efficient computation of
LALR(1) look-ahead sets. ACM Trans. Program. Lang. Syst.,
4(4):615–649, 1982.

[6] D. Dubé. SILex. http://www.iro.umontreal.ca/
~dube/.

[7] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstrac-
tion in Scheme. Lisp and Symbolic Computation, 5(4):295–
326, 1993.

[8] M. Flatt. PLT MzScheme: Language Manual, 2004. http:
//download.plt-scheme.org/doc/mzscheme/.

[9] D. P. Friedman, M. Wand, and C. P. Haynes. Essentials of
Programming Languages. The MIT Press, Cambridge, Mas-
sachusetts, 2001.

[10] M. Johnson. http://cog.brown.edu:16080/~mj/
Software.htm.

[11] M. Serrano. Bigloo: A “practical Scheme compiler”,
2004. http://www-sop.inria.fr/mimosa/fp/Bigloo/
doc/bigloo.html.

[12] O. Shivers. A scheme shell. Higher-order and Symbolic Com-
putation. to appear.

[13] O. Shivers. A universal scripting framework, or lambda: the
ultimate “little language”. In Concurrency and Parallelism,
Programming, Networking, and Security, volume 1179 of
Lecture Notes in Computer Science, pages 254–265. Springer,
1996.

[14] O. Shivers. The SRE regular-expression notation. http://
www.cs.gatech.edu/~shivers/sre.txt, 1998.

[15] O. Shivers and B. Carlstrom. The scsh manual.
ftp://www-swiss.ai.mit.edu/pub/su/scsh/
scsh-manual.ps.

[16] M. Sperber and P. Thiemann. Generation of LR parsers
by partial evaluation. ACM Trans. Program. Lang. Syst.,
22(2):224–264, 2000.

[17] D. R. Tarditi and A. W. Appel. ML-Yacc User’s Manual: Ver-
sion 2.4, 2000. http://www.smlnj.org/doc/ML-Yacc/.

[18] K. Thompson. Programming Techniques: Regular expression
search algorithm. Communications of the ACM, 11(6):419–
422, June 1968.

53

Compiling Java to PLT Scheme

Kathryn E. Gray Matthew Flatt
Univeristy of Utah

Abstract

Our experimental compiler translates Java to PLT Scheme; it en-
ables the use of Java libraries within Scheme programs, and it
makes our Scheme programming tools available when program-
ming with Java. With our system, a programmer can extend and
use classes from either language, and Java programmers can em-
ploy other Scheme data by placing it in a class using the Java native
interface.

PLT Scheme’s class-system, implemented with macros, provides a
natural target for Java classes, which facilitates interoperability be-
tween the two languages, and PLT Scheme’s module maintains Java
security restrictions in Scheme programs. Additionally, module’s
restrictions provide a deeper understanding of a Java compilation
unit and make Java’s implicit compilation units explicit.

1 Why Compile Java to Scheme?

Scheme implementations that compile to Java (or JVM bytecode)
benefit from the extensive infrastructure available for Java pro-
grams, including optimizing just-in-time compilers, JVM debug-
ging tools, and an impressive roster of Java-based libraries. For PLT
Scheme, we have inverted the equation, compiling Java to Scheme.
We thus obtain a Java implementation with access to PLT Scheme’s
libraries and facilities—especially the DrScheme environment and
its teaching modes [5], which is the primary motivation for our ef-
fort [9].

By compiling Java to Scheme, we also gain access to the many
libraries implemented in Java, as long as we can bridge the gap
between Java and Scheme. In many ways, the translation is the
same for Java-to-Scheme compilation as it is for Scheme-to-Java,
but the trade-offs are somewhat different. In particular, libraries
that contain native calls are no problem for Scheme-to-Java compi-
lation, but Java-to-Scheme must provide special support for native
methods. In contrast, a Scheme compilation model with expressive
macros accommodates Java code more easily than Java’s model of

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Kathryn E Gray and Matthew Flatt.

compilation accommodates Scheme.

Our Java-to-Scheme compiler remains a work in progress. Even so,
we have gained experience that may be useful to future implemen-
tors of Java-to-Scheme compilers.

In the long run, we expect that many useful Java libraries will fit into
our implementation, as PLT Scheme provides a significant set of
libraries of its own. For example, we expect that the subset of AWT
used by Swing can be mapped onto PLT Scheme’s GUI primitives,
thus enabling Swing-based applications to run in PLT Scheme. In
other words, we believe that many Java libraries can be made to run
by re-implementing certain “native” Java methods in PLT’s native
language, Scheme.

In this report, we describe

• a strategy for compiling Java classes to PLT Scheme, which
exploits a macro-implemented extension of Scheme for
object-oriented programming;

• the interaction of the strategy with PLT Scheme’s module sys-
tem;

• how we define the translation of run-time values between Java
and Scheme; and

• open problems that we have not yet addressed.

Before introducing our compilation strategy, we begin with a de-
scription of two libraries that we would like to embed in Scheme,
and the strategy of doing so. One is relatively easy to support, and
the other is more difficult.

2 Java Libraries

Kyle Siegrist’s probability and statistics library (PSOL) [16] pro-
vides various mathematical procedures. The library also deploys a
graphical interface to experiment with the procedures, but the inter-
face is not necessary to use the library’s primary functionality.

Terence Parr’s ANTLR [13] provides parsing technology that per-
mits grammar inheritance.

These two libraries are representative of the kinds of code and de-
pendencies found in non-graphical Java libraries. We estimate that
roughly 10 to 15% of Java libraries have requirements similar to
PSOL, while 30 to 40% are similar to ANTLR. The remaining li-
braries tend to depend on graphic capabilities.

54

Naturally, both packages rely on the basic components of Java’s
class system, including classes and interfaces, overloading, and
static (as well as instance) members, as well as loops and arrays.
Both libraries also depend on some of Java’s core libraries, includ-
ing Object, String, and Throwable.

PSOL depends on Java’s Math library and numeric wrapper classes.
The latter provides the ability to use primitive values (such as 1.2)
as objects, as well as functionality over numbers. These libraries
rely on native methods with existing counterparts in PLT Scheme.

ANTLR requires several language features that we do not yet
support: nested classes (commonly known as inner classes), the
switch statement, and reflection. The first two, nested classes and
switch, simply have not been implemented yet in our system, but
there are no technical challenges. Reflection is more difficult than
the other two, though, and we discuss this problem in Section 5.5.2.
ANTLR further relies on utility libraries and IO, which in turn rely
on nested classes and reflection. Several IO classes rely on native
methods that have counterparts in PLT Scheme.

Neither PSOL nor ANTLR immediately ran in our current imple-
mentation. In the case of PSOL, we easily implemented the rele-
vant Math methods and wrapper classes, so that PSOL now runs in
non-graphical mode. We expect that implementing the IO methods
needed for ANTLR will be similarly easy, but reflection support is
a much larger obstacle. Support for graphical PSOL is completely
out of reach in the short term.

3 Classes and Objects in PLT Scheme

PLT Scheme was designed from the start to support GUI program-
ming with class-based, object-oriented constructs. Originally, the
class implementation was built into the interpreter’s core, and each
object was implemented as a record of closures. Our current sys-
tem is more Java-like, in that an object is a record of fields plus a
per-class method table, and it is implemented outside the core by a
collection of (an extended) syntax-case macros.

3.1 Class Constructs

A class is created with the keyword class, and the resulting form is
much like Java’s. It creates a new class given a superclass and a col-
lection of method overrides, new methods, and new fields. Syntac-
tically, class consists of an expression for the superclass followed
by a sequence of declarations.

The following is a partial grammar for class clauses:

expr = · · ·
| (class super-expr clause ...)

clause = (field init-decl ...)
| expr
| (init init-decl ...)
| (public name ...)
| (override name ...)
| (private name ...)
| (define name method)
| (inherit name ...)

init-decl = name
| (name init-expr)

method = (lambda formals expr0 expr ...)

Instead of a constructor, a class contains field declarations and
other exprs to evaluate each time the class is instantiated. An
init introduces a keyword-based initialization argument (possibly
with a default value) to be supplied when the class is instantiated.
The public form names the new public methods defined in the
class, override names the overriding methods defined in the class,
private names private methods. Each method definition looks
like a function definition using define and a name declared as
public, override, or private. Macros such as define/public
(not shown in the grammar) combine the declaration and definition
into a single form.

The inherit form names methods to be inherited from the su-
perclass. Inherited methods must be declared explicitly because
classes are first-class values in PLT Scheme, and a class’s super-
class is designated by an arbitrary expression. The advantage of
first-class classes is that a mixin can be implemented by placing a
class form inside a lambda [6]. Obviously, Java code contains
no mixin declarations, but as we note later in Section 7.2, mixins
provide a convenient solution to certain interoperability problems.

The built-in class object% serves as the root of the class hierar-
chy, and by convention, % is used at the end of an identifier that
is bound to a class. As in Java, the class system supports only
single-inheritance. A class explicitly invokes the body expressions
of its superclass using super-new.

Within a class body, fields and methods of the class can be ac-
cessed directly, and fields can be modified using set!. Initializa-
tion arguments can be accessed only from field initializers and other
expressions, and not in method bodies. For example, a stack class
can be implemented as follows:

(define stack%
(class object%

(public push pop)
(init starting-item)
(field (content (list starting-item)))
(define push

(lambda (v)
(set! content (cons v content))))

(define pop
(lambda ()

(let ((v (car content)))
(set! content (cdr content))
v)))

(super-new)))

The new form instantiates a class. Its syntax is

(new class-expr (init-name expr) ...)
; ⇒ an object

where each init-name corresponds to an init declaration in the
class produced by class-expr. For example, a stack instance
(that initially contains a 5) is created as follows:

(define a-stack (new stack% (starting-item 5)))

The send form invokes a method of an instance,

(send obj-expr method-name arg-expr ...)
; ⇒ method result

55

where method-name corresponds to a public method declara-
tion in obj-expr’s class (or one of its super classes). For exam-
ple, send is used to push and pop items of a-stack:

(send a-stack push 17)
(send a-stack pop) ; ⇒ 5

Each execution of send involves a hash-table lookup for
method-name; to avoid this overhead for a specific class, a pro-
grammer can obtain a generic function using generic and apply it
with send-generic:

(generic class-expr method-name); ⇒ a generic
(send-generic obj-expr generic-expr

arg-expr ...) ; ⇒ method result

In accessing fields, the forms class-field-accessor and
class-field-mutator produce procedures that take an instance
of the given class and get or set its field.

(class-field-accessor class-expr field-name)
(class-field-mutator class-expr field-name)

where field-name corresponds to a field declaration in the
class.

By default, a field, init, or method name has global scope, in the
same sense as a symbol. By using global scope for member names,
classes can be easily passed among modules and procedures (for
mixins or other purposes).

A name can be declared to have lexical scope using
define-local-member-name:

(define-local-member-name name ...)

When a name is so declared and used with init, field, or public,
then it is only accessible through override, inherit, new, send,
generic, class-field-accessor, and class-field-mutator
in the scope of the declaration. At PLT Scheme’s module
level, local member names can be imported and exported, just
like macros. At run-time, the values produced by generic,
class-field-accessor, and class-field-mutator can be used
to communicate a method or field to arbitrary code.

For example, we can use define-local-member-name to make
the content field private1 to the scope of the stack% declara-
tion:

(define-local-member-name content)
(define stack% (class ...))
(define stack-content

(class-field-accessor stack% content))
(define (empty-stack? s)

(null? (stack-content s)))

To support interfaces, PLT Scheme offers an interface form, plus
a class∗ variant of class that includes a sequence of expressions
for interfaces. An interface consists of a collection of method names
to be implemented by a class, and like a class, it is a first-class
object. As in Java, an interface can extend multiple interfaces.

1The class form also supports private field declarations, but we
omit them for brevity.

expr = · · ·
| (class∗ super-expr

(interface-expr ...)
clause ...)

| (interface (super-expr ...) name ...)

The generic form accepts an interface in place of a class, but the
current implementation of generics offers no performance advan-
tage for interfaces.

3.2 PLT Scheme vs. Java

If PLT Scheme’s class system were not already Java-like, we
would have implemented new forms via macros to support Java-
to-Scheme compilation. This layering allows us to develop and test
the core class system using our existing infrastructure for Scheme,
including debugging and test support.

PLT Scheme’s class system does not include inner classes or static
methods, so the Java-to-Scheme step transforms those Java con-
structs specially. Static methods are easily converted to procedures,
and inner classes have strange scoping rules that seem better han-
dled before shifting to macro-based expansion. Similarly, Java’s
many namespaces are transferred into Scheme’s single namespace
by the compiler, rather than by macros. In other words, we use
macros to implement the parts of the compiler that fit naturally with
lexical scope and local expansion, and we perform other tasks in the
compiler.

4 Compilation Model

A single Java source file typically contains one public class (or
interface). Often, the file itself corresponds to a compilation unit,
so that one .java file can be compiled to one .class (or, in our
case, to one .scm file).

In general however, reference cycles can occur among .java files,
as long as they do not lead to inheritance cycles. Thus, the compi-
lation unit corresponds to several mutually dependent .java files.
For example, one class may refer to a field of another class, and
compiling this reference requires information about the structure of
the referenced class. In contrast, merely using a class as an identi-
fier’s type does not necessarily require information about the class,
especially if the identifier is not used.

More concretely, the code in Figure 1 corresponds to three source
files, one for each class. Compiling Empty requires knowledge of
the superclass List, while compiling List requires knowledge of
Empty for the constructor call. Similarly, List refers to Cons and
Cons refers to List. Thus the three classes must all be compiled at
the same time. This kind of cyclic reference appears frequently in
real Java code.

Java’s packages are orthogonal to compilation units because a
group of mutually dependent .java files might span several Java
packages. Furthermore, a mutually dependent group of files rarely
includes all files for a package, so forcing a compilation unit to be
larger than a package would lead to needlessly large compilation
units. Finally, in most settings, a Java package can be extended
by arbitrary files that simply declare membership in the package,
which would cause an entire package to recompile unnecessarily.

56

To a first approximation, our Java-to-Scheme compiler produces a
single Scheme module for each collection of mutually dependent
Java sources, where module is the unit of compilation for PLT
Scheme code [7]. Each class used by, but not a member of, the
dependent group is require-ed into the module. The Java specifi-
cation [8] requires that each class be initialized and available prior
to its first use, which the require statement ensures.

The module is also a unit of organization at the Scheme level, and
for interoperability, we would like to maintain the organization of
the Java library in the Scheme program. Thus, our Java-to-Scheme
compiler actually produces N + 1 modules for N mutually depen-
dent Java sources: one that combines the Java code into a compila-
tion unit, and then one for each source file to re-export the parts of
the compilation unit that are specific to the source.2 Thus Scheme
and Java programmer alike import each class individually. For ex-
ample, compiling Figure 1 results in four modules: A composite
module that contains the code of all three classes and exports all
definitions, a List module that re-exports List and main, an Empty
module that re-exports Empty, and a Cons module that re-exports
Cons and field-relevant information.

In practice, we find that groups of mutually dependent files are
small, so that the resulting compilation units are manageable. This
is no coincidence, since any Java compiler would have to deal with
the group as a whole. In other words, this notion of compilation
unit is not really specific to our compiler. Rather, having an explicit
notion of a compilation unit in our target language has forced us
to understand precisely what compilation units are in Java, and to
reflect those units in our compiler’s result.

Currently, our compiler produces an additional file when generat-
ing Scheme from Java code. The extra file contains Java signature
information, such as the types and names of fields and methods in
a class, which the compiler needs to process additional compilation
units. Other Java compilers typically store and access this infor-
mation in a .class directly, and in a future version of our com-
piler, we intend to explore storing this compile-time information
in a module in much the same way that compile-time macros are
stored in modules.

5 Compilation Details

Our compiler begins by parsing Java code using a LEX-/YACC-
style parser generator. Source tokens are quickly converted into
location-preserving syntax identifiers, as used in macros. Thus, as
the generated Scheme code is processed by the Scheme compiler,
source information from the original Java program can be preserved
during Scheme compilation. This source-location information is
used mainly by DrScheme tools or for reporting run-time errors.

As our primary motivation for this work (pedagogic Java subsets)
requires control over all error messages reported from the compiler,
we chose to compile Java source instead of Java bytecode. While
this limits the libraries available to our system, in the future we can
use existing bytecode interpreting libraries to alleviate this limita-
tion.

Java and PLT Scheme both strictly enforce an evaluation order on
their programs. Coincidentally, both enforce the same ordering on
function arguments and nested expressions. Therefore, those Java

2If a class is not a member of any dependency cycle, then the
compiler produces only one module.

abstract class List {
abstract int length();

static void main() {
Test.test(new Empty().length(), 0);
Test.test(new Cons(1,

new Empty()).length(),
1);

}
}

class Empty extends List {
int length() { return 0; }

}

class Cons extends List {
int car;
List cdr;
Cons(int c, List cdr) {

this.car = c;
this.cdr = cdr;

}
int length() { return 1 + cdr.length(); }

}
Figure 1. A Cyclic Java program

constructs which differ from Scheme only in syntax have a straight-
forward translation. For example,

int a = varA + varB, b = varA - varB;
if (a+b <= 2)
res = a;

else
res = b;

translates into

(let ((a (+ varA varB))
(b (− varA varB)))

(if (<= (+ a b) 2)
(set! res a)
(set! res b)))

wrapped with the appropriate source location and other informa-
tion. Indeed, the majority of Java’s statements and expressions
translate as expected.

Currently, mathematical operations directly use standard Scheme
operations where possible. Thus, unlike the Java specification,
numbers do not have a limited range and will automatically be-
come bignums. In the future, our compiler will use mathematical
operations that overflow as in the Java specification.

5.1 Classes

A Java class can contain fields, methods, nested classes (and inter-
faces), and additional code segments, each of which can be static.
Our Scheme class is similar, except that it does not support static
members. Nevertheless, a static member closely corresponds to a
Scheme function, value, or expression within a restricted names-
pace, i.e., a module, so static Java members are compiled to these
scheme forms.

57

An instance of a class is created with the new form described in
Section 3.1. As noted in that section, PLT Scheme’s new triggers
the evaluation of the expressions in the top level of the class body.
These expressions serve the same purpose as a single Java construc-
tor. However, a Java class can contain multiple constructors, pre-
venting a direct translation from a Java constructor to a sequence
of top-level expressions. Instead, we translate Java constructors as
normal methods in the Scheme class, and we translate a Java new
expression into a Scheme new followed by a call to a constructor
method. This behavior adheres to the guidelines for class instantia-
tion provided by Java’s specification [8].

5.2 Fields & Methods

Non-static Java fields translate into Scheme field declarations.
A static Java field, meanwhile, translates into a Scheme top-level
definition. Thus, the fields

static int avgLength;
int car;

within the class Cons become, roughly

(define avgLength 0)

and

(define Cons
(class · · ·

(field (car 0)) · · ·))

However, the above translation does not connect the variable
avgLength to the containing class Cons. If multiple classes within
a compilation unit contain a static field avgLength, the definitions
would conflict. For non-static fields, Scheme classes do not al-
low subclasses to shadow field names again potentially allowing
conflicts. Additionally, to avoid conflicts between Java’s distinct
namespaces for fields, methods, and classes, we append a ˜f to the
name. Therefore, we combine avgLength with the class name
and ˜f, forming the result as Cons-avgLength˜f, and car be-
comes Cons-car˜f. Note that Scheme programmers using this
name effectively indicate the field’s class.

Compilation generates a mutator function for both of these fields,
plus an accessor function for the instance (non-static) field. Since
the module form prohibits mutating an imported identifier, the mu-
tator function Cons-avgLength-set! provides the only means
of modifying the static field’s value. If the static field is final, this
mutator is not exported. Also, instance field mutators are not gener-
ated when they are final. Thus, even without compile-time check-
ing, Scheme programmers cannot violate Java’s final semantics.

Similarly, instance methods translate into Scheme methods and
static methods into function definitions with the class name ap-
pended, but the name must be further mangled to support overload-
ing. For example, the class List in Figure 2 contains two methods
named max, one with zero arguments, the other expecting one in-
teger. The method max(int) translates into max-int, and max
translates into max. This mangling is consistent with the Java byte-
code language, where a method name is a composite of the name
and the types of the arguments. Also, since “-” may not appear in
a Java name, our convention cannot introduce a collision with any
other methods in the source.3

3We do not add a -m to method names, because ˜f distin-
guishes fields from methods, and method and class names must be

abstract class List {
abstract int max();
abstract int max(int min);
}

Figure 2. Overloaded methods

As mentioned in Section 5.1, constructors are compiled as methods,
which we identify with special names. The constructor for Cons in
Figure 1 translates into Cons-int-List-constructor. The
-constructor suffix is not technically necessary to avoid con-
flicts, but it clarifies that the method corresponds to a constructor.

A private Java member does not translate to a private Scheme
member, because static Java members are not part of the Scheme
class, but Java allows them to access all of the class’s members. We
protect private members from outside access by making the mem-
ber name local to a module with define-local-member-name; the
Java-to-Scheme compiler ensures that all accesses within a com-
pilation unit are legal. Our compiler does not currently preserve
protection for protected and package members.

5.3 Statements

Most Java statements (and expressions) translate directly into
Scheme. The primary exceptions are return, break, continue,
and switch, which implement statement jumps. For all except
switch,4 we implement these jumps with let/cc:5

(define-syntax let/cc
(syntax-rules ()

((let/cc k expr ...)
(call-with-current-continuation

(lambda (k) expr ...)))))

A return translates into an invocation of a continuation that was
captured at the beginning of the method. For example, the method
length from Empty in Figure 1 becomes

(define/public length
(lambda ()

(let/cc return-k
(return-k 0))))

The statements break and continue terminate and restart a for,
while, or do loop, respectively. To implement these, we capture
suitable continuations outside and inside the loop, such that

while(true) {
if (x == 0)

break;
else if (x == 5)

continue;
x++;

}

becomes

distinguished already at the Java source level.
4We have not implemented switch.
5We actually use let/ec, which captures an escape-only con-

tinuation.

58

(let/cc break-k
(let loop ()
(let/cc continue-k

(when #t
(if (= x 0)

(break-k)
(if (= x 5)

(continue-k)
(set! x (+ x 1))))

(loop)))))

As it happens, let/cc is expensive in PLT Scheme. We plan to ap-
ply a source-to-source optimizer to our Java-to-Scheme compiler’s
output to eliminate these let/cc patterns, putting each statement in
a separate letrec-bound function and chaining them. Although we
could avoid let/cc in the output of our Java-to-Scheme compiler,
it is easier to translate most Java statements directly to Scheme, and
then work with Scheme code to optimize.

5.4 Native Methods

Most Java implementations use C to provide native support. Our
system, naturally, uses Scheme as the native language. When our
compiler encounters a class using native methods, such as

class Time {
static native long getSeconds(long since);
native long getLifetime();
}

the resulting module for Time requires a Scheme module
Time-native-methods which must provide a function for
each native method. The name of the native method must be
the Scheme version of the name, with -native appended at the
end. Thus a native function for getSeconds should be named
Time-getSeconds-long-native and getLifetime should
be getLifetime-native.

Within the compiled code, a stub method is generated for each
native method in the class, which calls the Scheme native func-
tion. When getSeconds is called, its argument is passed to
Time-getSeconds-long-native by the stub, along with the
class value, relevant accessors and mutators, and generics for pri-
vate methods. An instance method, such as getLifetime, addi-
tionally receives this as its first argument.

5.5 Constructs in Development

We have not completed support of switch, labeled statements,
nested classes, and reflection. The first two are straightforward, and
we discuss our design of the other two further in this section. Our
partial implementation of nested classes suggests that this design is
close to final.

5.5.1 Nested Classes

In Java, a nested class may either be static or an instance class,
also known as an inner class. An inner class can appear within
statement blocks or after new (i.e. an anonymous inner class).

Static nested classes are equivalent to top-level classes that have the
same scope as their containing class, with the restriction that they
may not contain inner classes. These can be accessed without di-
rectly accessing the containing class. When compiled to Java byte-

codes, nested classes are lifted out and result in separate .class
files. We equivalently lift a nested class, and provide a separate
module for external access. We treat a nested class and its container
as members of a cycle, placing both in the same module.

Inner classes are also compiled to separate classes. Unlike static
nested classes, they may not be accessed except through an instance
of their containing class. A separate module is therefore not pro-
vided, and construction may only occur through a method within
the containing class.

The name of a nested class is the concatenation of the containing
class’s name with the class’s own name. Class B in

class A {
class B {
}

}

is accessed as A.B. For anonymous inner classes, we intend to
follow the bytecode strategy: the class will be given a name at
compile-time, the containing class name appended with a call to
gensym, and then lifted as other nested classes.

5.5.2 Reflection

Java supports multiple forms of reflection: examining and inter-
acting with classes and objects specified at runtime; dynamically
extending classes; and modifying the means of class loading and
compilation. The first one can be supported either with macros or
generating methods during compilation to provide the data. We do
not yet know how the second will be supported, or what support for
the third would mean within our system.

The first form of reflection allows users to create new class in-
stances with strings, inspect and modify fields, call methods, and
inspect what fields and methods are available. The last of these is
easily supported by generating the information during compilation
and storing it in an appropriate method. The other functionality can
be supported through Scheme functions.

6 Run-Time Support

Java provides two kinds of built-in data: primitive values, such as
numbers and characters, and instances of predefined classes. The
former translate directly into Scheme, and most of the latter (in
java.lang) can be implemented in Java. For the remainder of the
built-in classes, we define classes directly in Scheme.

6.1 Strings

Although the String class can be implemented in Java using an
array of chars, we implement String in Scheme. This implemen-
tation allows a Scheme string to hold the characters of a Java string,
thus facilitating interoperability. From the Scheme perspective, a
Java String provides a get-mzscheme-string method to re-
turn an immutable Scheme string.

6.2 Arrays

A Java array cannot be a Scheme vector, because a Java array can be
cast to and from Object and because assignments to the array in-
dices must be checked (to ensure that only objects of a suitable type
are placed into the array). For example, an array created to contain

59

List objects might be cast to Object[]. Assignments into the ar-
ray must be checked to ensure that only List, Cons, and Empty
objects appear in the array.

To allow casts and implement Java’s restrictions, a Java array is an
instance of a class that descends from Object. The class is entirely
written in Scheme, and array content is implemented through a pri-
vate vector. Access and mutation to the vector are handled by
methods that perform the necessary checks.

6.3 Exceptions

PLT Scheme’s exception system behaves much like Java’s. A value
can be raised as an exception using raise, which is like Java’s
throw, and an exception can be caught using with-handlers.
The with-handlers form includes a predicate for the excep-
tion and a handler, which is analogous to Java’s implicit in-
stance test with catch and the body of the catch form. The
body of a with-handlers form corresponds to the body of a
try before catch. We implement Java’s finally clause using
dynamic-wind.

Unlike Java’s throw, the PLT’s raise accepts any value, not just
instances of a throwable. Nevertheless, PLT tools work best when
the raised value is an instance of the exn record. This record con-
tains fields specifying the message, source location of the error, and
tracing information.

Our implementation of the Throwable class connects Java excep-
tion objects to PLT Scheme exception records. A Throwable in-
stance contains a PLT exception record, and when the Throwable
is given to throw, the exception record is extracted and raised. This
exception record is an extension of the base PLT exception record,
with an added field referencing the Throwable instance. If a catch
form catches the exception, the Throwable can be extracted.

Besides generally fostering interoperability, this re-use of PLT
Scheme’s exception system ensures that Java programs running
within DrScheme get source highlighting and stack traces for er-
rors, etc. All of Java’s other built-in exception classes (which derive
from Throwable) are compiled from source.

7 Interoperability

Java–Scheme interoperability is not seamless in our current imple-
mentation, but programs written in one language can already access
libraries written in the other.

7.1 Java from Scheme

A compiled Java library is a module containing Scheme definitions,
so that importing the library is therefore as simple as importing
a Scheme library. Scheme programmers gain access to the class,
(non-private) static members, field accessors, and nested classes of
the Java code, and they can derive new classes and interfaces from
the Java classes and interfaces. In general, they may treat bindings
from Java code without regard to the original language, except to
the degree that data types and protocols expose that language.

In particular, to interact with Java classes, a Scheme programmer
must remember certain protocols regarding constructors and inner
classes. As discussed in Section 5.1, the constructor must be called
after an object is instantiated, which means that the programmer
must explicitly invoke the constructor when instantiating or extend-

Figure 3. Java Box

ing the class. Inner classes must not be instantiated directly with
new, but instead instantiated through a method supplied by the con-
taining class. (In all probability we can make inner classes module-
local, and expose only an interface for instance tests, but we are
uncertain whether this strategy will work with reflection.)

As a practical matter, a Scheme programmer will think of a Java-
implemented library in Java terms, and therefore must manually
mangle member names, as discussed in Section 5.2. Mangled
names can potentially be quite long. Consider the method equals,
which takes an instance of Object. The mangled version is
equals-java.lang.Object, to fully qualify which Object
is meant. We are investigating ways to avoid this problem.

One strategy, which presently partially works within DrScheme, is
to insert a graphical box representing a Java expression (see Fig-
ure 3), instead of plain text. The expression within the box contains
Java instead of Scheme and results in a value. Assigning types to
the arguments (to resolve overloading) remains an open problem,
thus Scheme values cannot be accessed within a box.

Another remaining problem is that, while our compiler is designed
to produce modules that are compatible with PLT Scheme’s com-
pilation model, the compilation manager itself does not know how
to invoke the compiler (given a reference to a .java file). We are
working on an extension of the compilation manager that locates
a compiler based on a file’s suffix. For now, manual compilation
meets our immediate needs.

7.2 Scheme from Java

The native mechanism described in Section 5.4 provides a way to
make Scheme functionality available to Java, but native is not a
suitable mechanism for making a Scheme class available as a Java
class. Instead, our compiler can use a Scheme class directly as a
Java class, for instantiation, extension and overriding, or instance
tests. At compile time, the compiler needs specific type informa-
tion for the class, its fields, and its methods. This information is
currently supplied in a separate file, with the extension .jinfo.

Every class in Java extends Object, but not every Scheme class
does so. To resolve this mismatch, the compiler does not actually
treat Object as a class. Instead:

60

• The core Object methods are implemented in a mixin,
Object-mixin. Therefore, Object methods can be added
to any Scheme class that does not already supply them, such
as when a non-Object Scheme class is used in Java.

• Indeed the Object class used for instantiation or class exten-
sion in Java code is actually (Object-mixin object%).

• Object instance tests are implemented through an interface,
instead of a class. This works because Object has no fields
(fortunately) so the class is never needed.

A .jinfo file indicates whether a Scheme class already extends
Object or not, so that the compiler can introduce an application
of Object-mixin as necessary. A Scheme class can explicitly
extend a use of Object-mixin to override Object methods.

We used the native interface to quickly develop a pedagogic graph-
ics library, based on existing Scheme functionality. Java program-
mers are presented with a canvas class, which supports drawing
various geometric shapes in a window. This class can be subclassed
with changes to its functionality. Internally, the Java class connects
to a functional graphics interface over MrEd’s graphics.

8 Performance

So far, we have invested little effort in optimizing the code that our
compiler generates. As a result, Java programs executed through
our compiler perform poorly compared to execution on a standard
JVM. In fact, Java programs perform poorly even compared to
equivalent programs written directly in Scheme. The current per-
formance problems have many sources (including the use of con-
tinuations, as noted in Section 5.3), all of which we expect to elim-
inate in the near future. Ultimately, we expect performance from
Java code that is comparable to that of PLT Scheme code.

9 Related work

The J2S compiler [3] compiles Java bytecodes into Scheme to
achieve good performance of Java-only programs. This compiler
additionally targets Intel X86 with its JBCC addition. J2S globally
analyzes and optimizes the bytecode to enhance performance. Java
classes compile into vectors containing method tables, where meth-
ods are implemented as top-level definitions. Instances of a class
are also represented as vectors. Unlike our system, this compila-
tion model does not facilitate conceptual interoperability between
Scheme and Java programs. Native methods may be written in
Scheme, C, C++, or assembly, which allows greater flexibility than
with our system at the cost of potential loss of security. As with our
system, J2S does not support reflection.

Several Scheme implementations compile to Java (either source or
bytecode) [1, 2, 4, 12, 15]. All of these implementations address
the interaction between Scheme and Java, but whereas we must ad-
dress the problem of handling object-oriented features in Scheme,
implementors of Scheme-to-Java implementors must devise means
of handling closures, continuations, and other Scheme data within
Java:

• JScheme [1, 2] compiles an almost-R4RS Scheme to Java.
Within Scheme, the programmer may use static methods and
fields, create instances of classes and access its methods and
fields, and implement existing interfaces. Scheme names
containing certain characters are interpreted automatically as
manglings of Java names. Java’s reflection functionality is
employed to select (based on the runtime type of the argu-

ments) which method to call. This technique is slower than
selecting the method statically, but requires less mangling.

• SISC [11] interprets R5RS, with a Java class representing each
kind of Scheme value. Closures are represented as Java in-
stances containing an explicit environment. Various SISC
methods provide interaction with Java [12]. As with JScheme
the user may instantiate Java objects, access methods and
fields, and implement an interface. When passing Scheme val-
ues into Java programs, they must be converted from Scheme
objects into the values expected by Java, and vice-versa. To
access Scheme from Java, the interpreter is invoked with ap-
propriate pointers to the Scheme code.

• The Kawa [4] compiler takes R5RS code to Java bytecode.
Functions are represented as classes, and Scheme values are
represented by Java implementations. Java static methods
may be accessed through a special primitive function class.
Values must be converted from Kawa specific representations
into values expected by Java. In general, reflection is used
to select the method called, but in some cases, the compiler
can determine which overloaded method should be called and
specifies it statically.

• In addition to a C back end, Bigloo [14, 15] also offers a byte-
code back end. For this, functions are compiled into either
loops, methods or classes (to support closures). Scheme pro-
grammers may access and extend Java classes.

PLT Scheme developers have worked on embedding other lan-
guages in Scheme, including Python [10], OCaml, and Standard
ML. At present, the Java-to-Scheme compiler described here is the
most complete.

10 Conclusion

Our strategy for compiling Java to Scheme is straightforward: we
first develop macro-based extensions of Scheme that mirror Java’s
constructs, and then we translate Java code to the extended variant
of Scheme. This strategy facilitates interoperability between the
two languages. It also simplifies debugging of the compiler, since
the compiler’s output is human-readable, and the target macros can
be developed and tested independently from the compiler.

For PLT Scheme, the main target constructs for the compiler are
module and class (plus standard Scheme constructs, such as pro-
cedures). These forms preserve most of the safety and security
properties of Java code, ensuring that the Java programmer’s ex-
pected invariants hold when the code is used by a Scheme pro-
grammer. Scheme programmers must follow a few protocols when
interacting with Java libraries, and manually include type informa-
tion within method calls. However, we believe that future work will
reduce these obstacles.

While still in development, our Java-to-Scheme compiler has de-
ployed with PLT Scheme since version 205. We continue to add
language constructs and interoperability features.

Acknowledgments

We would like to thank Mario Latendrese, whose Java to Java
bytecode compiler, written in Scheme, provided the front-end for
preliminary versions of this work. We would also like to thank
Matthias Felleisein for comments on early drafts of this paper, and
the reviewers for their many helpful comments.

61

11 References

[1] K. Anderson, T. Hickey, and P. Norvig. JScheme User man-
ual, Apr. 2002. jscheme.sourceforge.net/jscheme/doc/
userman.html.

[2] K. R. Anderson, T. J. Hickey, and P. Norvig. SILK - a playful
blend of Scheme and Java. In Proc. Workshop on Scheme and
Functional Programming, Sept. 2000.

[3] É. Bergeron. Compilation statique de Java. Master’s thesis,
Université de Montréal, 2002.

[4] P. Bothner. Kawa: Compiling Scheme to Java. In Lisp Users
Conference, Nov. 1998.

[5] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and
M. Felleisen. DrScheme: A pedagogic programming envi-
ronment for Scheme. In Proc. International Symposium on
Programming Languages: Implementations, Logics, and Pro-
grams, pages 369–388, Sept. 1997.

[6] R. B. Findler and M. Flatt. Modular object-oriented pro-
gramming with units and mixins. In Proc. ACM International
Conference on Functional Programming, pages 94–104, Sept.
1998.

[7] M. Flatt. Composable and compilable macros: You want it
when? In Proc. ACM International Conference on Functional
Programming, pages 72–83, Oct. 2002.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification. Addison-Wesley, 2000.

[9] K. E. Gray and M. Flatt. ProfessorJ: a gradual introduction to
Java through language levels. In Companion of the 18th an-
nual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 170–177,
Oct. 2003.

[10] P. Meunier and D. Silva. From Python to PLT Scheme. In
Proc. Workshop on Scheme and Functional Programming,
Nov. 2003.

[11] S. G. Miller. SISC: A complete Scheme interpreter in Java.
sisc.sourceforge.net/sisc.pdf, Feb. 2003.

[12] S. G. Miller and M. Radestock. SISC for Seasoned Schemers,
2003. sisc.sourceforge.net/manual.

[13] T. Parr. ANTLR parser generator and translator generator.
http://www.antlr.org/.

[14] B. P. Serpette and M. Serrano. Compiling Scheme to JVM
bytecode: A performance study. In Proc. ACM International
Conference on Functional Programming, Oct. 2002.

[15] M. Serrano. Bigloo: A ”practical Scheme compiler”
User Manual, Apr. 2004. www-sop.inria.fr/mimosa/fp/
Bigloo/doc/bigloo.html.

[16] K. Siegrist. Virtual laboratories in probability and statistics.
http://www.math.uah.edu/stat/.

62

63

Foreign Interface for PLT Scheme

Eli Barzilay
Northeastern University

Dmitry Orlovsky
Northeastern University

Abstract

Even a programmer devoted to Scheme may prefer using foreign
libraries in certain situation. Connecting the two worlds involves
glue code, usually using C, which requires significant program-
ming efforts and system expertise. In this paper we describe a
PLT Scheme extension for interacting with foreign code, designed
around a simple philosophy: stay in the fun world, even if it is no
longer a safe sand box. Our system relieves the programmer from
low-level technicalities while keeping the benefits of Scheme as a
better programming environment compared to C.

1 Introduction

Scheme has proved itself as a useful and fun language, good
for both general-purpose and domain-specific usages. However,
schemers cannot assume a closed system; other languages will al-
ways exist, leading to a need for interfacing with functionality that
is accessible through foreign libraries. Such libraries come in many
different flavors, but the popular ‘least common denominator’ has
been, and still is, plain C libraries1. Our goal is to create a mech-
anism within Scheme for smooth interfacing with such foreign li-
braries.

1.1 Background

A foreign interface is a piece of glue code, intended to make it pos-
sible to use functionality written in one language (often C) avail-
able to programs written in another (usually high-level) language.
Such glue code involves low-level details that users of high-level
languages usually take for granted. For example:

• marshaling objects to and from foreign code,
• managing memory and other resources,
• dealing with different calling conventions, implicit function

arguments, etc.

1Different languages can be used to create foreign libraries, “C”
is only used as a generic label.

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Eli Barzilay.

Foreign function interfaces are subsystems that create such glue
code, simplifying an otherwise tedious and error-prone task.

1.2 Foreign Interfaces

There are lots of existing foreign function interfaces; Urban’s FFI
survey [17], although an incomplete project, provides a good dis-
cussion of such systems and relevant issues. Generally speaking,
such interfaces can be classified as either static code generators or
dynamic foreign interfaces. In principle, the two are quite similar:

• A static foreign interface is created and compiled statically,
before running the program that intends to use it;

• A dynamic interface is created at run-time, while the applica-
tion is running.

In practice, the differences are more dramatic:

• A static interface is usually implemented using a C compiler.
The advantage of this approach is that it is easy interface for-
eign code, as most of it is intended to be linked in using a
compiler (for example, C header files are used to describe
an interface), and since most languages are implemented in
C, they provide convenient facilities for calling C functions.
Disadvantages of the static approach include being restricted
to the pre-compiled interface, requiring either a compiler or a
platform dependent binary distribution for such code.

• A dynamic interface is generated at run-time, leading to the
obvious advantage of requiring no C compiler or binary dis-
tributions. This has a significant effect on dynamic languages
like Scheme, where single running REPL can be used to con-
nect to different libraries, supporting exploratory program-
ming in a natural way. The disadvantage of this approach
is that it requires more (platform-dependent) low-level work
such as stack management and creating stubs (glue functions),
while not getting the usual support from a C compiler.

The issues that need addressing are essentially the same ones de-
scribed in Section 1.1, only the approach differs. The technical is-
sues involved in an interface implementation make static interface
generators more popular. It should be noted that it is common to
call these systems “foreign function interfaces” — in the follow-
ing text we prefer “foreign interfaces” as these interfaces deal with
accessing foreign objects as well as foreign calls.

In both the static and the dynamic cases, it is desirable to have some
description of the foreign entities, usually functions, in a way that
can help automate the process of generating the glue layer. In this
context a “function” can be viewed differently depending on your
point of view: from the low-level side, a function is simply a pointer
and a description of how it is called; from the high-level Scheme

64

side, it is an object that is expected to have the usual function se-
mantics. Interface description languages (IDLs) have a major role
in foreign interface systems — these are languages that express ar-
bitrary function behaviors for both of these viewpoints:

• On the C side, there is the type definition of the function, and
possibly additional information such as input/output pointers,
object ownership, etc.

• In addition to this, there are details that are related to the
Scheme side. For example, automatic memory management
issues, value marshaling, dealing with aggregates (vectors and
structs), and creating new object types.

• On the Scheme side, the result is a plain procedure, like any
other Scheme procedure object.

Ideally, the IDL that is used to describe the interface is rich enough
to express both views while providing enough information to com-
pletely automate the interface generation.

1.3 Implementing a Dynamic Interface

The low-level mechanics of foreign function calls are usually very
demanding: managing functions at the binary level is inherently
platform dependent, and can even require assembly code or other
compiler-specific hacks. Statically, these problems are not too dif-
ficult: simply generate C glue code, and let the C compiler do its
usual work. Doing this efficiently in a dynamic fashion is difficult,
since it is usually not desirable to drag a complete C compiler into
your run-time. Dealing with the dynamic aspects of foreign func-
tions is greatly simplified using a library that handles the low-level
details: we use libffi [11], a library that supports foreign function
call-outs and call-backs.

• A call-out is a normal function call. In a dynamic setting,
we create a “call-interface” object which specifies (binary)
input/output types; this object can be used with an arbitrary
function pointer and an array of input values to perform a call-
out to the function and retrieve its result. Doing this requires
manipulating the stack and knowing how a function is called,
these are details that libffi deals with.

• A call-back is trickier. Our Scheme implementation has sev-
eral fixed C-level functions which can implement arbitrary
Scheme evaluation. A callback is, however, a simple func-
tion pointer — no additional information is available. Modern
systems (e.g, Gnome) that use callbacks allow user to regis-
ter a function pointer together with an arbitrary data pointer,
but there is no standard way for this. A proper solution is
one that allows creating general “C closures” — combining a
function and a data pointer into a single new function pointer.
Again, this is technically challenging, as it requires generat-
ing stub functions at run-time, which, when applied to some
arguments, call the packaged function with the packaged data
pointer and the arguments. Again, libffi provides the re-
quired magic.

libffi is maintained and distributed as part of the GCC project,
but its goal is to provide a portable library. We use it for all
platforms that PLT Scheme targets, including Windows (using a
slightly adapted version that works with Microsoft’s compiler, cour-
tesy of the Thomas Heller [13]).

1.4 Outline

In Section 2 we state the goal of our work, emphasizing our main
design principle. Section 3 describes our implementation, both
the C part of the code and the complementing Scheme module.

Section 4 demonstrates how our system copes with some of the
common and uncommon situations that interface programmers deal
with. We conclude with a related work comparison, and outline fu-
ture plans.

2 Goal: Use Foreign Libraries, Avoid C

Our design follows a simple principle: keep C-level functionality to
a minimum. The core of a system for interfacing foreign libraries
must itself be written in C, but we try to make such functionality
available to Scheme as soon as possible, putting more responsibility
on the Scheme level. When dealing with the many details of the
interface, mainly type declarations and data marshaling, there is a
natural tendency to make a system that is rich in features. We avoid
dealing with such complexities in C when possible, providing just
enough of an interface that makes it possible to do it in Scheme
instead. The combination of a dynamic interface and a minimalistic
C-level implementation that should be complemented by Scheme
code are the main features that make our approach unique.

Switching more responsibility to Scheme comes with benefits that
are familiar to Scheme programmers, but there is an additional ad-
vantage that is important in this particular case: the important is-
sue is generating glue code that bridges the gap between foreign
libraries and the high-level language. In the static case this involves
either complex yet limited C preprocessor acrobatics (e.g., SWIG
[1] goes as far as implementing its own C parser). On the other
hand, Scheme already comes with a superior syntax system, and
PLT Scheme makes this even better with additional language fea-
tures (syntax objects, module system, etc). This syntax system is
much easier for implementing sophisticated glue code with, espe-
cially considering our target crowd which undoubtedly feels more
at home in the Scheme world.

For example, consider the issue of primitive foreign types that
are handled by an interface. Once we can move C integers from
Scheme to C and back, we might consider extending the system to
deal with C enumerations. This raises a few questions regarding the
interface design — how should this C definition:

typedef enum { foo1, foo2, foo3 } foo;

be available for Scheme code?

• Should we provide three integer bindings? If so, how do we
deal with name clashes?

• Otherwise, should we use a mapping from strings to integers?
Maybe use symbols? What about enumerated values that are
or-able bit patterns? How should such a map be implemented:
as a linked list? A vector of constant names? A hash table?

Answers to these questions determine the nature of the C imple-
mentation; once it is written, trying alternatives lead to signifi-
cant maintenance costs. Our design keeps such complications away
from the C level, pushing them up to the Scheme side where there
are better ways to deal with them. For example, the C level part
of our interface does not commit to a specific implementation for
enumerations — it simply exposes C integers. Different strategies
are then implemented in the Scheme part, resulting in easier code
maintenance. In addition, some Scheme aspects are less accessi-
ble from C, making a Scheme solution even more attractive. for
example, implementing enumerations as bindings that use the mod-
ule system to avoid global name-space pollution, or implementing
them as syntax objects (removing run-time lookup costs) are both
much harder to implement in C than in Scheme.

Another important factor in the complexity of the C implementa-

65

tion is the issue of safety. Scheme is a safe language — as buggy as
your code might be, you never expect the Scheme process to crash:
if such a crash happens, the blame is in the language implementa-
tion. Using C extensions such as the ones that PLT Scheme always
had, changes things a little — the code to blame can be either in
the language implementation, or in the C extension. The invariant
fact is that Scheme code can never be blamed for such crashes —
they are exclusively considered a C-level problem. There is there-
fore a yellow caution tape around code that can be blamed for such
crashes: it lies exactly on the language boundaries, C on one side
and Scheme on the other.

A dynamic foreign function interface inevitably breaks this prop-
erty: bad Scheme code that defines an interface to a foreign func-
tion can specify an integer argument where a pointer is expected,
leading to a crash (at best). Using dynamic interface systems does
not seem so bad though — a foreign function definition is written
in Scheme, but conceptually it is perceived as part of the C world.
Scheme code, with the exception of such definitions, is still as safe
as it has always been, the yellow caution tape is moved just a little
so it surrounds Scheme definitions of foreign interfaces too. This
point drives a dynamic foreign interface system to try to be as safe
as possible: if function interfaces are the only things that can lead
to crashes, then it is desirable to make the system safe in all other
respects. For example, when dealing with pointers (arrays referenc-
ing, allocations, garbage collection) safety issues go in the C code,
making it much more complicated than it would otherwise be.

In contrast, our implementation extends traditional dynamic inter-
face systems by exposing more ‘dangerous’ operations. Function-
ality that had to be part of the C world is now accessible in Scheme,
moving the yellow tape again to encompass more Scheme code.
The average programmer is not concerned with this extra function-
ality, but interface implementors can now deal with more foreign
code without leaving Scheme. Many design decisions that usually
affect the C interface can now be pushed up to the Scheme level.

The issue of safety is now related to the module system: the new
foreign interface bindings are enclosed in a module. If a Scheme
process crashes, the blame is either on C code, or on Scheme code
that uses this module: such code is therefore taken as substituting C
code, potentially suffering from C’s usual illnesses. Code that does
not use this module is expected to be as safe as it previously was.

To summarize, the yellow caution tape surrounds more Scheme
code now: it lies at the C/Scheme language border except for code
that uses the new module which is inside the tape. In essence,
using the a Scheme module is similar to a using Modula-3’s [12]
‘UNSAFE’ keyword to declare unsafe code. Quoting Harbison [12,
Section 13.3.1] from the Modula-3 book:

Modula-3 also provides unsafe features, but it differs from
many other languages in isolating those features. The unsafe
language features are accessible only in interfaces and modules
that are labeled by the keyword UNSAFE. [. . .] When all mod-
ules and interfaces are safe, Modula-3 guarantees that there will
be no unchecked run-time errors. By introducing UNSAFE, the
programmer assumes part of that burden.

Our system is slightly different in that Scheme modules can provide
additional functionality for interface writers, meaning that they will
not provide a safe interface, making them have a status similar to
that of the new module. This means that rather than a fixed set of
unsafe language features, we have a system where these features
can also be extended.

An example of this design philosophy is our use of pointers. First,

a new Scheme pointer object is introduced, then low-level func-
tions that deal with pointers are added. These are procedures that
allocate memory blocks (using one of several ‘malloc’ variants),
free blocks (for GC-invisible blocks), reference pointers, and set
values at a pointer locations. This new functionality is useful in
itself, even when there are no foreign libraries to interface with.
For example, the procedural part of SRFI 4 [6] can now be trivially
implemented in Scheme. Several foreign interfaces have a similar
generic ‘pointer’ object, but it is usually viewed as a last-resort ob-
ject when an unknown pointer is returned2 or when an interface is
too lightweight for proper types3 — this is in contrast to our view,
where a pointer object is taken as part of the fundamental frame-
work that makes Scheme a viable C substitute for glue code.

3 Implementation

Our implementation consists of a C part, implementing the low-
level functionality, and a Scheme part that builds on top of it. The
C part of our interface is available as a built-in ‘#%foreign’ module
which is part of the MzScheme core of PLT Scheme (it is part of the
MzScheme executable). This implements the thin interface, provid-
ing just enough to make it possible to fill in the gaps using Scheme.
This module is therefore intended to be used only by the Scheme
part of our interface: the ‘(lib "foreign.ss")’ module which is
part of MzLib, serving as a wrapper around the internal bindings.
For brevity, we refer to the Scheme module as ‘foreign’.

The ‘#%foreign’ functionality that is implemented in C is de-
scribed in Section 3.1, and the Scheme ‘foreign’ module is de-
scribed in Section 3.2.

3.1 The ‘#%foreign’ Module: C-Level Interface

The C implementation can be roughly divided into three parts, de-
scribed in the following sections. Most of this is unrelated to for-
eign libraries, but providing the framework that make such interac-
tions possible, and making Scheme rich enough to substitute C.

3.1.1 C Types

C-types4 lie at the core of our system, as they provide the basic
specifications for data that is passed on to and back from foreign
libraries. We need some way to specify the correlation between
tagged Scheme values and the various C types. This mapping is not
one-to-one: a single C type can be interpreted as several Scheme
types, and a single Scheme type can be translated to different C
types. We implement C type objects for this, available as new
first-class Scheme values, accessible through ‘#%foreign’ bind-
ings. Each C type object has three main parts:

• The actual C type that it represents (a libffi type descriptor),
• Code that translates corresponding Scheme objects to C,
• Code that translates such C values to Scheme objects.

In addition, there is some utility information such as a predicate,
byte size and alignment. The translation code for these primitive
C types is implemented in C. Table 1 presents a summary of the
current built-in primitive types5.

2For example, the SWIG manual uses malloc, realloc and
free as a simple interface example which uses pointer objects.

3Our cpointer type pre-existed for PLT Scheme extensions,
and was intended for “extensions with modest needs”.

4Again, “C” is only used as it reflects binary level objects.
5The name convention that we have used is that a type called

‘foo’ is available in Scheme as a ‘ foo’ binding.

66

Primitive Type Usage

void
returns a Scheme void value when used as an
output type

int8, . . . , int64 integer types in various sizes
uint8, . . . ,
uint64

non-negative integers

byte, word, int,
uint

aliases for uint8, uint16, int32, and
uint32 respectively

long, ulong
aliases for 32- or 64-bit integers, depending on
the meaning of ‘long’ for the current platform

fixint, ufixint,
fixnum, ufixnum

versions of integers (int and long resp.) that
assume fitting into an immediate Scheme fixnum
integer

float, double floating point numbers (inexacts)

bool booleans (as C integers)

bytes
byte-strings (plain char strings and memory
blocks represented as byte-strings)

string/ucs-4,
string/utf-16

Unicode string types

path, symbol
path strings and symbol names as strings
(interned when used as an output type)

pointer
a ‘cpointer’ object encapsulating a pointer value
and an optional tag, #f is used for a NULL
pointer

scheme
a Scheme Object* pointer, for any Scheme
boxed value, this will be its actual pointer

Table 1. Primitive types

Users can create new types in two flavors:

• User-defined types are made by the ‘makectype’ primitive,
and are analogous to primitive types. To create such a type a
programmer has to:

1. Choose the set S1 of Scheme objects that the new type
should handle. This can be any set — combination of
several Scheme types, subsets, or a few random values.

2. Choose an existing C type T as a base type. This type
handles some set S2 of Scheme objects.

3. Write two procedures: one that translates an S1 value to
S2 and one that goes the other way.

4. Apply ‘makectype’ on T and the two translators.
When the new C type is used to send values to foreign code
(function arguments, or setting pointers), the first translator
is used and processing continues with T , and when receiving
values from foreign code (return values or pointer references),
T is used first and the second translator is then applied. The
implementation of user types does not involve libffi, which
only sees primitive types.

• New struct types are created from a list of existing types us-
ing the ‘makecstructtype’ primitive. This is mainly imple-
mented by libffi since it describes a new low-level data type
with new size and alignment information. On the Scheme side
the resulting primitive type is similar to a pointer, but when
it is used to send or receive values, the contents of the pointer
is copied rather than the pointer itself.

No additional functionality is implemented at the C level for these
types except trivial accessors and size/alignment information. Ad-
ditional abstraction layers like enumerations and struct constructors
and deconstructors are implemented in Scheme. As a result, we
don’t have to commit to a specific marshaling scheme at the binary
level (in fact, the Scheme part of the interface implements two dif-

ferent marshaling schemes for each of these cases).

3.1.2 Pointers

As mentioned above, pointers are an integral part of our interface,
exposed as useful Scheme objects. A Scheme pointer object en-
capsulates the actual pointer value (adding an extra level of indirec-
tion), and a ‘tag’ which is an arbitrary Scheme object. C functional-
ity is limited to a usable minimum: allocating memory blocks (us-
ing various allocator functions — either through the garbage collec-
tor, or raw malloc), referencing and setting pointed values (given a
type), and pointer equality.

Again, functionality implemented by the C level is kept to a min-
imum. For example, the tag values that are attached to pointers
can be used to enforce a type for referencing and setting a pointed
value, but such a design can be better implemented and enforced in
Scheme, so these tags are ignored by the C part of the interface.

3.1.3 Interfacing Foreign Functionality

So far, all C-level functionality is useful by itself, extending Scheme
so it can handle machine-level raw data. The final piece of the C
part of our interface is the one that actually deals with foreign li-
braries. First, there is functionality for opening a dynamic library
and pulling out objects. These objects can be used as pointer ob-
jects, so it is possible to both reference and change their values (use-
ful for libraries that contain user-modifiable customization hooks).

Dealing with function values is separated into function calls that
we can do (“callouts”) and calls from foreign code to our func-
tions (“callbacks”). This is where libffi makes the implementa-
tion much easier. Two Scheme-accessible procedures, fficall and
fficallback, are in charge of converting C functions to Scheme
(callouts) and Scheme procedures to C (callbacks) respectively. At
the Scheme level, these procedures are used by a new cprocedure
type constructor, which provides a symmetric ‘marshaling’ inter-
face for both ways of this conversion, so users are not aware of any
differences in the underlying translation mechanism.

Bindings that are implemented by the C part of our implementation
and made available through the ‘#%foreign’ module are listed in
Table 2. This, together with Table 1, is a complete summary of the
C-level implementation. Again, ‘#%foreign’ is not intended for
use outside of our ‘foreign’ implementation (described next), but
many of these procedures are re-exported by ‘foreign’.

3.1.4 Garbage Collection Issues

There are some important memory management issues that should
be mentioned at this point: a moving garbage collection, such as
the one used by the precise PLT Scheme version (mzscheme3m)
complicates things considerably when foreign code interacts with
objects on the (GC-visible) Scheme heap. There are certain objects
that should not move in memory, most notably, the callable func-
tion pointers generated by libffi to implement C closures must
not move, so we need to take extra care in allocating these using
plain malloc, where the garbage collector does not touch them.
Callbacks are especially fragile in this aspect: when C code calls
Scheme code the garbage collector might be triggered and any GC-
visible pointers that the C function might use will inevitably be in-
validated. This problem does not have an easy solution — either
memory is managed by a non-moving collector possibly manag-
ing different memory regions using different collectors (this solu-
tion is impossible with PLT Scheme’s precise GC), or doing manual
management. The C implementation takes care of this when deal-

67

Primitive Bindings Usage
ffi-lib, ffi-lib?,
ffi-lib-name

open a foreign library and related
functionality

ffi-obj, ffi-obj?,
ffi-obj-lib, ffi-obj-name

get a foreign object pointer from
a library and related functionality

make-ctype,
make-cstruct-type, ctype?,
ctype-basetype,
ctype-scheme->c,
ctype-c->scheme,
ctype-sizeof, ctype-alignof

Handling C type descriptor
objects (see Section 3.1.1)

cpointer?, cpointer-tag,
set-cpointer-tag!, ptr-ref,
ptr-set!, ptr-equal?

Handling C pointer objects (see
Section 3.2.2)

malloc, end-stubborn-change,
free, make-sized-byte-string,
register-finalizer

Interface for the standard C
malloc and other allocators that
are used in MzScheme, and
related memory management
functions

ffi-call, ffi-callback,
ffi-callback?

creating a call-out object (a
Scheme procedure that calls a
foreign function when applied)
from a C pointer and creating
callbacks (objects that can be
passed onto foreign functions as
function pointers) from Scheme
procedures, both functions accept
an input type list and an output
type

Table 2. Primitive ‘#%foreign’ bindings

ing with libffi objects, but nothing else. If a movable pointer is
passed on to a C function which can use Scheme callbacks or oth-
erwise retain it, then it is the responsibility of the Scheme level to
deal with copying these values to non-movable memory (using the
system’s raw malloc which is accessible in Scheme). The Scheme
part of our interface simplifies some of these issues, but there is
no general solution when (potentially misbehaved) foreign code is
involved, since such code is ignorant of any memory management
issues for objects it does not “own”.

A related issue is dealing with pointers that can be contained
in other objects. The Scheme-visible ‘malloc’ function uses
atomic allocation by default except for allocating a pointer- or
a scheme-based type. User-created struct types are, however,
problematic because they can hold both pointers and other values.
Our implementation uses only atomic memory blocks for these,
which works as long as there are no GC-able pointers in structs,
which so far was not a problem. We have a plan for dealing with
such pointers, in case a solution is needed: expand new struct types
with a map of contained GC-able pointer offsets. In any case, users
should be aware of the fact that memory blocks are moved and use
raw-malloced pointers as necessary when callbacks or library ref-
erences are involved.

3.2 The foreign Module: Scheme-Level Inter-
face

At the Scheme level, we have added a new ‘(lib "foreign.ss")’
module to MzLib. Scheme programmers should use this module
which complements the built-in ‘#%foreign’ module. The purpose
of this module is to re-export some useful parts of ‘#%foreign’
with an additional degree of sanity and convenience. For example,
‘getffiobj’ is a convenient procedure that combines ‘ffilib’ to
open a library, ‘ffiobj’ to retrieve a pointer, and ‘ptrref’ to con-
vert it into a Scheme value. In addition, it builds a layer of ad-

Defined Type Usage
string/utf-8,
string/locale,
string/latin-1

various C strings, using different encoding

string
uses one of the existing string types, depending
on the value of the default stringtype
parameter; ‘#f’ is used as a NULL value

file
similar to the path type, except that path names
are resolved using expandpath

string/eof
similar to string, but in case of #f (NULL), an
end-of-file object is returned

enum, bitmask

these are actually functions that consume a list
of symbols, and create an integer-mapping type
that translates a single symbol (enum) or a list
of symbols (bitmask) to an integer

Table 3. Simple types defined by the Scheme module

ditional functionality using the built-in module, varying from new
types, through an IDL, to memory management issues.

3.2.1 Additional Types

The Scheme module, like the C part, revolves mainly around types.
First, there are several simple types that are implemented in the
Scheme module, summarized in Table 3. Adding these types is sim-
ple, as described in Section 3.1.1, for example, the file type is in-
tended to make it easy to interact with foreign functions that expect
a file name — making it possible to use names like “˜foo/bar”.
The definition in ‘foreign’ involves using expandpath when go-
ing from Scheme to C, and leaving the path as is when going from
C to Scheme:

(define _file
(make-ctype ; create a new type,
_path ; based on _path
expand-path ; expand-path when sent out
#f)) ; receive: same as _path

Since this part of the implementation is in Scheme, we can now
develop better solutions than we could if we used only C. For ex-
ample, note that enum and bitmask are not type objects, but func-
tions that create type objects — they are type constructors. Also,
note that there are multiple string types, since our system is in-
tegrated into the development version of PLT Scheme which uses
Unicode for its strings — the string type is therefore an ‘identi-
fier syntax’ that expands into a usage of the ‘default stringtype’
parameter. Both of these would take a much heavier implementa-
tion if they were implemented in C.

3.2.2 Pointer Types

Section 3.1.2 mentions that Scheme pointer objects have an arbi-
trary ‘tag’ value associated with them, and that these tags are ig-
nored by the C part of the interface. The ‘foreign’ module pro-
vides a cpointer function that, when given some Scheme value,
constructs a new pointer-based type which tags pointer objects
when they arrive from the foreign side, and raises an error when
passing a pointer with the wrong (non-eq?) tag from Scheme. This
functionality might be extended in the future to use the tag value in
some more meaningful way, for example, make it be another type
object and make pointer dereferencing use it instead of taking a
type argument, or use it to imitate inheritance where a pointer can
be used in places where an ancestor pointer kind is expected. In ad-
dition to the cpointer function, there is a definecpointertype
syntax:

68

(define-cpointer-type 〈 id〉
[〈type-or-#f〉 〈scm→c〉 〈c→scm〉])

which defines such a type using "〈id〉" as a tag, together with a
‘〈id〉?’ predicate and a ‘〈id〉-tag’ binding for the tag value.

The optional type and translation arguments can be used to spec-
ify the base type in case it is not pointer (for example, if it is a
struct type), and translation procedures. Such arguments are also
available for cpointer.

3.2.3 Vector Types

Exposing C functionality in Scheme makes it possible to use ar-
bitrary blocks of memory to hold data. Allocating such a block is
even simpler with the provided list->cblock and cblock->list,
both implemented in Scheme, but the result is just a bare pointer ob-
ject. It is therefore useful to encapsulate such a memory block with
the type of objects it uses and the number of objects contained in
it. Using this we benefit from no per-item storage overhead as well
as making some foreign interfaces easier to deal with, and at the
same time ensure that there are no violation of the vector bounds.
Interacting with these vectors is intentionally similar to using plain
Scheme vectors:

> (define v (make-cvector _int 10))
> (cvector-length v)
10
> (cvector-set! v 5 55)
> (cvector-set! v 15 55)
cvector-ref: bad index 15 for cvector bounds of 0..9
> (cvector-ref v 5)
55

These vectors can be used as inputs to foreign functions via the
cvector type.

SRFI 4 [6] defines similar structures, except that there are different
Scheme types (therefore different function names) for each kind
of vector, making it limited to numeric vectors. Our ‘foreign’
interface adds a complete re-implementation of SRFI 4, which will
replace the C-based module that is currently a part of PLT Scheme6.

3.2.4 Struct Types

The C part of our implementation provides limited support for
defining struct types: we get a ‘makecstructtype’ function which
constructs a new kind of primitive type given a list of existing types.
This new type can be used with Scheme pointer objects, which
will cause copying the structure contents rather than the pointer
value when marshaling data. Accessing these objects is left for
the Scheme side, which uses the information given by the ctype-
sizeof and the ctypealignof functions to compute the offsets
into the contained values.

This functionality is sufficient for the ‘foreign’ module to make C
structs accessible from Scheme. Two interfaces are provided:

1. list-struct is a type constructor: given a list of type ob-
jects, it constructs a matching C struct type, and wraps the
result in a yet another type that translates values contained in
such a C struct value to and from a Scheme list of values. Us-
ing this type is simple, but it involves extra allocations which
is an extra overhead some users will want to avoid.

2. definecstruct is a new syntax, similar to PLT Scheme’s
‘definestruct’, except that slots have an associated type.

6The current implementation does not deal with the external
syntax specified in SRFI 4.

Values of this new type are kept as a pointer object that refer-
ences the memory block holding the binary data. Again, this
simplifies interfaces: there is no overhead involved as we are
dealing with the raw data. A simple example of using such a
struct type follows:

> (define-cstruct _foo
((x _int) (y _double)))

> (define x (make-foo 1 2.3))
> (foo? x)
#t
> (list (foo-x x) (foo-y x))
(1 2.3)
> (set-foo-y! x 4.5)

3.2.5 Simple Function Types

Finally, the core functionality that allows interactions with foreign
libraries is enabled by the cprocedure type constructor. This con-
structor creates a function type when given a list of input types and
an output type. Like all other C type objects, the resulting function
type has two translation procedures: one going from C to Scheme
and one going back. For these function types, the first translator
generates a callout object that can be used as a new Scheme prim-
itive, and the second generates a callback object that can be sent
to C code allowing it to invoke a Scheme procedure. This inter-
nal function is implemented via the primitive ‘fficall’ and ‘ffi-
callback’ functions (see Table 2), it’s definition is (roughly7):

(define (_cprocedure itypes otype)
(make-ctype _pointer

(lambda (x) (ffi-callback x itypes otype))
(lambda (x) (ffi-call x itypes otype))))

This means that from the user’s point of view, a simple type spec-
ification like ‘(cprocedure (list int int) int)’ can be
used as either an input or an output type, and it can properly nest
(negative function type occurrences generate callbacks and positive
occurrences generate callouts). For example, the following con-
trived higher-order C function:

int foo_ho_ho_func(int x, int(*(*f)(int))(int)) {
return (f(x+1))(x-1);

}

can be used (interactively!) in Scheme in a straightforward way:

> ((get-ffi-obj "foo_ho_ho_func" "foo.so"
(_cprocedure

(list _int
(_cprocedure

(list _int)
(_cprocedure (list _int) _int)))

_int))
3
(lambda (x) (lambda (y) (+ y (* x x)))))

18

3.2.6 Complex Function Types: IDL Features

The cprocedure can generate simple interfaces, but it is insuffi-
cient in cases where the foreign function needs an additional layer
of interface when arguments and/or the return value on the Scheme
side don’t match those of the foreign side. A common example of

7The actual implementation accepts another optional argument
that can be used to tweak the resulting primitive procedure. This is
described in the following section.

69

this is a foreign function that expects a pointer and a size indica-
tor, which correspond to a single Scheme object that encapsulates
both. For example, the standard C ‘read’ function expects a string
buffer and its size in two input arguments. A simple cprocedure-
generated interface inevitably exposes the additional argument, so
the interface programmer needs to wrap it by additional glue code.
For this, cprocedure has an extra optional argument that is ex-
pected to be a procedure that wraps the resulting foreign function8:

(define c-read
(get-ffi-obj "read" "libc.so.6"
(_cprocedure (list _int _string _int) _int

(lambda (prim)
(lambda (fd buf)
(prim fd buf (string-length buf)))))))

Another common example is the use of ‘output pointers’ by foreign
code to return multiple values. Again, a naive cprocedure inter-
face will be awkward to use from Scheme code, and the interface
programmer needs to use a wrapper that makes the foreign function
more Scheme-friendly:

(define c-modf
(get-ffi-obj "modf" "libc.so.6"
(_cprocedure (list _double _pointer) _double

(lambda (prim)
(lambda (d)

(let* ([p (malloc _double)]
[r (prim d p)])

(values (ptr-ref p _double) r)))))))

More forms of wrappers are needed in other situations: additional
argument dependencies, input- and output-pointers, different allo-
cation strategies, implicit ‘self’ pointers, etc. In general, we need
a way to combine arbitrary wrappers that operate on arbitrary ar-
guments. Such wrappers cannot be implemented as new C types,
since such types can add layers of processing on each value inde-
pendently, rather than the required interaction among multiple ar-
guments and output values. What we need here is some form of
an interface description language (IDL). The requirements for an
appropriate IDL are:

• it should be easy to write and easy to read,
• it should be rich enough to express interactions such as the

two demonstrated above as well as others,
• it should not lead to an expensive performance hit,
• it should be easy to extend when facing new situations.

One way that we have tried to tackle this issue is by providing the
necessary abstractions as a collection of procedures, each perform-
ing a single task, and have interfaces use combinators to build the
required argument interactions. This approach has a major draw-
back: it leads to complex expressions which are hard to write and
harder to read. Using this approach, code that converts a Scheme
string argument to buffer-size and pointer arguments might use a
‘string+len’ function together with combinators that arrange to
swap the arguments, for example:

(define foo
(get-ffi-obj "foo" "foo.so"
(_cprocedure (list _int _string) _int

(compose prim:1+2->2+1
(prim:1->1+2 string+len)))))

8Actually, our interface is part of the new version of PLT
Scheme, which has a new byte-string type for raw (non-Unicode)
character sequences. We use strings in the following examples for
simplicity.

It is obvious that this code is hard to read — for example, inspect-
ing the types reveals that there is a bug in this code9. In addition,
such procedures will often be higher order for customization, mak-
ing things even worse. Another drawback of this approach is the
number of procedure applications that are involved in each call:
any time overhead involved in foreign calls might be critical, and
we don’t want programmers to move to inferior tools because of it.

The approach that our system takes uses Scheme’s syntax abstrac-
tion capabilities instead. We define a new type combinator, fun,
which is actually a syntax transformer. Usages of fun generate the
appropriate wrapper code, and use cprocedure with it to create
the function type.

Simple usages of fun are similar to cprocedure except that the
types need not be put in a list, and an infix ‘->’ marker separates
the input types from the output type. For example, using fun for
the higher-order C example from Section 3.2.5:

> ((get-ffi-obj "foo_ho_ho_func" "foo.so"
(_fun _int (_fun _int -> (_fun _int -> _int))

-> _int))
3
(lambda (x) (lambda (y) (+ y (* x x)))))

18

In its simple form, the fun type constructor has this syntax:
(fun 〈f-type〉∗ -> 〈f-type〉)

which covers simple function interfaces in a slightly more conve-
nient form than cpointer. In its full form, fun is extended to deal
with common argument interactions like most IDLs and more —
rather than fighting with a limited preprocessor or re-implementing
a C parser, we have a real (meta) language to help us. Using syn-
tactic abstractions in Scheme, we achieve a powerful IDL through
fun, one that can be extended to handle all possible situations.

The full form of the fun syntax has two optional parts, and each
〈f-type〉 subform can have an optional identifier and/or expression:

(fun [〈args〉 ::] 〈f-type〉∗ -> 〈f-type〉 [-> 〈expr〉])

〈f-type〉 ::= 〈t-expr〉 | ([〈id〉 :] 〈t-expr〉 [= 〈expr〉])

〈t-expr〉 ::= expressions that evaluate to a type value

The sequence of 〈f-type〉s in their full form behave like a sequence
of ‘let*’-bindings, each with an associated type and a value (both
plain Scheme expressions). As with ‘let*’, value expression can
refer to previous identifiers for their values. Omitting an identifier
makes the corresponding value inaccessible for subsequent expres-
sions; omitting a value expression means that the resulting wrapper
function will expect a corresponding argument. For example, in this
definition:

(define c-read
(get-ffi-obj "read" "libc.so.6"

(_fun _int
(buf : _string)
(_int = (string-length buf))
-> _int)))

there are three arguments that are passed on to the foreign function:

• The first uses the short form: it has no value so it will receive
the first value passed on to ‘c-read’, and it has no name so
its value can not be used in following expressions.

• The second argument has no value too, making it get the sec-

9A type checker will help avoiding such errors, but will not
make things easier to read and write.

70

ond ‘c-read’ argument, and its value is bound to ‘buf’.
• The third argument has a value expression so the value that is

passed on to the foreign function is always the length of the
second (string) argument.

‘c-read’ is therefore a Scheme procedure that expects two argu-
ments and returns an integer, by arranging for properly calling the
foreign ‘read’.

In some rare cases, an interface needs to have better control of the
wrapper’s argument list — which is the purpose of the optional
‘〈args〉 ::’ prefix: it specifies the arguments to the resulting wrap-
per function. For example, if ‘read’ were to expect the buffer size
first, we would use this fun type:

(_fun (fd buf) ::
(fd : _int)
(_int = (string-length buf))
(buf : _string)
-> _int)

Note that identifiers are important here, as they connect the foreign
inputs with the wrapper’s inputs. The 〈args〉 part can also be used
to specify normal Scheme argument lists, including optional argu-
ments.

A second ‘->’ marker denotes a result expression different than the
one that the foreign function returned. This expression can use any
bound values and arguments, as well as the foreign result value (if
given an identifier). For example, the ‘modf’ interface given above
is better written with fun as:

(define c-modf
(get-ffi-obj "modf" "libc.so.6"
(_fun _double (p : _pointer = (malloc _double))

-> (r : _double)
-> (values (ptr-ref p _double) r))))

The fact that we can insert any Scheme expression for the return
value makes it easy to change such definitions so they use alterna-
tive ways for assembling the return values, for example, changing
‘values’ to ‘cons’ in the above. If this was implemented in C, such
changes would require more work.

The similarity between the fun syntax and ‘let*’ is not incidental:
fun assembles a wrapper function that contains a single ‘let*’

expression, which evaluates the various expressions, binding the
results to specified identifiers. For example, the usage of fun in
the last example expands to:

(_cprocedure (list _double _pointer) _double
(lambda (ffi)
(lambda (tmp15)

(let* ((p (malloc _double))
(r (ffi tmp15 p)))

(values (ptr-ref p _double) r)))))

This satisfies the efficiency requirement: only one extra function
call is wrapped around the foreign call.

3.2.7 Additional IDL Features: Custom Function Types

The fun facility handles some common cases where we need to
bridge a gap between the foreign function and Scheme code that
uses it, but there are additional cases that are not addressed. For
example, the ‘modf’ interface code above represents such a com-
mon situation – output pointers that are used by foreign code to
return multiple values. We therefore extend the fun syntax fur-
ther, by making it interact with special ‘custom function types’ that

Custom Type Usage
ptr input, output, or input/output pointers

box

similar to an input/output ptr, but modifies the
Scheme box contents
(PLT Scheme has a mutable box type. Note that we don’t
need to associate Scheme boxes with ‘shadow’ pointers:
either copy values, or use a pointer instead of a box)

list, vector marshal lists and vectors as C pointers
bytes uses Scheme byte-strings (raw, non-Unicode strings)

? a special non-type intended for saving intermediate
interface results

Table 4. Simple types defined by the Scheme module

are themselves syntaxes — such types can install pieces of code
that are used before and after the foreign call, possibly modifying
the corresponding value. In the case of output pointers we want to
allocate some memory before the foreign call and dereference it af-
terward, a task that is achieved by the ptr custom type. ptr is a
syntax with usages that has the following form:

(ptr 〈mode〉 〈type-expr〉)

〈mode〉 ::= i | o | io

The 〈mode〉 specifies an input, output, or input/output pointer. In
the ‘modf’ case, we use an output pointer:

(define c-modf
(get-ffi-obj "modf" "libc.so.6"

(_fun _double (p : (_ptr o _double))
-> (r : _double) -> (values p r))))

The code that is generated by this fun syntax is similar to the pre-
vious code,

(lambda (tmp15)
(let* ((p (malloc _double))

(r (ffi tmp15 p))
(p (ptr-ref p _double)))

(values p r)))

but notice that we don’t need to explicitly allocate a double or deref-
erence the pointer.

The custom function types that are provided by the ‘foreign’ are
listed in Table 4. Further details on these types can be found in our
user manual.

As mentioned above, Custom types are implemented as syntaxes.
fun tries to expand each type expression it encounters, and if an

expansion is identified as a custom type, then it has certain forms
that contain the relevant pieces of code. A custom type expansion is
a ‘(〈key:〉 〈val〉 ...)’ sequence where all of the 〈key:〉s are from a
short list of known keys. Each key interacts with generated wrapper
functions in a different way, which affects how its corresponding
argument is treated:

type: specifies the foreign type to be used (#f can be used to
make this not participate in the foreign call).

expr: specifies an expression to be used for arguments of this
type, removing it from wrapper arguments.

bind: specifies a name that is bound to the original argument if it
is required later (e.g., box needs to refer to the original box).

1st-arg: specifies a name that can be used to refer to the first ar-
gument of the foreign call (good for common cases where the
first argument has a special meaning, e.g., for method calls).

prev-arg: similar to 1st-arg:, but refers to the previous argu-
ment.

71

pre: a pre-foreign code chunk that is used to change the argu-
ment’s value.

post: a similar post-foreign code chunk.

The following is the implementation of the ptr custom type from
the ‘foreign’ module. It is provided to roughly demonstrate how
this is done; again, complete details are given in the user manual.

(define-syntax _ptr
(syntax-rules (i o io)
[(_ i t)
;; input: malloc a pointer, set its value from the argument
(type: _pointer
pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p)))]

[(_ o t)
;; output: malloc a pointer on entry, dereference on exit
(type: _pointer
pre: (malloc t)
post: (x => (ptr-ref x t)))]

[(_ io t)
;; input/output: like output, but set its contents on entry
(type: _pointer
pre: (x => (let ([p (malloc t)]) (ptr-set! p t x) p))
post: (x => (ptr-ref x t)))]))

All of the special custom types provided by ‘foreign’ are defined
this way.

To conclude: our fun satisfies all requirements mentioned above
for a good IDL: it is easy to read and write, it can express all wrap-
per interactions that other IDLs can express and more, it is effi-
cient, and extensible by the ability to add new custom types that
handle new kinds of processing. As expected from a syntax trans-
former that performs some substantial work, it carries some con-
ceptual overhead, but we believe that overall it is better than the C
processing alternatives since Scheme is superior in its syntactical
abstraction capabilities.

4 Usage Examples

With the implementation of our system, we provide a few (mostly
Linux) library interfaces. This was used to test the implementation,
motivating the overall design. We now describe a few examples of
using our system, all based on these interface implementations.

Syntactic Abstractions
C provides some (limited) degree of syntactic abstraction, whereas
Scheme truly shines in this area. When a complete library interface
is desired (rather than pulling out a few useful functions), repetition
is common. Writing interfaces in Scheme makes such problems al-
most non-existent — for example, our ImageMagick interface uses
a simple macro:

(define-syntax defmagick
(syntax-rules (:)

[(_ id : x ...)
(define id
(get-ffi-obj ’id libwand (_fun x ...)))]))

to make interface definitions easier.

Defining new syntaxes can help in other, less common situations.
For example, KSM [4] has a clang:sym form that exposes a foreign
library variable as a Scheme binding. Using PLT Scheme macros,
we can achieve this functionality in Scheme using a macro that de-
fines the C ‘variable’ as a macro10:

10From the MzScheme [9, Section 12.1] manual: The ‘syntax-
idrules’ form has the same syntax as ‘syntaxrules’, except that
each pattern is used in its entirety (instead of starting with a key-

(define-syntax defcvar
(syntax-rules ()

[(_ var lib type)
(define-syntax var

(syntax-id-rules (set!)
[(set! var1 val1)
(set-ffi-obj! ’var lib type val1)]
[(var . xs)
((get-ffi-obj ’var lib type) . xs)]
[var (get-ffi-obj ’var lib type)]))]))

and verify that it is working properly:

> (defcvar z "x.so" _int)
> z
0
> (set! z 123)
> z
123
> ((get-ffi-obj "getz" "x.so" (_fun -> _int)))
123

where the C code that is compiled into “x.so” is:

int z = 0;
int getz() { return z; }

Using Types
C types in our system are somewhat lighter than expected: there
is only a loose correlation between these types and Scheme object
types. A type in our context can simply mean a different way of
marshaling Scheme values to/from C, for example, the file type
from Section 3.2.1 is simply a different way to marshal MzScheme
path objects which are normally used with path. No C-level sup-
port is needed for such cases: there are no new binary tags in-
volved, and no new object representations at the implementation
level, meaning that it is extremely cheap to create such type descrip-
tors. A common usage of types is therefore as a simple mechanism
to add hook on the translation process.

For example, the ImageMagick library specifies a ‘MagickWand’
type, which is always being manipulated as a ‘MagickWand*’
pointer. There are functions that return a pointer to a newly cre-
ated ‘MagickWand’ object, and these objects must be destroyed
with the ‘DestroyMagickWand’ function. To do this automati-
cally, we define a MagickWand type using pointer and provid-
ing a new translation when going from C to Scheme, one that uses
‘registerfinalizer’ to make the GC use ‘DestroyMagickWand’
when reclaiming the pointer object11:

(define _MagickWand
(make-ctype _pointer

#f ; Scheme->C translation is the same as _cpointer
(lambda (ptr)

(if ptr
(begin (register-finalizer ptr destructor) ptr)
(error ’_MagickWand "got a NULL pointer")))))

We can make this even better with a new cpointer type which uses
an appropriate tag to identify these pointers and make sure that we
don’t confuse pointers to internal ImageMagick objects of different
types. The following definition uses ‘definecpointertype’ (see
Section 3.2.2) to create a type that tags all pointers when they are

word placeholder that is ignored).
11This assumes that there is no way to get a second pointer object

that refers to the same ‘MagickWand’ object, so care should be taken
with functions that can create such aliases.

72

moved from the foreign side to Scheme, and check the tag when
sending a Scheme pointer object out to foreign code.

(define-cpointer-type _MagickWand #f #f12

(lambda (ptr)
(if ptr

(begin (register-finalizer ptr destructor) ptr)
(error ’_MagickWand "got a NULL pointer"))))

A different example of using a new type comes from our TCL in-
terface: the Tcl Eval function returns a status integer, indicating a
possible error. In our implementation, we define evaltcl as:

(define eval-tcl
(get-ffi-obj "Tcl_Eval" libtcl

(_fun (interp : _interp = (current-interp))
(expr : _string)
-> _tclret)))

using the following tclret definition:

(define _tclret
(make-ctype (_enum ’(ok error return ...))

(lambda (x) (error "tclret: only for returning"))
(lambda (x)

(when (eq? x ’error)
(error ’tcl (get-string-result

(current-interp))))
x)))

which effectively translates a TCL error into a Scheme exception.

Note that the TCL interface uses a Scheme parameter ‘current-
interp’ as the value of the first argument to ‘TCL Eval’. We can
make this implicit by defining a new custom type syntax, using the
‘expr:’ keyword:

(define-syntax _cur-interp
(syntax-id-rules ()

[_ (type: _interp expr: (current-interp))]))
(define eval-tcl
(get-ffi-obj "Tcl_Eval" libtcl

(_fun _cur-interp (expr : _string) -> _tclret)))

Using Custom Types
Custom types are intended to be used in situations where simple
independent processing of each argument is insufficient. For exam-
ple, many functions in the ImageMagick interface return a ‘status’
integer that indicates if there was an error. If an error has occurred,
the main object involved in the function invocation should be used
to retrieve the error message and severity. One way to deal with
this situation is to save the object in a place accessible right af-
ter the foreign call, like a parameter. This is essentially what the
TCL interface does, where tclret uses a parameter to get the er-
ror message. The ImageMagick interface is different — instead of
a single implicit context parameter, it fits more an object-oriented
style, where each method call happens in its object’s context.

As a result, a good interface must be able to provide a relation be-
tween different arguments, namely the result value (to be checked
for an error) and the first argument (providing the current object
context). This is done using the 1st-arg: keyword of a custom
type which specifies an identifier that will be bound to the first ar-
gument:

12Use cpointer as a base type, no extra translation when going
to from Scheme to C, and register the destructor on the way back.

(define-syntax _status
(syntax-id-rules (_status)

[_status
(type: _bool
1st-arg: 1st
post: (r => (unless r

(raise-wand-exception 1st))))]))

Memory Management
Usually, there are important aspects of the library interface that are
not fully specified. Memory management issues often fall under
this category. For example, a naive interface might behave in a
surprising way:

> (define crypt
(get-ffi-obj "crypt" "libcrypt"

(_fun _string _string -> _string)))
> (define a (crypt "foo1" "23"))
> a
"23.kLNfMwUW0Q"
> (define b (crypt "foo4" "56"))
> b
"568.5HohJYC0g"
> a ; a is modified!
"568.5HohJYC0g"
> (string-set! a 0 #\X) ; verify that a and b
> (list a b) ; are the same string
("X68.5HohJYC0g" "X68.5HohJYC0g")
> (eq? a b) ; ...but not quite the same
#f

Using a simple SWIG interface, made using the C prototype decla-
ration for ‘crypt’:

extern char *crypt(const char *key, const char *salt);

suffers from this problem too. The reason for this strange behav-
ior is that both our interface implementation and SWIG’s generated
code use MzScheme’s ‘make string without copying’ function,
which simply wraps an existing C string in a Scheme string object.
The standard Unix crypt function returns a pointer to its own static
string, making the above interaction create two Scheme string ob-
jects that point to this static buffer — but the Scheme objects are
still different. This can be dangerous as it breaks an implementation
assumption, so some solution is required. Changing the implemen-
tation to use ‘scheme make string’ would not be acceptable in the
general case since it leads to an expensive overhead. In addition,
there are other foreign functions (e.g., getcwd) that can allocate a
return string, and blindly copying it will cause a memory leak (the
allocated string is not in GC-controlled memory).

Using our system simplifies such a solution since we don’t have to
break out of Scheme, we can simply use a new type13:

(define _string/copy
(make-ctype _string #f
(lambda (x) (string-append x #""))))

We can solve numerous problems in a similar way, for example,
using semaphores to avoid problems with the single crypt buffer, or
creating a new string/free that copies a string and freeing the
previous GC-invisible one.

13Note that this is not relevant now, since our system is part of
the Unicode-enabled MzScheme, so Scheme strings are stored in
Unicode format, meaning that they are always copied.

73

5 Related Work

The first and foremost advantage that our foreign interface has
over existing implementations, is the fact that it is truly dynamic.
This means that functionality that traditionally is available only via
C code is available to Scheme programmers, which makes for a
compiler- and architecture-independent system. Furthermore, the
dynamic aspect of the system allows for playing with foreign exten-
sions dynamically, modifying and debugging the interface at run-
time14. Exploratory programming is therefore possible, hence the
overall development cycle becomes much lighter.

A second advantage comes from the fact that we use Scheme. Using
a language with robust syntactical abstractions makes it possible
to provide an IDL-like interface for interface programmers, with
features that can go beyond capabilities of conventional IDLs [18,
16]. Having syntactic abstractions in the language makes it possible
for users to extend their own code using new constructs, including
ones that are unique to a single library, in contrast to fixed IDLs
that are either fixed, or used through a primitive facility like the C
preprocessor.

Dynamic interfaces are not as common as static interfaces. Exist-
ing dynamic systems, for example the Allegro CL foreign function
interface [10] and Python’s ctype module, do not provide the low-
level C-substitute features that we do. Urban’s FFI survey [17],
although a little out-dated, provides an excellent overview on ex-
isting systems and implementation issues. It is interesting to note
an SML interface system [2] as another, somewhat similar system
to ours. Similar to our design, the main idea is data-level inter-
operability [8] — making raw C data available to the high-level
language, but our system differs in a few important aspects:

• Our design is built around the idea of enabling arbitrary C-
like unsafe code — whereas Blume’s system uses SML’s type
system to enhance interaction with foreign code.

• Our system goes one step further in giving users more power.
“If you can do it in C, then we will let you do it in Scheme”
rather than “Some C-level operations are useful enough that
we let you use them”.

• Blume’s system is limited to SML’s syntactic framework,
where we use Scheme’s capabilities for creating IDL-like syn-
tax.

We focus our comparison on static interface generators such as
GreenCard [14], G-Wrap [3], and SWIG [1]. There are Scheme
systems that fall under this category too by providing support for
combining Scheme and C code, for example, Gambit-C15 [5] and
KSM [4]. Most notably, SRFI 50 [15] attempts to standardize this
approach, possibly making it possible for different Scheme imple-
mentations to share C code. These systems make it possible to write
Scheme code that is converted to C code, so it is easy to write such
‘Scheme’ code that calls C functions as if they were plain function
calls. Some of these systems lack a code generation component that
is derived by an IDL or some equivalent, but they can all be seen as
static code generators.

We now focus on SWIG as a popular system that can be used for
multiple high-level languages. A simple translation using SWIG
requires the user to compile (through the SWIG parser) a C header
file with a SWIG interface file, resulting in C code that is then, yet
again, compiled using a C compiler, to produce a C module that
is finally imported into Scheme. In contrast to the static approach,

14As long as no fatal errors occur.
15Some parts of this were ported to PLT’s MzC compiler.

func. Glue Type CPU Real GC
crypt SWIG 38% 4% -34%

Handwritten C glue 53% 49% 0%
sqadd SWIG 55% 57% 0%

Handwritten C glue 60% 61% 0%

Table 5. Comparison of overhead time

our ‘foreign’ library makes it possible for a Scheme developer to
quickly open up a C library, pull out a few procedure objects and
start an interactive development session.

It could be argued that a simpler, more user friendly system comes
at a price of expensive overhead, leading to an inherent sacrifice of
performance. Testing out two simple benchmarks, we found that
the interface overhead of our system is just slightly slower as a
compiled interface that was generated by SWIG, which itself has
an almost identical overhead to hand-written glue code.

Our results are summarized in Table 5. Two functions were used for
this analysis — the first is the crypt function taken from the stan-
dard Unix libcrypt: consuming two strings and producing an en-
crypted string result. The second is a simple C function, sqadd, that
performs an addition of two integer squares. We measured a mil-
lion executions of crypt and 30 million executions of sqadd, per-
forming each test for 16 rounds beginning with a fresh MzScheme
process, discarding the 6 extreme timings and averaging the other
10. The percentages are computed as: TimePLT −TimeRawC

TimeSWIG−TimeRawC
− 1 where

TimePLT is the averaged running time of our interface, TimeSWIG is
the average running time of SWIG, and TimeRawC is that of an im-
plementation of comparable repetition loops in C. The same com-
putation was used to compare our system against handwritten C
glue code.

As Table 5 shows, our system is about 1.5 times slower then SWIG,
and, in most cases the handwritten glue code. The biggest per-
formance hit is in the simple arithmetic function, where the actual
foreign code does much less than the interface code. Situations like
this should rarely occur since the usual case of using a foreign li-
brary is when it can do some substantial work that is otherwise hard
to achieve in Scheme.

While issues of timing and performance are important, aspects such
as implementation complexity and ease of use must also be consid-
ered. Comparing our system to SWIG and interfaces that use an
IDL, it becomes clear that our implementation is better in at least
one aspect. One advantage that our system provides over the static
approaches is the ability to specify additional functionality using
new user-defined types that involve arbitrary translation code. The
main point here is that such translations are written in the high-level
language itself rather than dealing with the intricacies of the C im-
plementation.

In addition, regardless of interface design and syntactical complex-
ity, our implementation is better because the interfacing mechanism
itself is in a high order language: making it possible to include ar-
bitrary Scheme code as part of the foreign call specification. This is
further enhanced by the fact that we use Scheme since it is possible
to create new syntactic abstractions to deal with new requirements.
Either with SWIG interface files or with an IDL, the interface de-
veloper is still confined by C and C-like code with its known short-
comings when it comes to dealing with complex problems.

74

6 Future Work
C++ Libraries Currently, there is support only for plain C li-
braries. Depending on implementation details, it can be feasible to
interface C++ libraries. This might involve plenty of details regard-
ing object layout, inheritance, virtual function tables, name man-
gling, etc. Hopefully, these issues can be addressed in Scheme so
we might not need any further enhancements to the C part of our
implementation.

Parsing C One of the main disadvantage of our system is that it
is not using C, so we cannot use C include files as rough interface
specifications. We plan to investigate a simple C header-file parser
that will parse files into s-expressions, which can be used to auto-
mate some aspects of interface generation (A working parser pro-
totype exists). Such a parser does not need to be fast and efficient,
since parsing can be done at syntax expansion time, eliminating any
run-time speed costs. In addition, note that as usual with other in-
terface generators, this will almost never mean that an interface can
be fully automated, as header files do not provide enough informa-
tion — this situation might improve if we target some IDL language
instead (most use similar syntax).

Memory Management Issues Currently, our system works well
with both versions of PLT Scheme: the one that uses the Bohm
conservative garbage collector and the one that uses a precise mov-
ing collector. However, there are still issues that interface writers
need to be aware of. In time, we will gain more experience writing
interfaces, which will motivate further functionality that will make
this easier — our goal is, of course, making GC-related issues as
transparent as possible for interface writers.

One aspect of this, is dealing with struct objects that might con-
tain GC-able pointers. We have a plan to deal with this, effectively
making it possible to specify in Scheme a map of pointer offsets
that the garbage collector should be aware of, making it treat new
Scheme-defined structs properly.

Additional Scheme Support There are some areas in which ad-
ditional Scheme support is needed. For example, an array of structs
is hard to deal with — there is no way to get to one such struct and
modify it, since accessing it will create a copy. We believe that it
is possible to write Scheme code that will make this possible, by
not pulling out a struct copy, but rather provide forms that will use
nested reference indexes, where some are vector indexes and some
are struct field names. If we can make this composable, it would be
possible to deal with them in an easy way — without resorting to
pointer aliasing16.

An additional area where additional support is needed, is when
dealing with foreign functions that block. MzScheme contains a
few hooks that are intended to be used when it is embedded as a
library, these hooks can be used for calling blocking foreign func-
tions as well.

Using Contracts PLT Scheme has support for procedure con-
tracts [7] which could be used to enhance the robustness of library
interfaces. Specifically, we want to treat contract violations in mod-
ules that use the ‘foreign’ module as more severe, as these are
equivalents of C bugs, which might result in a crash. A module
would also need some way of declaring it as a proper interface,
meaning that code that uses it should not be blamed for crashes.
Alternatively, code that is not intended as an interface (i.e., code
that provides functionality for interface modules) should propagate
the property of contract violation severity.

16The precise garbage collector makes it impossible to get a
pointer to the internal part of an allocated block

Assembly Code Generation Working our way to native just-in-
time compilation, we plan on adding machine-code generation abil-
ity to PLT Scheme. We will interface this functionality via the
‘foreign’ module. Furthermore, some of the interface aspects can
be implemented in assembly when runtime is important.

7 References

[1] D. M. Beazley. SWIG: An easy to use tool for integrating scripting
languages with C and C++. In Proceedings of the 4th USENIX
Tcl/Tk Workshop, pages 129–139, July 1996.

[2] Matthias Blume. No-longer-foreign: Teaching an ML compiler to
speak C “natively”. In BABEL’01: First workshop on
multi-language infrastructure and interoperability, September 2001.

[3] Rob Browning. G-Wrap home page.
http://www.nongnu.org/g-wrap/.

[4] Hangil Chang. KSM-Scheme home page.
http://square.umin.ac.jp/ hchang/ksm/.

[5] Marc Feeley. Gambit Scheme system.
http://www.iro.umontreal.ca/ gambit/.

[6] Marc Feeley. SRFI 4: Homogeneous numeric vector datatypes.
http://srfi.schemers.org/srfi-4/.

[7] Robert Bruce Findler and Matthias Felleisen. Contracts for
higher-order functions. In ACM SIGPLAN International Conference
on Functional Programming, 2002.

[8] Kathleen Fisher, Riccardo Pucella, and John Reppy. Data-level
interoperability. Bell Labs Technical Memorandum, April 2000.

[9] Matthew Flatt. PLT MzScheme: Language Manual. PLT, August
2004. Version 208.

[10] Franz Lisp. Foreign function interface. http://www.franz.com/-
support/documentation/6.1/doc/foreign-functions.htm.

[11] Anthony Green. The libffi home page.
http://sources.redhat.com/libffi/.

[12] Samuel P. Harbison. Modula-3. Prentice-Hall, 1992.
[13] Thomas Heller. The ctypes module.

http://python.net/crew/theller/ctypes/.
[14] Simon Peyton Jones, Thomas Nordin, and Alastair Reid. GreenCard:

a foreign-language interface for Haskell. In J. Launchbury, editor,
2nd Haskell Workshop, 1997.

[15] RIchard Kelsey and Michael Sperber. SRFI 50: Mixing scheme and
c. http://srfi.schemers.org/srfi-50/.

[16] The Open Group. CAE Specification, DCE 1.1: Remote Procedure
Call, chapter 4. The Open Group, October 1997.

[17] Reini Urban. Design issues for foreign function interfaces.
http://xarch.tu-graz.ac.at/autocad/lisp/ffis.html,
Last updated at 2004.

[18] A. Vogel, B. Gray, and K. Duddy. Understanding any IDL — lesson
one: DCE and CORBA. In Proceedings of the Third International
Workshop on Services in Distributed and Networked Environments
(SDNE’96), 1996.

Acknowledgments

We would like to thank Matthew Flatt: this work would not be pos-
sible without his help, especially with GC-related issues. The com-
ments and suggestions made by the reviewers have been extremely
helpful, Mike Sperber was particularly helpful in the process of re-
vising this text.

75

Debugging Scheme Fair Threads

Damien Ciabrini
INRIA Sophia Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

Damien.Ciabrini@sophia.inria.fr

Abstract

There are two main policies for scheduling thread-based concur-
rent programs: preemptive scheduling and cooperative scheduling.
The former is known to be difficult to debug, because it is usually
non-deterministic and can lead to data races or difficult thread syn-
chronization. We believe the latter is a better model when it comes
to debugging programs.

In this paper, we discuss the debugging of Scheme Fair Threads,
that are based on cooperative scheduling and synchronous reactive
programming. In this approach, thread communication and syn-
chronization is achieved by means of special primitives called sig-
nals, which ease the debugging process. We present the tools we
have implemented to deal with the main types of concurrent bugs
that can arise in this special programming framework.

1 Introduction

Modern systems offer multitasking inside a single application:
there can be many virtually independent flows of control, usually
called threads. These are commonly used in programs nowadays.

Concurrent programming is a difficult task. First, because reason-
ing about interleaved flows of control is an intrinsically difficult
task. Second, because bugs caused by multi-threaded programming
are usually very difficult to track down with traditional debuggers.

There are various policies for scheduling multi-threaded programs.
The two major categories are preemptive scheduling and coopera-
tive scheduling. Each one comes with its pros and cons with respect
to debugging.

1.1 Preemptive or Cooperative Scheduling

Preemptive scheduling appeared in operating systems [13] in the
late 70s and has been democratized in languages in the mid 90s.
In this model, the thread library (usually the underlying OS) may

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Damien Ciabrini.

suspend the execution of a thread at any time to schedule another
one. It can also benefit from Symmetric Multi-Processor hard-
ware (henceforth SMP). Unfortunately, preemptive multi-threading
is implemented in a way that leads to non-deterministic scheduling.
It is known to be difficult to program with and painful to debug:

• Locks have to be acquired before accessing shared memory to
avoid data races. Omitting locks may cause data corruption,
in which case debuggers become almost useless.

• Synchronization by means of mutexes can be missed if notifi-
cations are sent before some threads started to await them. In
this case, debuggers hardly help because they do not provide
tools for tracing the order of synchronization.

• It is very difficult to reproduce a bug because one cannot play
the same execution twice. Actually, the simple fact of insert-
ing prints in a program is sufficient to make a bug no longer
appear at run-time.

• Complex features like priority boost or scheduling policies are
non-portable, and debuggers usually do not provide support
for them. Using these features can lead to bugs like priority
inversion [20], that are difficult to track or to explain.

Cooperative scheduling is an older model, in which it is the respon-
sibility of threads themselves to cooperate, i.e, to give back control
so that another thread can continue to execute. This is a determin-
istic model where only one thread is executing at a time (which
hardly benefits from SMP). This scheduling model greatly eases
the debugging for various reasons:

• Debuggers do not have to deal with data races, since only one
thread is active at a time.

• The scheduler is deterministic. This means that when a bug
occured, it can be easily reproduced by replaying the same
execution.

In cooperative schedulers, problems like dead-locks can still occur.
Moreover, some specific problems are introduced because of man-
ual cooperation:

• If a thread fails to cooperate, the whole program is blocked.

• Too few cooperations can lead to interactivity problems, for
instance in Graphical User Interfaces (henceforth GUI).

• Too many cooperations can lead to unnecessary context
switches and poor performance. This is a problem similar as
taking too many locks to protect shared variables.

Contrary to bugs caused by non-determinism, these types of bug are
much easier to detect and to correct with the help of a debugger.

76

1.2 An Hybrid Solution

The Bigloo [18] Scheme compiler provides an alternative model
for multi-threaded programming called Scheme Fair Threads [17].
It is a programming framework based on synchronous reactive pro-
gramming1 with the following characteristics:

• It provides a cooperative and deterministic scheduler. Thus
there is no need to acquire locks and execution can be replayed
at will.

• Threads communicate by broadcasting signals into the sched-
uler. It is guaranteed that signals are seen by all threads during
a logical round of schedule called an instant.

• It still provides the ability to do I/O operations asyn-
chronously, i.e, without blocking the scheduler and also by
taking advantage of SMP. Non-determinism due to asyn-
chronous I/Os is confined into well defined locations in the
scheduler.

In Scheme Fair Threads, a debugger still has to deal with dead-
locks or live-locks, as it is the case with classical cooperative or
preemptive scheduling. However, it does handle communication
and synchronization bugs differently, because mutexes are aban-
doned in favor of broadcast signals. The debugger has to provide a
new set of tools to deal with specific problems introduced by this
programming framework.

We have extended BUGLOO [2], a source-level debugger for Bigloo
programs, in order to support the debugging of fair threads. In this
paper, we do not talk about POSIX-like mutexes or condition vari-
ables, as Fair Threads do not use them to communicate. Instead,
we concentrate on the debugging of cooperation points, signals and
instants:

• We have enhanced the single stepping by introducing new step
points that take into account cooperative scheduling and com-
munication by broadcast signals.

• We provide a tool for inspecting the state of fair threads and
for viewing signals present in the scheduler when execution is
suspended. This tool is used to fix bugs like dead-locks and
live-locks that occur during a single instant.

• We provide a tool to graphically trace the scheduling of fair
threads and the broadcasting of signals throughout the execu-
tion. It is an effective way to fix communication bugs that
occur across many instants.

1.3 Overview

In Section 2, we detail the Fair Threads programming model and
its usage in Scheme. In Section 3, we present the main debugging
support for Fair Threads, namely the single stepping and state in-
spection. In Section 4, we describe the tool for tracing scheduler
executions. In Section 5 we describe the typical usage of our tools
on a producer-consumer program with asynchronous I/Os. In Sec-
tion 6 we briefly describe how the debugger is implemented and we
present the overall experience we had with our tools. In Section 7
we present related work. Finally, Section 8 concludes and shows
some future directions for our work.

1See http://www-sop.inria.fr/mimosa/rp

2 Scheme Fair Threads

Scheme Fair Threads is a thread-based concurrent programming
framework based on Java Fair Threads [1]. In this section we
present the Fair Threads programming framework and the concept
of fair scheduling. As an example, we describe the execution of an
abstract program. We then give a brief overview of the Fair Threads
API, along with the type of concurrent bugs that can occur in this
programming framework.

2.1 Fair Threads and Fair Scheduling

In the Fair Threads model, each fair thread is mapped to a native OS
thread and has its own dynamic environment. Threads are attached
to a cooperative scheduler, in which only one thread is executed
at a time. When a thread cooperates, the scheduler gives control to
another thread. Note that the scheduler is deterministic, and is itself
a fair thread.

The Fair Threads model has a clear semantics that emphasizes fair
scheduling and powerful means of synchronization. Both principles
are described below:

• The scheduling of fair threads is decomposed into logical
units of schedule called instants. During an instant, fair
threads communicate together by awaiting and broadcasting
signals into the scheduler. A signal is present until the end of
instant and can be associated with a value.

• If a signal is broadcast during an instant, all the threads wait-
ing for it are guaranteed to be notified before the end of the
instant. In particular, if a fair thread waits for a signal that
has already been broadcast in the instant, it is immediately
notified and continues its execution.

• A signal can be broadcast many times in the same instant. Fair
threads can wait until the next instant to obtain the list of all
the values associated with a signal that were generated in the
previous instant.

• A fair thread can be re-elected for schedule in the same instant
if signals have been broadcast since its last election. An in-
stant terminates when all the fair threads have been executed
and no new signal has been broadcast.

2.2 A Simple Program

To understand how fair threads are scheduled, let us describe the
execution of the following abstract program composed of three fair
threads.

A B C

-------------- ----------------- ---------------

1: await sig1 1: broadcast sig1 1: await sig1

2: await sig2 2: yield 2: broadcast sig2

3: yield 3: broadcast sig3 3: await sig3

4: await sig1

Instant 1: fair thread A gets blocked in line 1 waiting for signal
sig1 to be broadcast. Next, fair thread B broadcasts sig1 in line
1, then it cooperates in line 2 to explicitly complete its execution
for the instant. At this point, the scheduler re-elects fair thread A
because signal sig1 has been broadcast in the scheduler. This fair
thread then blocks waiting for signal sig2. Then, fair thread C
takes the control. It does not block on signal sig1 because it has
already been broadcast (by B) during the instant. It broadcasts sig2
and blocks, waiting for signal sig3. At this point, the instant is not

http://www-sop.inria.fr/mimosa/rp

77

over: the scheduler re-elects fair thread A because signal sig2 is
now present. Then, this fair thread explicitly cooperates in line 3.
At this very point all threads are blocked and no new signal has
been broadcast. This marks the end of instant 1. Signals are reset.

Instant 2: fair thread A gets blocked in line 4 waiting for signal
sig1 which has not been broadcast yet during the instant. Fair
thread B broadcasts signal sig3 then it terminates its execution.
Fair thread C is awakened by signal sig3 in line 3 and it terminates.
At this point all threads are blocked, the instant 2 ends and signals
are reset.

Instant 3: fair thread A is still blocked for the instant and for the
remaining instants until somebody broadcasts sig1.

2.3 API Overview

The Fair Threads API has been designed to be fully compatible
with the SRFI-18 by M. Feeley [5]. This document proposes an
extension for multi-threaded programming in Scheme, inspired by
the Posix-1 API and the Java API. In Fair Threads, abstraction like
mutexes or condition variable are implemented on top of signals.
The previous abstract example is implemented in Fair Threads as
followed:

1: (define (funA)
2: (thread-await! ’sig1)
3: (thread-await! ’sig2)
4: (thread-yield!)
5: (thread-await! ’sig1))
6:

7: (define (funB)
8: (broadcast! ’sig1)
9: (thread-yield!)

10: (broadcast! ’sig3))
11:

12: (define (funC)
13: (thread-await! ’sig1)
14: (broadcast! ’sig2)
15: (thread-await! ’sig3))
16:

17: (define (main args)
18: (thread-start!
19: (make-thread funA "fairthread A"))
20: (thread-start!
21: (make-thread funB "fairthread B"))
22: (thread-start!
23: (make-thread funC "fairthread C"))
24: (scheduler-start!))

We now describe the major constructions of the Fair Thread API.

2.3.1 Basic Thread Manipulation

As shown in the previous example in line 19, a fair thread is created
with the (make-thread thunk . name) procedure, which takes
a thunk to execute and an optional name . A fair thread must be
started with (thread-start! thread) before it can be executed
by the scheduler.

Cooperation is achieved by calling the (thread-yield!) proce-
dure, as shown in lines 4 and 9. One thread can terminate another
thread with the (thread-terminate! thread) procedure.

Unlike many threading systems, the scheduler has to be started ex-
plicitly with (scheduler-start!). When started, the scheduler
runs until all its threads are completed or terminated.

2.3.2 Communication by Signals

A fair thread can broadcast a signal into the scheduler with the
(broadcast! sig . value) procedure. A signal can be an ar-
bitrary Scheme object. The broadcast can be associated with an
optional value that will be received by waiting threads on awake.
The default value is the symbol #unspecified, to indicate that no
particular value is associated with the broadcast of the signal.

A fair thread can await a signal by means of the (thread-await!
sig) procedure. It can also await several signals at a time with
(thread-await!* sigs). At last, a fair thread can get all the
values broadcast in the instant for a particular signal by using the
(thread-get-values sig) procedure. The fair thread waits un-
til the end of the current instant, and at the next instant it is awak-
ened with the list of broadcast values.

Mutexes and condition variables are implemented on top of signals
and are not presented in detail in this paper. They are still accessible
by their respective SRFI-18 procedures.

2.3.3 Asynchronous I/O and SMP

Fair threads can start special service threads whose purpose is to
do long lasting I/O operations in the background without blocking
the scheduler. Such threads are standard OS threads that benefit
from SMP. No lock is needed in user space because service threads
cannot execute user procedures.

On I/O termination, a signal is broadcast into the scheduler to awake
the fair thread that requested the operation. Here is a subset of the
service threads currently supported:

• output: (make-output-signal p s) spawns a service
thread that writes the string s to the output port p.

• input: (make-input-signal p n) spawns a service thread
that gets n characters from the input port p.

• socket: (make-accept-signal s) spawns a service thread
that waits for a connection on the socket s.

• process: (make-process-signal p) spawns a service
thread that forks process p in the background.

By definition, using asynchronous I/Os introduces a certain kind of
non-determinism. However, it is not harmful because it is confined
into service threads, thus it cannot cause any data corruption in user
space. Moreover, the fairness of the scheduler is maintained since
from a thread’s point of view, being notified of an I/O termination
is exactly the same thing as being awakened by a signal.

2.4 Classification of Fair Threads Bugs

We saw that with Fair Threads, communication or synchronization
is always based on signals and instants instead of mutexes and con-
dition variables. In this framework, the type of bugs that can be
caused by multi-threading can be classified in two subsets:

1. Bugs that can be fixed by inspecting the state of the program in
the current instant. An example of such bug could be a dead-
lock that occurs because all fair threads are awaiting signals.

78

It could also be a bug caused by a fair thread which is stuck
in a live-lock, i.e, a thread that repeatedly waits for a signal
that has already been broadcast, thus preventing the instant to
terminate. To fix this kind of errors, we provide two tools:
an enhanced single stepper and a scheduler and fair thread
inspector. Both are presented in Section 3.

2. Bugs for which one needs to remember the state of the pro-
gram several instants backward in time. For example, in a
badly designed sequence of successive communications, a fair
thread can await a signal in a particular instant while it was
broadcast in a previous instant. Dead-locks and live-locks can
also be caused by a succession of wrong synchronization. To
fix this kind of errors, we provide a tool to graphically visu-
alize what happened in the scheduler during a succession of
instants. It is presented in Section 4.

3 Debugging Fair Threads

In this work, we have included debugging support for Fair Threads
into BUGLOO, a debugger for Scheme programs compiled into Java
VM [12] bytecode. BUGLOO is a complete source-level debugger
with a command line language. It is integrated in the Bee devel-
opment environment [16], and is meant to be used from Emacs or
Xemacs.

The tools we have implemented are displayed in a new GUI layer
which is used in conjunction with Emacs. It is implemented in
Biglook [7].

In this section, we show how to start a debugging session and we
present the first two debugging tools we have implemented: an
enhanced single stepper and a scheduler and fair thread inspector.
They can be used to fix bugs like dead-locks or live-locks that may
occur during an instant. In the followings of this paper, the term
debuggee will denote the program that is being debugged.

3.1 The Fair Threads Debugging Toolbox

A typical debugging session consists in connecting an Emacs buffer
with BUGLOO, setting breakpoints somewhere in the source and
running the program. Let us suppose that we ran the little program
presented in Section 2.3 and that the execution was suspended on
a breakpoint line 13. Then, the user can pop up the Fair Threads
toolbox showed in Figure 1, from which all the debugging tools are
accessible. From top to bottom, the toolbox contains a set of buttons
for enhanced single stepping, buttons to display traces of scheduler
executions, and a list of fair threads present in the program. We will
now describe these tools.

3.1.1 Enhanced Single Stepping

Signals and instants introduce new logical points of control in the
execution. We have thus enhanced the classic single stepping oper-
ation by providing six new possible step points accessible through
buttons in the toolbox:

• End of Instant continues the execution until the end of the
current instant, and suspends the debuggee just before the next
instant begins. It is useful to see the state of fair threads or all
the broadcast signals at the end of an instant;

• Beginning of Instant suspends the execution as soon as a new
instant is started. It allows one to quickly step up to a point
that will be single stepped more precisely for debug purposes;

Figure 1. The Fair Threads debugging toolbox

• Thread Switch suspends the execution as soon as a new fair
thread gets the control. It is useful to see how threads are
scheduled during an instant;

• Next Await continues the execution until any thread awaits a
signal. It can be used to single step a communication mecha-
nism;

• Next Broadcast continues the execution until a thread broad-
casts a signal in the scheduler. It is the dual of the previous
step action;

• Any Scheduler Event suspends the execution on any of the
preceding event.

3.1.2 Trace of Events

Throughout the execution, scheduler events like thread switch, sig-
nal await, signal broadcast or end of instant can be recorded. Our
interest in tracing these events is twofold:

1. It enhances the debugging information provided by the fair
thread inspector that will be presented in Section 3.2. For
instance, it allows the debugger to remember which thread is
responsible for a particular broadcast, along with its location
in the source at this time.

2. It allows one to understand what happened precisely in the
scheduler across many instants, and to analyze this informa-
tion off-line.

79

In the debugging toolbox, two options can be checked to control the
recording of events.

• Enhanced inspection. When checked, the recording of
events is activated as soon as the execution is suspended.
When the user starts single stepping the program, he automat-
ically gets enhanced information in the inspectors2. Enhanced
inspection is automatically switched off as soon as the execu-
tion is resumed, to avoid performance penalties during normal
execution. In this trace mode, recorded events are reset every
new instant.

• Record Scheduler State. When checked, the event record-
ing stays activated during execution and across instant bound-
aries. Later, the resulting trace can be cleared or shown by
clicking on the appropriate buttons (see Figure 1).

3.1.3 List of Fair Threads

The last part of the debugging toolbox shows the lists of live fair
threads (this frame does not show native OS threads present in the
program). The list is arranged into a tree where the directory nodes
represent the schedulers, and the leaves represent the attached fair
threads. Note that there may be several schedulers in a program, and
that schedulers can be nested, since they are actually specialized fair
threads.

Figure 1 shows the three fair threads present in the previous pro-
gram, plus their scheduler. Threads are identified by their name, or
by a unique thread descriptor that can be used in the BUGLOO com-
mand line. Double-clicking on a node opens a fair thread inspector
in a new window. It is described below.

3.2 Fair Thread Inspector

An inspector provides a graphical representation (henceforth called
a view) of the state of a debuggee object at the time the execution
was suspended. BUGLOO provides various specialized views for
different object types. In particular, we have implemented views
for the three main types introduced by Fair Threads: schedulers, fair
threads and signals. Below, we describe the basic services provided
by an object inspector. Then we present the specific Fair Threads
views.

3.2.1 Object Inspectors

Inspectors are top-level windows that provide a set of common fea-
tures and attributes. Figures 2, 3 and 4 show screenshots of different
inspectors.

The bottom status bar shows the type of the inspected object. In
a view, fields that point to other debuggee objects are themselves
inspectable. A common pop-up menu lets the user inspect objects
within the current inspector window or in a new one, as show in
Figure 2. The toolbar at the top of the view provides a set of generic
actions available in every inspector:

• When the user inspects a new object in the same inspector
window, the old view is kept in a view history and is accessible
through the top toolbar. The history is managed in a browser-
like fashion: one can go backward or forward. When a new

2Enhanced debugging is only fully effective at the beginning of
the next instant.

Figure 2. Scheduler Inspector

Figure 3. Fair Thread Inspector

view is created, it is inserted at the current point in history,
and all the views forward this point are forgotten.

• A particular object type can be associated with many graph-
ical views. For instance, a scheduler can be visualized as a
simple fair thread or as a scheduler (more specific view). The
third button in the toolbox can be used to change the current
view (see Figure 3). A default view is provided for all types.
It is basically an object inspector and is not presented in this
paper.

3.2.2 The Scheduler View

The screenshot shown in Figure 2 represents the state of the sched-
uler when the program presented in Section 2.3 is suspended at line
13. The scheduler view is decomposed in four parts. The first part
exposes basic information concerning the scheduler: its name, the
current instant at the time the execution was suspended, and its par-

80

Figure 4. Signal Inspector

ent scheduler, if any (or the symbol [none]).

The second part is a table widget that shows all the fair threads
attached to this scheduler. Double-clicking on a line pushes a new
view of the selected fair thread in the inspector. Information about
a fair thread includes its name and its current state in the scheduler.
Unlike POSIX threads, a fair thread can be in six different states:

• running: the fair thread is currently executing;

• standby: the fair thread is eligible for execution during the
instant;

• await: the fair thread is awaiting signal(s);

• end of instant: the fair thread has terminated its execution for
the current instant;

• terminated: the fair thread has terminated its entire execu-
tion;

• unattached: the fair thread has not been started yet, because
it is not attached to a scheduler. Obviously this state can only
be seen in the fair thread view presented further on.

The last two parts of the inspector are devoted to signals.

• A first table represents signals that have been broadcast in the
scheduler during the instant. Information about a signal in-
cludes its name and its value (or [...] if the signal has been
broadcast several times). Double-clicking on a line pushes a
new view of the selected signal in the inspector.

• A second table represents signals that are awaited by threads,
and that have not been broadcast in the scheduler yet. As soon
as an awaited signal is broadcast, its entry in the table migrates
to the first table. An entry is composed of the signal’s name
and its awaiting threads.

3.2.3 The Fair Thread View

The fair thread view presented in Figure 3 is quite simple. It first
shows the name of the fair thread, and that of its scheduler. If the
latter is clicked, a new view is pushed on the inspector. The view
also shows the state of the fair thread. It can be any of those pre-
sented in the scheduler view. Moreover, if the thread is awaiting
one or more signals, their names are displayed in a list-box.

In the screenshot, we see that fair thread A is awaiting signal sig2.
Using many inspectors at a time, one can visualize in detail the state
of several fair threads.

3.2.4 The Signal View

The signal view is composed of the name of the inspected signal
and of two other tables. The first table contains the different values
associated with each broadcast of the signal in the current instant. If
enhanced inspection is enabled, each signal broadcast comes with
additional information: the fair thread that broadcast the signal and
its location in the source at the time of the broadcast. In the screen-
shot of Figure 4, we see that fair thread B has broadcast signal sig1
from function funB.

The second part of the inspector lists the threads waiting for this
signal. If the signal has already been broadcast in the instant, the
table is empty.

4 Tracing the Scheduling of Fair Threads

We already stated that the Fair Threads framework provides
stronger means of synchronization that mutexes, because during an
instant broadcast signals are seen by all threads.

In Section 3, we presented a set of tools to address communication
or synchronization problems that can occur during a single instant.
However, the user might need to remember what has occurred sev-
eral instants backward in time to understand the cause of a particu-
lar bug. These tool are not designed to provide such information.

In this section, we present a trace tool that is an effective way to vi-
sualize the state of a scheduler inside and between instants. It gives
the user a sharp vision of both the scheduling and the communica-
tion between fair threads throughout the execution.

4.1 The Trace Tool

When the trace tool is enabled in the debugging toolbox (Figure 1),
the user can display a graphical view of a scheduler execution.

For the sake of the example, let us run the little program presented
in Section 2.3 and trace its whole execution. We previously stated
that this program never terminates because one thread is waiting for
a signal while the others have already terminated.

In presence of a dead-lock, the typical action is to force the sus-
pension of the execution by hitting CTRL+C, and then requiring BU-
GLOO to display the recorded trace. The result is shown in Figure 5.
The trace is displayed as a graph:

• The vertical axis shows the fair threads attached to a scheduler
and all the signals that were broadcast during the recorded
execution slice. Signals always appear at the top, followed by
the scheduler3 and the fair threads.

• The horizontal axis represents the progression of the execu-
tion across the instants. Instant boundaries are delimited by
thick vertical grey lines, along with their respective number at
the bottom.

In the trace view, the execution is decomposed into logical units

3The scheduler appears in the trace because it is itself a fair
thread.

81

Figure 5. The Trace of the Example shown in Section 2.3

that represent atomic operations that occur inside a scheduler. For
example, such units can denote a context switch, the broadcast of
a signal, the waiting for a signal, the termination of a thread or the
start of an asynchronous I/O operation.

We now explain how to interpret the trace while we describe the
important parts of the execution:

At the beginning of instant 1, the scheduler named
scheduler1001 has the control of the execution. The con-
trol is symbolized by a thick black horizontal segment. Then,
the scheduler allocates the processor to fair thread A. This is
symbolized by another black segment.

Next, fair thread A awaits signal sig1, which suspends its execu-
tion. The waiting is symbolized by a black vertical arrow that points
to the life line of signal sig1. A dotted horizontal line is drawn to
indicate that this signal has not been broadcast yet during the in-
stant.

Next, the control switches to fair thread B which broadcasts sig-
nal sig1 into the scheduler. This is symbolized by a dashed arrow
pointing to the life line of sig1. To mark the presence of the signal,
a thick horizontal line is drawn up to the end of the instant. Remem-
ber that broadcasting a signal does not suspend a fair thread. Thus,
fair thread B has to cooperate explicitly. Overall, it has executed
2 logical operations in the scheduler, hence the double size of the
black segment.

Now that signal sig1 has been broadcast, fair thread A is re-elected
and continues its execution. The awaking is symbolized by a verti-
cal line starting from the signal life line and pointing to fair thread
A.

Later in the trace, the control switches to fair thread C, which then
awaits signal sig1. As this signal is already present in the sched-
uler, the fair thread can continue its execution in sequence. This
phenomenon is symbolized in the graph by a double-headed verti-
cal arrow.

When no other fair thread can be scheduled, the scheduler takes
back the control and the instant is over.

At the beginning of instant 2, all the signal are reset, thus their
respective life lines are empty. Fair thread A receives the control
and awaits signal sig1.

At the bottom right of the graph, one can distinguish two little diag-
onal crosses at the end of the schedule of fair threads B and C. This
indicates that both threads have terminated their entire execution
and will no longer be scheduled.

There is no instant 3. Indeed, the only remaining fair thread in
the scheduler is fair thread A. Unfortunately, this thread cannot be
scheduled because it is awaiting a signal that will never be broadcast
from now on. This leads to a dead-lock.

5 Bugloo in Action

In this section we present a complete debugging session on the clas-
sical producer-consumer problem. Several producers write data into
a global shared buffer of unlimited capacity. Several consumers can
read this data and print it using asynchronous I/O operations. We
split the complexity of the problem by presenting successively re-
fined implementations, along with the typical synchronization bugs
that may arise during this process and how we can track them down
with our tools.

5.1 First Implementation

First of all, let us model the problem in Fair Threads. The shared
buffer is a simple Scheme list. For the moment, we consider that I/O
operations are synchronous. Producers and consumers are naturally
modeled as fair threads that put (resp. get) data into (resp. from)
the buffer and then cooperate:

82

1: (define (buffer-fetch)
2: (let ((r (car *buffer*)))
3: (set! *buffer* (cdr *buffer*))
4: r))
5:

6: (define (buffer-put! val)
7: (if (null? *buffer*)
8: (set! *buffer* (list val))
9: (set-cdr! (last-pair *buffer*)

10: (list val))))
11:

12: (define (make-producer count name)
13: (make-thread (lambda ()
14: (let loop ((n count))
15: (put n)
16: (thread-yield!)
17: (loop (+ 1 n))))
18: name))
19:

20: (define (make-consumer name)
21: (make-thread
22: (lambda ()
23: (let loop ()
24: (print (current-thread) ": " (get))
25: (thread-yield!)
26: (loop)))
27: name))

The notification mechanism will occur by the means of the two pro-
cedure calls (put n) and (get). In the first implementation, the
communication model follows a simple wait/notify scheme: on data
availability, a signal is broadcast to awake all the consumers.

28: (define (wait sig)
29: (thread-await! sig))
30:

31: (define (notify sig)
32: (broadcast! sig))
33:

34: (define (put val)
35: (buffer-put! val)
36: (notify ’available))
37:

38: (define (get)
39: (if (buffer-empty?)
40: (begin

41: (wait ’available)
42: (thread-yield!)
43: (get))
44: (buffer-fetch)))

Note that the thread-yield! line 42 is mandatory after the wait.
Indeed, when a consumer awakes, data may have been already con-
sumed by another consumer. If there was no cooperation, the con-
sumer would retry another wait in the same instant. Because a
broadcast signal is present until the end of instant, the consumer
would not block anymore on signal available and would cause a
live-lock.

The following piece of program creates producers and consumers
and starts the scheduling:

(define (start)
(thread-start! (make-consumer "cons1"))
(thread-start! (make-consumer "cons2"))
(thread-start! (make-consumer "cons3"))
(thread-start! (make-consumer "cons4"))
(thread-start! (make-producer 1000 "prod1"))
(thread-start! (make-producer 0 "prod2"))
(scheduler-start!))

When we run the program, the following output is printed on the
screen:

#<thread:cons4>: 1000
#<thread:cons3>: 0
#<thread:cons2>: 1
#<thread:cons1>: 1001
#<thread:cons2>: 1002
#<thread:cons4>: 2
#<thread:cons3>: 3
#<thread:cons1>: 1003
#<thread:cons2>: 1004
#<thread:cons4>: 4
#<thread:cons3>: 5

The first reaction when seeing this output is to think that something
went wrong in the scheduling of the producers. Actually, one might
assume that producers generated two values in a single instant.

The trace shown in Figure 6 helps to find out why the threads are in-
terleaved this way. It turns out that producers broadcast their signals
correctly. In fact, the trace reveals that from an instant to another,
fair threads are scheduled in the exact opposite order, which gives
the impression of erroneous executions.

In conclusion, we showed that the trace tool is useful to understand
the interleaving of threads inside the scheduler. It showed that one
should not assume any particular execution order within an instant:
the scheduler is deterministic in the sense that another execution
will lead to the very same interleaving of fair threads.

5.2 Improving Notification

So far, data availability is signaled to all fair threads. This leads to
unnecessary context switches. We can improve the mechanism by
putting consumers in a queue, and by signaling availability only to
the first thread in this queue. We thus modify the former code as
follows:

(define (queue-empty?)
(null? *queue*))

(define (queue-push! val)
(set! *queue* (append! *queue* (list val))))

(define (queue-pop!)
(let ((th (car *queue*)))

(set! *queue* (cdr *queue*))
th))

83

Figure 6. The Trace of the Producers-Consumers with a Naive Implementation.

(define (wait sig)
(let ((self (current-thread)))

(queue-push! self)
(thread-await! self)))

(define (notify sig)
(if (not (queue-empty? sig))

(broadcast! (queue-pop! sig))))

Since any Scheme value can be used to denote signals, we can
make each fair thread waiting for a different signal, which is its
own thread descriptor returned by current-thread. This way, a
broadcast signal only awakes one consumer at a time.

5.3 Introducing Non-Determinism

We now replace the consumer’s print statement at line 24 with
a make-output-signal to support asynchronous I/O (see Sec-
tion 2.3.3). This way, the output operation is executed in parallel
(i.e, preemptively) and does not block other running fair threads,
for instance in case the output port is a very slow socket.

We also decide to remove the thread-yield! statement line 25,
as a call to make-output-signal always does an implicit cooper-
ation. The consumer code is rewritten as follows:

(define (make-consumer name)
(make-thread
(lambda ()

(let loop ()
(thread-await!
(make-output-signal
(current-output-port)
(concat (current-thread) ": " (get))))

(loop)))
name))

When we run the program, the following output is printed on the
screen:

#<thread:cons4>: 0
#<thread:cons3>: 1000
#<thread:cons3>: 2
#<thread:cons2>: 1002
#<thread:cons4>: 1001
#<thread:cons1>: 1
#<thread:cons1>: 1003
#<thread:cons2>: 3
#<thread:cons2>: 1004
#<thread:cons2>: 5
#<thread:cons3>: 4

The output seems coherent. In particular, the new interleaving order
and the inversion of data 1002 and 1001 can be explained by the
introduction of asynchronous I/O operations. Actually, this modi-
fied program contains a subtle bug which will be explained in detail
in the following section.

5.4 Profiling the Scheduling

At this time, the program seems bug-free, but the trace tool is still
useful to do some profiling analysis. Figure 7 exposes the behavior
of the scheduler when running the new program. By observing the
trace, we can draw various conclusions:

• The new notification mechanism is working as expected: each
producer awakes only one consumer by broadcasting a spe-
cific signal.

• Asynchronous I/O operations are materialized in the trace at
instant 2 by little diagonal arrows drawn at the extremities
of execution segments. An outgoing arrow means that a fair
thread started an asynchronous I/O operation and is awaiting
its termination. This operation always implies an implicit co-
operation. An ingoing arrow means that the consumer can
continue its execution because the I/O terminated.

• The trace reveals that asynchronous I/Os can terminate in the
instant they were started. This is problematic, because this al-
lowed consumers 1 and 2 to react many times in the same
instant and thus to consume more data than they were in-
tended to. We conclude that it was wrong to remove the call to
thread-yield! line 25 in the consumer code (Section 5.1).

• The trace also reveals that as soon as a consumer is awak-

84

Figure 7. The Trace of the Producers-Consumers with Enhanced Notification and Asynchronous I/Os.

ened, it explicitly cooperates (see cons2 near the end of in-
stant 1). Then, when it takes back control, it does an asyn-
chronous I/O. The trace tells us that the cooperation is due to
the thread-yield! located in the get function (line 42). In
Section 5.1, we stated that this cooperation point was manda-
tory because a consumer could be awakened while data was
no longer available. With the new notification mechanism,
this is no longer true. We conclude that this thread-yield!
leads to superfluous context switches.

In conclusion, we believe that the trace inspector is an effective way
to debug communication between threads during execution. It can
be used to track down algorithmic bugs, and it can also be employed
as a simple profiling tool, since it helps tweaking the cooperation
points in a program.

6 Practical Experience

In this section, we briefly explain how the debugger is implemented.
We describe the JVM debugging architecture, and how we hook
BUGLOO in the debuggee to debug fair threads. In a second part,
we present the practical experience we had with our tools and their
current limitations.

6.1 Implementation

The debugging architecture of the JVM is close to the one found in
GDB [21]: the debugger runs on a JVM, and it instruments the ex-
ecution of the debuggee which runs in a second JVM. This allows
BUGLOO to stay as unintrusive as possible. Debuggee’s events like
breakpoint hits, single steps or method entries are transmitted to the
debugger through an event queue connected to both JVMs. In order
to use BUGLOO, it is not necessary to compile the source program
in a special debug mode, nor to operate source-code instrumenta-
tion on it. The debugger queries remotely the debuggee JVM for
information such as a stack trace or the value of a variable. Motiva-
tions for such a design have been discussed in detail in a previous
paper [2].

To implement fair threads debugging, BUGLOO does not need spe-
cial hooks in the Bigloo runtime. It only uses some breakpoint trick-
ery and remote stack inspection. For instance, when the user single
steps to the end of instant, the debugger sets a temporary break-
point in scheduler code (somewhere in the Fair Threads runtime),
and it tells the debuggee JVM to continue its execution. Later,
when the execution breaks into the scheduler, the instant is over
and the breakpoint is discarded. The same trickery is employed to
implement the trace tool. Additionally, if enhanced inspection is
required (see Section 3.1.2), the debugger inspects the debuggee’s
stack frame when such temporary breakpoints are reached, and
stores additional information in the trace. An important property
of this implementation is that the scheduling of fair threads is never
affected by the debugger, since the scheduler is not aware of the in-
strumentation. In particular, the behavior of the debuggee program
is not changed, as opposed to debugging tools that rely on a special
interpreter or on source code instrumentation.

6.2 Benefits of the Tools

We have used our tools to debug BUGLOO itself. In the latest ver-
sion of the debugger, we have modified the GUI so that it does not
block anymore while the debugger queries information from the de-
buggee process. We have to manage a pool of fair threads, and to
use techniques such as nesting schedulers. The trace tool helped us
to understand that we were waiting a signal in the wrong instant.
We also saw that fair threads cooperated too much, leading to su-
perfluous empty instants in the execution.

The Fair Threads API and implementation are subject to change.
The scheduler is likely to be re-implemented to avoid unnecessary
context switches. For instance, all traces presented in this paper
show that the control always returns to the scheduler before the end
of instant. Our debugger will certainly help us in making a better
implementation.

We believe that the tools we have presented can be very useful for
educational purpose. They are simple to use and they help to un-

85

derstand what is going on in the scheduling of programs. This is a
good means to get acclimatized with this style of concurrent pro-
gramming based on signals and instants.

6.3 Current Limitations

We can detect dead-locks and live-locks, but the latter are currently
difficult to deal with. For example, if a fair thread is stuck in an
instantaneous loop, repeatedly awaiting a signal that is present in
the instant, the trace records a lot of events and may grow too much
to be displayed. To prevent this bug, the execution is automatically
suspended when an abnormal number of events occurred during a
single instant. Nevertheless, the repetitions stay visible in the trace
and should be grouped.

Also, while the trace tool is a good way to visualize the communi-
cation of threads, it says nothing about the actual processing (like
entering functions) done between the communication. This may
make the trace difficult to read for programs that do a lot of compu-
tation and/or side effects in between synchronizations.

Finally, we have not provided yet a good support for visualizing
large programs with many dozens of fair threads running concur-
rently. We should add means to show or hide signals and threads in
the trace. Also, the ability to display long traces in multiple views
in a Model-View-Controller fashion would be very useful.

7 Related Work

7.1 Debugging Concurrent Programs in Scheme

Every approach of concurrent programming comes with its spe-
cific problems with respect to debugging. Gambit-C 4.0 provides a
user space implementation of preemptive threads à la POSIX based
on continuations. We already discussed the problems inherent to
this approach of concurrent programming. PLT’s DrScheme [6]
provides CML-like [15] concurrent primitives, where threads are
meant to execute in independent address spaces with their only
communication being via messages sent through channels. How-
ever this approach does not solve the problem of direct shared mem-
ory access. The thread system found in Scheme 48 [11] is based on
optimistic concurrency, which provides a sort of per-thread cached
view of the global address space. The use of caches makes it diffi-
cult to maintain a valid global state and to visualize it. FrTime [3]
implements concurrency with functional reactive programming. It
provides signal processors in the spirit of Fran [4] that run in re-
sponse to “events” such as alarms or messages. To our knowledge,
none of the former systems provides a complete tool for debugging
concurrency.

In general, tools for debugging concurrent systems suffer from the
same difficulty: one has to reason on a program by studying the
order in which locks are acquired, or messages are passed. For
example, the Concurrent Haskell Debugger [8] allows to visualize
graphically the state of CML-like communication channels. The
OptimizeIt! JVM profiler can log all the accesses to monitors that
occur throughout the execution, to analyze them off-line. On the
other hand, when debugging Fair Threads, one can reason on the
full algorithmic logic of his program (i.e, context switches, end
of instants, broadcasted/received signals), thanks to sequentiality,
determinism and signals. Model checkers [10, 9] are one notable
exception: these tools can exhibit complete sequences of execution
that lead to a dead-lock or a live-lock. To achieve this, they use
techniques such as temporal logics and state space exploration.

7.2 Advanced Traces Visualization

Traces are very effective to debug multi-threaded programs. In
GThreads [22], Zhao and Stasko provide a complete set of trace
views for graphically depicting the execution of program. One par-
ticularly interesting view is the so-called “History View”, in which
the lifetime of a thread is decomposed into colored segments which
represent the functions entered by the thread. Our own trace tool
would clearly benefit from this idea.

Jinsight [14, 19] is a Java tool for displaying and analyzing traces of
programs. It can generate interactive views that can be unrolled or
collapsed. It can also automatically detect patterns in the trace and
group them to avoid cycles. We should integrate a similar mecha-
nism into our scheduler traces, to fix the problem of live-lock trac-
ing presented in Section 6.3.

8 Conclusion

In this paper we have presented an extension of the source-level
debugger BUGLOO. It provides support for Fair Threads, a new
thread-based concurrent programming framework that combines
cooperative scheduling and strong communication based on syn-
chronous reactive programming.

We showed that unlike the classic POSIX multi-threading approach,
Fair Threads allow to provide the programmer with a strong debug-
ging support. We have described three tools to deal with specific
bugs that can arise with Fair Threads. First, an improved single-
stepper. Second, a scheduler and signal inspector to analyze the
state of threads when the program is suspended. At last, a sched-
uler tracer to analyze the progression of the scheduling off-line.

The presented tools are new in BUGLOO. We are working on faster
ways of recording traces, and on other views that would give more
insight on the scheduling activity. In the future, The Fair Threads
framework will likely provide means to execute arbitrary computa-
tion asynchronously (i.e, in preemptive threads). We plan to extend
the debugging support for these features.

9 References

[1] F. Boussinot. Java fair threads. Technical Report RR-4139,
INRIA, 2001.

[2] D. Ciabrini and M. Serrano. Bugloo: A source level debugger
for scheme programs compiled into jvm bytecode. In Pro-
ceedings of the International Lisp Conference 2003, 2003.

[3] G. Cooper and S. Krishnamurthi. Frtime: Distributed and
asynchronous functional reactive programming. Technical
Report CS-03-20, Department of Computer Science, Brown
University, 2003.

[4] C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP ’97), volume 32(8), pages
263–273, 1997.

[5] M. Feeley. Scheme request for implementation 18:
Multithreading support. http://srfi.schemers.org/srfi-18/srfi-
18.html, 2000.

[6] R. B. Findler, J. Clements, M. F. Cormac Flanagan, S. Kr-
ishnamurthi, P. Steckler, and M. Felleisen. Drscheme: A
progamming environment for scheme. Journal of Functional
Programming, 12(2):159–182, March 2002.

86

[7] E. Gallesio and M. Serrano. Programming graphical user in-
terfaces with scheme. Journal of Functional Programming,
13(5):839–866, September 2003.

[8] C. Grelck and S. Scholz. Axis Control in SaC. In T. Arts and
R. Peña, editors, Proceedings of the 14th International Work-
shop on Implementation of Functional Languages (IFL’02),
volume 2670 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, 2002.

[9] K. Havelund and T. Pressburger. Model checking java pro-
grams using java pathfinder, 1998.

[10] G. J. Holzmann. The model checker SPIN. Software Engi-
neering, 23(5):279–295, 1997.

[11] R. A. Kelsey and J. A. Rees. A tractable Scheme implemen-
tation. Lisp and Symbolic Computation, 7(4):315–335, 1994.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Specifi-
cation. Addison-Wesley, Reading, MA, USA, 1997.

[13] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Program-
ming. A Nutshell Handbook. O’Reilly & Associates, Inc.,
1996.

[14] W. D. Pauw and G. Sevitsky. Visualizing reference patterns
for solving memory leaks in Java. Concurrency: Practice and
Experience, 12(14):1431–1454, 2000.

[15] J. Reppy. CML: A Higher-order Concurrent Language. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’91), num-
ber 6 in SIGPLAN Notices, pages 293–305. ACM Press,
1991.

[16] M. Serrano. Bee: an integrated development environment for
the scheme programming language. Journal of Functional
Programming, 10(4):353–395, 2000.

[17] M. Serrano, F. Boussinot, and B. Serpette. Scheme fair
threads. In To appear in the proceedings of the 6th ACM-
SIGPLAN International Conference on Principles and Prac-
tice of Declarative Programming, 2004.

[18] M. Serrano and P. Weis. Bigloo: A portable and optimizing
compiler for strict functional languages. In Static Analysis
Symposium, pages 366–381, 1995.

[19] G. Sevitsky, W. De Pauw, and R. Konuru. An information
exploration tool for performance analysis of java programs.
2001.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39:1175–1185, 1990.

[21] R. Stallman and R. H. Pesch. Debugging with GDB: the GNU
source-level debugger. Free Software Foundation, 4.09 for
GDB version 4.9 edition, 1993. Previous edition published
under title: The GDB manual. August 1993.

[22] Q. A. Zhao and J. T. Stasko. Visualizing the execution of
threads-based parallel programs. Technical Report GIT-GVU-
95-01, College of Computing, George Institute of Technology,
1995.

Acknowledgments

Many thanks to Bernard Serpette, Frédéric Boussinot, Manuel Ser-
rano, Stéphane Epardaud, Florian Loitsch and to the anonymous
reviewers for their helpful feedback on this paper. This document
has been typeset in Skribe.

87

Mobile Reactive Programming in ULM

Stéphane Epardaud
Inria Sophia-Antipolis

2004 route des Lucioles - BP 93
F-06902 Sophia Antipolis, Cedex

France
Stephane.Epardaud@sophia.inria.fr

Abstract

We present the embedding of ULM [7] in Scheme and an imple-
mentation of a compiler and virtual machine for it. ULM is a core
programming model that allows multi-threaded and distributed pro-
gramming via strong mobility with a deterministic semantics. We
present the multi-threading and distributed primitives of ULM step
by step using examples. The introduction of mobility in a Scheme
language raises questions about the semantics of variables with re-
spect to migration. We expose the problems and offer two solu-
tions alongside ULM’s network references. We also present our
implementation of the compiler, virtual machine and the concurrent
threading library written in Scheme.

1 Introduction

Today’s networks of computers have nothing to do with what we
had twenty years ago. While there were very few of them back
then, it is now very hard not to be surrounded by more than one
computer, practically always connected to some sort of network.
And if networks and computers have drastically evolved and mul-
tiplied, it is natural that programming languages evolve to exploit
their number and interconnections.

The widespread clustering of processors have marked the ap-
pearance of parallel multi-threading, while the connectivity phe-
nomenon has brought along distributed programming. Some pro-
gramming languages nowadays include these features right along-
side the + and set! operations.

However, there are many ways to do multi-threading, and parallel
execution is but one of them. Many people accept the common idea
of preemptive non-deterministic scheduling and the variety of prob-
lems that are bundled along. Deadlocks, race conditions and syn-
chronisation problems are but a few problems that one experiences
while taking the perilous learning experience of what we often call
native threads. Debugging a non-deterministic program is a chal-
lenging feat, especially since running it on a single processor does

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 INRIA.

not help.

Reactive programming offers the ability to execute multi-threading
programs in a concurrent and deterministic way. No more fancy
scheduling, surprising race conditions and synchronisation myster-
ies. Every execution of an otherwise multi-threading program runs
according to a precise semantics: the same level of predictability
expected from + or set!.

Distributed programming, much like multi-threading programming
has many variants, all of them bearing the unreliability of networks.
From communication breakdowns to computer unavailability, the
networking part of distributed computing faces non-determinism
much in the same way parallel threads do. If distributed program-
ming techniques are to be incorporated into a deterministic lan-
guage, there has to be a way to isolate any non-determinism in safe
and well-known places.

ULM (Un Langage pour la Mobilité) is a set of reactive and dis-
tributed primitives written by G. Boudol that offers a determinis-
tic semantics for local execution. Following the GALS (Globally
Asynchronous Locally Synchronous) model, ULM offers concur-
rent deterministic multi-threading on each site, together with strong
thread mobility while isolating non-determinism.

This paper presents our implementation of a prototype interpreter
for a Scheme language augmented with ULM primitives. We intro-
duce the syntax of this new language along with illustrations of how
to use the ULM constructs in Scheme. We present the implications
of introducing mobility in a Scheme language and how we chose to
address them in a way that fits with ULM’s objectives. Rather than
detail the implementation of our working prototype, we explain the
global ideas behind the cooperative scheduling and the mobility of
threads.

In Section 2 we present the reactive aspect of ULM. In Section 3 we
introduce the mobility primitives, the problems arising from free
variables during migration, and the different types of variables we
offer as solution. In Section 4 we present an extended example
of mobility and multi-threading through agent interactions. The
implementation of our prototype compiler and virtual machine is
outlined in Section 5. We muse on future directions in Section 6,
compare our implementation with related work in Section 7 and
finally conclude in Section 8.

2 ULM Reactive Primitives

ULM is inspired by FairThreads [6], which is a reactive variant of
Esterel [8], an imperative synchronous language, but you need not

88

know these languages in order to understand ULM and no prior
knowledge will be assumed in this paper.

In reactive programs, execution time is divided in units called in-
stants. An instant is a discrete time interval during which threads
are allowed to react. The basic idea is that during an instant, all
threads that want to run are allowed to run, until they all decide
to wait for the next instant (a form of cooperation), or are blocked
while waiting for something that is not going to happen during the
instant. When all threads are waiting or blocked, we go to the next
instant.

2.1 Threads

In order to present the ULM language, we will show some examples
of what you can do with it. First of all, we will present the basics
of multi-threading in ULM. Its threads are lightweight, cooperative,
not parallel but concurrent, do not have their own memory space,
and are scheduled in a deterministic fashion. They resemble event
loop programs, that do not need locks for synchronisation, but need
to cooperate at some points to let the other threads run.

Here are two threads that run concurrently (the example is ex-
plained below):

1: (define (make-printer-thread name)
2: (ulm:thread
3: (lambda ()
4: (let loop ()
5: (print name)
6: (ulm:pause)
7: (loop)))))
8: (make-printer-thread "A")
9: (make-printer-thread "B")

In this example we define a procedure (make-printer-thread)
that creates a new thread that will print its name, cooperate with
other threads, and keep doing that forever. We then (lines 8-9) use
that procedure to create two threads: one that will print “A” and the
other “B”. The result is that “A” and “B” will be printed repeatedly
in that order forever.

The procedure ulm:thread takes a thunk as parameter, creates a
thread that will execute this thunk, and schedules the thread to be
run later at the current instant. This program also illustrates that the
toplevel execution is in an implicit thread: when the toplevel has
finished execution, it implicitly terminates and lets other threads run
(in this case, the threads that print “A” and “B”). The concept of co-
operation is illustrated in this example with the call to ulm:pause ,
whose effect is to wait for the next instant, explicitly allowing other
threads to execute. Calling ulm:pause after each thread prints al-
lows the other threads to execute, and makes sure the calling thread
won’t be awakened until all the other threads are done for this in-
stant, which is when the next instant starts.

2.2 Signals

This example and its following explanation introduce the concept
of inter-thread communication:

1: (let ((relay (ulm:signal)))
2: (ulm:thread
3: (lambda ()
4: (print "Thread A starts and waits for B")
5: (ulm:await relay)
6: (print "Thread A resumes execution")))
7: (ulm:thread
8: (lambda ()
9: (print "Thread B starts and wakes up A")

10: (ulm:emit relay)
11: (print "Thread B now terminates"))))

In this example, we create a signal (ulm:signal returns a
new signal at line 1) called relay which will serve as a synchro-
nisation and communication means between threads. A signal is
a sort of flag that is set to “not there” at the beginning of each
instant, and then is set to “present” (or any value, as we will see
later) as soon as someone emits it, until the next instant. This
allows threads to wait for a signal to be emitted (if it is not present
already), and to emit signals to wake up other threads. Here thread
A starts executing1, then waits for the relay signal (line 5) to be
emitted, which implicitly allows thread B to run (since thread A is
waiting). Thread B then runs, and emits relay (line 10), which
implicitly allows thread A to be awakened and rescheduled later
in the instant. Then thread B terminates and execution passes to
thread A (line 6), which then terminates.

Communication of values between threads is done in a classical
manner, through shared variables and synchronisation is ensured
via signals. The next version of our ULM interpreter will have an
object system in the form of mixins [9], and provide an Event mixin
that will serve as a signal with an associated value. The next sec-
tion will discuss the differences in communicating values between
threads when migration is involved.

2.3 Suspension

The first of the two main reactive primitives in ULM is ulm:when ,
which introduces suspension. Suspension causes a program to be
suspended at each instant when a signal has not been emitted (to
put it differently: it allows a program to run only during instants in
which a signal is emitted).

We will now illustrate and explain suspension:

1: (let ((odd-signal (ulm:signal))
2: (even-signal (ulm:signal)))
3: (ulm:thread
4: (lambda ()
5: (let loop ((even #t))
6: (if even
7: (ulm:emit even-signal)
8: (ulm:emit odd-signal))
9: (ulm:pause)

10: (loop (not even)))))
11: (ulm:thread
12: (lambda ()
13: (ulm:when odd-signal
14: (lambda ()
15: (let loop ()
16: (print "Odd instant")
17: (ulm:pause)
18: (loop)))))))

This program creates two signals: odd-signal and even-signal

1Because of the deterministic semantics of scheduling, threads
are run in their creation order.

89

that will serve respectively for marking odd and even instants. The
first thread loops forever and emits alternatively the even-signal
or the odd-signal at each instant. The second thread enters
suspension (line 13): that is, it is allowed to run only when
odd-signal is present. At the beginning of each instant it will be
blocked until odd-signal has been emitted, and only then will it
be allowed to run until the next instant. As soon as odd-signal
has been emitted, the second thread prints something and waits for
the next instant (lines 16-17), which means it will be blocked again
until odd-signal is emitted again.

2.4 Preemption

The second main reactive primitive is weak preemption, which al-
lows a program to be given up at the end of an instant. Here we
introduce preemption and explain it below:

1: (define (run-n-instants n thunk)
2: (let ((kill-signal (ulm:signal)))
3: (ulm:thread
4: (lambda ()
5: (let loop ((i n))
6: (if (> i 0)
7: (begin
8: (ulm:pause)
9: (loop (- i 1)))
10: (ulm:emit kill-signal)))))
11: (ulm:watch kill-signal thunk)))
12:
13: (run-n-instants 3
14: (lambda ()
15: (let loop ()
16: (print "New instant")
17: (ulm:pause)
18: (loop))))

This example defines a procedure (run-n-instants) which
takes a thunk and a number of instants n as arguments. This pro-
cedure creates a thread that will wait for n instants (lines 6-9) and
then emit a kill-signal (line 10). Before that thread even starts,
the procedure will enter a preemption block on kill-signal in
which it will execute thunk (line 11). The effect of this is that
thunk will be allowed to run during at most n instants because
then the killer thread will emit the kill-signal which will cause
the execution of thunk to be aborted at the end of the nth instant.

We then call (line 13) run-n-instants in the implicit thread,
with a procedure that prints each new instant. The result is that
the implicit thread will print three instants and then return from
run-n-instants.

There is a minor problem with this code though, because the
ulm:when and ulm:watch blocks terminate immediately upon
termination of their body, whether or not the preemption or sus-
pension signal has been emitted. This means that once thunk re-
turns (say, a normal return, not interrupted by the kill-signal),
the killer thread is still running for a number of instants, albeit
harmlessly, since emitting the kill-signal after thunk has re-
turned means that there is nothing to preempt anymore. This is
still a waste of execution and a more proper way to implement
run-n-instants would be such:

1: (define (run-n-instants n thunk)
2: (let ((kill-signal (ulm:signal))
3: (done (ulm:signal)))
4: (ulm:thread
5: (lambda ()
6: (ulm:watch done
7: (lambda ()
8: (let loop ((i n))
9: (if (> i 0)

10: (begin
11: (ulm:pause)
12: (loop (- i 1)))
13: (ulm:emit kill-signal)))))))
14: (ulm:watch kill-signal thunk)
15: (ulm:emit done)))

In ULM, preemption is said to be weak because it does not
happen at the moment the preemption signal is emitted during the
instant, but only at the end of the instant. This is different from
the common notion of preemption using exceptions where no code
is executed between the throwing and the raising (or even from
strong preemption in ESTEREL [8] where the preempted code is
not even executed in the first place). In ULM a preempted thread
can continue executing at most until the end of the instant. This
delaying of preemption (and migration, as we will see later) to the
end of instant, as opposed to during the instant, happens because
control flow within a given instant should be independent of the
scheduling order.

With only the primitives ulm:thread, ulm:signal,

ulm:emit, ulm:when and ulm:watch 2 we can create threads,
allow them to cooperate, let them enter critical sections, make them
communicate and decide how they should be sequenced.

3 ULM Mobility

ULM defines strong mobility primitives that allow agents to mi-
grate between sites. Strong mobility allows threads to be mi-
grated with their state, without special treatment from the program-
mer. This type of migration is transparent and the migrated thread
doesn’t need to notice it migrated. Note the strong and weak vari-
ants of preemption are different from the strong or weak notions in
mobility. In our implementation, a site is a Virtual Machine (VM),
be it on the same computer or on separate networks.

3.1 Mobility

In ULM, an agent is a kind of thread that can move across sites
and has an agent heap. There are two kinds of heaps in ULM: the
classical heap (called site heap) is local to a site and does not move.
Agent heaps on the other hand are attached to agents, and migrate
with them. A variable allocated in either heap is accessed by means
of a reference, which can be local if the reference is on the same
site as the heap it points to, or remote if they are on different sites.
A local reference access is non-blocking while a remote reference
access is always blocking. Whenever a thread attempts to access a
reference whose heap is remote, it will be blocked until that heap
comes in (with its agent) or until the blocked thread is migrated to
the heap’s site, unless the access is preempted, of course.

Just like a thread is created with (ulm:thread thunk), we cre-
ate an agent with (ulm:agent proc). Migration of an agent
is strong, and so an agent migrates with its code, registers, stack
and heap. Migration is done by calling either (ulm:migrate-to

2Implementation of ulm:await and ulm:pause using these
primitives is left as an exercise for the reader.

90

host) or (ulm:migrate-to host agent). The first form mi-
grates the current agent to the given host, while the second form
migrates the given agent (subjective and objective migration resp.).
While ulm:thread takes a thunk for the thread body, ulm:agent
takes a procedure of one argument for the agent’s body. This pro-
cedure will be called with the agent’s name, which is also returned
by the ulm:agent call to the creating thread. This name is used
for objective migration.

As we mentioned earlier, migration only happens between instants
(like preemption), and (ulm:migrate-to host) does not block
until the end of instant. This means that anything executed between
the call to ulm:migrate-to and the end of instant will be exe-
cuted prior to moving. This is why we often use ulm:pause after
ulm:migrate-to . The reason why subjective migration is non-
blocking is to keep it symmetrical with objective migration, which
has no reason to be blocking.

Here is a first example of migration:

1: (ulm:agent
2: (lambda (name)
3: (print "here")
4: (ulm:migrate-to "other-host")
5: (ulm:pause)
6: ;; we are now on ’other-host’
7: (print "there")))

This creates an agent that will print something on its cre-
ation site, then migrate (line 4) and wait for arrival (line 5). Once it
arrives on the new site, it prints something there and terminates.

3.2 Mobility Groups

There is a certain hierarchy between agents and threads: threads
have a parent, which can be either the local site, or an agent. Agents
on the other hand do not have a parent. Any thread created directly
by the implicit thread has the local site as parent, while any thread
created directly or indirectly by an agent has that agent as parent.
This allows us to form groups of threads that will function and mi-
grate together. Let us illustrate migration grouping:

1: (ulm:thread
2: (lambda ()
3: (print "Our parent is the local site")
4: ; create a new agent and store its name
5: (let ((name
6: (ulm:agent
7: (lambda (name)
8: ; create a thread that
9: ; stays with us

10: (ulm:thread
11: (lambda ()
12: (let loop ()
13: (print "Second thread")
14: (ulm:pause)
15: (loop))))
16: ; do silly things
17: (let loop ()
18: (print "Agent alive")
19: (ulm:pause)
20: (loop))))))
21: ; move the agent and its side-kick
22: (ulm:migrate-to "host" name))))

Here we have a thread created by the implicit thread (line 1), which
has the local site as parent. This thread creates an agent (line 6)

and then migrates it via objective migration (line 22). This agent
will only have its first instant executed on the local site, prior
to migration. During that first instant, it creates a second thread
(line 10), and then prints in a loop (lines 17-20). That second
thread will have the agent as parent, and so will migrate with him
at the end of the instant. Just like its parent, this thread will only
execute locally during its first instant, prior to migration, and so the
execution on the local site will be such:

Our parent is the local site
Agent alive
Second thread

After that, both the agent and its child thread will resume execu-
tion and printing on the remote site host. Migration groups are
used to keep consistency between an agent and the threads it needs
to function. It has the additional benefit that these groups keep a
local non-blocking access to the agent’s references throughout mi-
grations.

3.3 Confinement of Non-Determinism

While the execution of threads and agents within a given instant
is entirely deterministic, the physical migration of agents between
sites is intrinsically non-deterministic. This is why agents migrate
between instants: it isolates non-determinism between instants, at a
well defined place. However, sites need not share a global instant.
Rather, each site has its local instants, and when an agent changes
site, he leaves a local instant to enter another on the new site. Even
when sites exchange agents, the number of local instants on each
site that lapse during the physical transportation of the agents is
arbitrary and non-deterministic. In particular, if an agent A leaves
the site S1 for the site S2 which is locally at instant Ii (at the time
when the agent leaves), the agent can arrive at the instant Ii+1+n
on S2, with n ≥ 0. The inter-instant migration of the agent can
be seen as a first local inter-instant phase, and a later second inter-
instant phase at the destination site.

3.4 Shared Variables

The behaviour of the first example of migration is quite simple, but
migration introduces questions regarding variables that are shared
between migrating agents and the threads that stay behind. What
happens when two threads sharing a variable are separated is a clas-
sical question among mobile languages [2,14]. Let us illustrate one
of those problems:

1: (let ((shared-var 2))
2: (ulm:agent
3: (lambda ()
4: (ulm:migrate-to "other-host")
5: (ulm:pause)
6: ;; we are now on ’other-host’
7: (set! shared-var 5)
8: (print shared-var)))
9: (ulm:pause)
10: (set! shared-var 9))

In this example we create an agent that migrates to other-host to
set the variable shared-var and print it (lines 7 and 8).

Here we have the local variable shared-var, which is free in
agent’s body: it is allocated in the calling thread’s stack. When
the agent migrates and keeps using this variable we have a prob-
lem: this local variable is being used by two different threads on

91

different hosts.

Some other languages transform any free variable in an agent’s
body into a remote proxy. Proxies are a way to reference vari-
ables across the network in a transparent manner, reading or setting
it through the proxy causing network communication between the
proxy and the remote variable. The remote references in ULM do
not have transparent proxy semantics though. Besides, ULM refer-
ences are explicitly declared, accessed and read (see Section 3.6),
so they are in no way transparent. Furthermore, turning these free
variables into references would block the program as soon as line 7,
which is not what one would expect.

Using proxies here would solve this problem, but to what cost?
ULM references were created to offer a reliable deterministic se-
mantics of execution locally. This is what GALS means: commu-
nications across sites are unreliable and accessing a local variable
should in no way introduce non-deterministic behaviour in a thread.

3.5 Migration by Copy

In order to solve the free variable problem, we have decided to
migrate them by copy. Here is an example to illustrate the copying
of free local variables:

1: (define (remote-run remote-host thunk)
2: (let ((set-signal (ulm:signal))
3: (val ’undef))
4: (ulm:agent
5: (lambda (name)
6: (ulm:migrate-to remote-host)
7: (ulm:pause)
8: ; we’re now on remote-host
9: (set! val2 (thunk2))

10: (ulm:migrate-to "home")
11: (ulm:pause)
12: ; we’re now back home
13: (ulm:emit set-signal)))
14: ; wait for the agent to return
15: (ulm:await set-signal)
16: ; return the value
17: val))

This is a first attempt at implementing an RPC (Remote Pro-
cedure Call), which unfortunately does not work as intended,
as will be explained below. The procedure remote-run takes a
remote-host and a thunk as parameters and sends an agent on
remote-host to execute that thunk and return its value. The
caller thread waits for the agent to come back by waiting on a
shared signal (line 15), which will be emitted by the agent when
it returns (line 13). Note that executing an agent’s body does not
yield any value, since it can terminate anywhere and would not
know whom to return that value to.

This (wrong) example allocates a val variable outside the agent’s
body (line 3), which is shared by the agent and the caller thread,
but only up to the point when the agent migrates (line 7). During
migration, all free variables used by the agent (underlined in the ex-
ample) are duplicated for the agent to go along with (marked with
2), together with the values associated with those variables at the in-
stant of migration. This is migration by copy. Once the agent comes
back home, it still has its own copy of the variable val (i.e. val2),
which is not the same as the val it left behind. Therefore, setting
it has no effect for the waiting thread, which will always return an
undefined value. We will explain in Section 3.9 why set-signal
does not suffer from duplication.

With this example, we notice that migration by copy does solve
the free variable problem, but is not enough to allow interaction
between two threads that have been separated by migration.

3.6 References

This is where ULM references show their value. Let us attempt to
solve the last problem with references:

1: (define (remote-run remote-host thunk)
2: (let ((ref (ulm:ref))
3: (set-signal (ulm:signal)))
4: (ulm:agent
5: (lambda ()
6: (ulm:migrate-to remote-host)
7: (ulm:pause)
8: ; we’re now on remote-host
9: (let ((val (thunk)))
10: (ulm:migrate-to "home")
11: (ulm:pause)
12: ; we’re now back home
13: (ulm:ref-set! ref val)
14: (ulm:emit set-signal))))
15: ; wait for the agent to return
16: (ulm:await set-signal)
17: ; return the value
18: (ulm:unref ref)))
19:
20: ; go fetch the uptime of "other-site"
21: (remote-run "other-site"
22: (lambda () (getuptime)))

This procedure creates a reference stored on the local site’s
heap ((ulm:ref) creates a new reference, line 2). It then sends
an agent on the remote-host (line 6) to execute the thunk there
(line 9) and return (line 10) with its return value in val. Once
back, it sets the reference to that value ((ulm:set-ref! ref
var) affects val to the ULM reference ref, line 13), wakes up the
caller thread (lines 14 and 16), which uses that reference to return
its value ((ulm:unref ref) returns the value of the reference
ref, line 18). This example does not illustrate the use of remote
references with its blocking semantics, but it does show how
references are used by threads separated by migration to share a
variable.

In this remote-run example, we create a reference to a variable al-
located in the local site’s heap (line 2), and the agent migrates with
it. During migration, it mutates from a local reference to a remote
reference: it becomes a unique distant reference on the other site.
But setting it there would block the agent (remember: remote ac-
cess to references is blocking). Instead, we create a local variable to
store the return value of thunk (line 9), and migrate back. Once the
agent arrives on the site where the reference is stored, our remote
reference becomes a local reference again. Exactly the same refer-
ence that was created before leaving, and the same that the caller
thread (that stayed here all along) is using. Setting this reference to
val (line 13) allows the agent to communicate a value to the caller
thread that was waiting for it.

3.7 Global Variables and Modules

Although it may not seem directly relevant to our discussion on
mobility, the module system of ULM is presented here because it
introduces the definition and scope of global variables. In our im-
plementation of ULM, a global variable is associated to the module
that declares it. Each module has a list of global variables that can

92

be exported to other modules that import them, and a toplevel exe-
cution. Here is an example of ULM module:

1: (module foo
2: (import std-scheme ulm)
3: (export
4: bar
5: (gee x)
6:))
7:
8: (define bar 2)
9:
10: (define (gee x)
11: x)
12:
13: (define (mine)
14: (print "non-exported global"))

This declares a module named foo, which uses global vari-
ables exported by the ulm and std-scheme modules, and exports the
two global variables bar and gee. Global variables representing
closures are exported in a syntax that explicits their prototype
(here (gee x) to warn importers of gee that it is a procedure and
takes one argument). Here mine is a non-exported global variable
containing a closure. It is local to this module and cannot be used
by other modules. The exported variables bar and gee on the other
hand can be imported and used by any other module, if they import
the module foo.

There are two main standard modules in ULM: std-scheme which
exports some standard Scheme procedures (such as for-each or
assq)3, and ulm which declares and exports every ULM primitive
and derived constructs, prefixed with the ulm: namespace for clar-
ity.

3.8 Ubiquitous Variables

We now know how to share variables across the network, and mi-
grate with free variables that will be duplicated. What about stan-
dard libraries? In the last example, we only talked about free local
variables, but there are more variables that become free during mi-
gration: global variables suffer the same problem. Although you
could expect global variables from the current module to be du-
plicated during migration (just like local variables), variables from
other modules (such as our ulm or std-scheme modules) deserve
another treatment: otherwise, migrating any agent would result in
migrating copies of whole libraries, which is a waste of bandwidth.

In addition to the local and global variables which are duplicated
during migration, there is a type of variable called ubiquitous.
Ubiquitous variables constitute a category of global variables that
are not duplicated during migration. Instead, they are bound dy-
namically upon arrival on the new site. This imposes a few restric-
tions though, the first one being that it must be possible to find these
variables upon arrival (local variables fall out of this category).

In our implementation of ULM, global variables are bound to
modules, and can be exported outside of these modules. Only
modules can be declared ubiquitous (using the module declaration
ubiquitous-module instead of module as seen in the last sec-
tion), which makes all the global variables it exports also ubiqui-
tous. Those modules are called this way because the programmer
assumes they can be found everywhere at the same time, that is on
every site. Using those ubiquitous variables while migrating means

3 Our ULM Scheme is not R5RS compliant.

that upon arrival on the new site, they will be dynamically bound to
their local counterparts.

Ubiquitous variables allows ULM programs to interact with sites
and agents after migration. It is used among other things to move
without dragging along whole libraries (such as the standard ones),
to be able to call local procedures (like gethostname), and to in-
teract with the site or other agents via those local procedures.

Since we declared our std-scheme and ulm modules ubiquitous,
here is what the remote-run example looks like with ubiquitous
variables underwaved and duplicated variables underlined:

1: (define (remote-run remote-host thunk)
2: (let ((ref (

::::::

ulm:ref))

3: (set-signal (
::::::::::

ulm:signal)))

4: (
::::::::

ulm:agent

5: (lambda ()
6: (

:::::::::::::

ulm:migrate-to remote-host)

7: (
:::::::::

ulm:pause)

8: ; we’re now on remote-host
9: (let ((val (thunk2)))
10: (

:::::::::::::

ulm:migrate-to "home")

11: (
:::::::::

ulm:pause)

12: ; we’re now back home
13: (

:::::::::::

ulm:ref-set! ref2 val)

14: (
::::::::

ulm:emit set-signal2))))

15: ; wait for the agent to return
16: (

::::::::

ulm:await set-signal)

17: ; return the value
18: (

::::::::

ulm:unref ref)))

19:
20: ; go fetch the uptime of "other-site"
21: (remote-run "other-site"
22: (lambda () (

::::::::

getuptime)))

23:)

Here it is clear that all the ulm:... procedures are ubiqui-
tous, as is getuptime, since we want to get the uptime of the
site to which we migrate. All local variables are duplicated by
the migration, as is the global variable remote-run, which is not
ubiquitous4.

3.9 Special Values

You will notice that references and signals are underdashed instead
of underlined in the previous example. This is because they are in
effect duplicated during migration, but their values are special. We
already explained that references can change state (local/remote)
during migration but remain unique on each site: this is why ref is
the same as ref2 upon return of the agent (lines 13 and 18 in the
last example).

Signal values are also special: they are associated a universal value,
which will always be equal after migration, in the same way strings
that are not eq? can be equal?. This explains why emitting
set-signal2 (line 14) awakes the thread waiting on set-signal
(line 16).

3.10 How It All Fits Together

We have described informally the behaviour of free local variables,
global variables, ubiquitous global variables, and two special kinds

4Actually, remote-run is never used by the agent after migra-
tion, so it is not necessary to duplicate it.

93

of values with respect to migration. It should be noted that aside
from the signals and references values, only variables are concerned
by migration. In particular, values such as pairs or vectors, which
can contain other values, do not act like variables and the distinction
between ubiquity or copy is never relevant to values. To illustrate
the distinction, two agents cannot share a value through a pair’s
content unless that pair has been obtained by a common variable
since their last migration, and if both agents are on the same site.

Our experience in programming with ULM is that the distinction
between these types of variables or values is quite intuitive. Any-
thing you want to keep sharing after migration has to be explicitly
declared (through references). The other variables will be taken
care of: that is, whether they are dynamic or duplicated, your pro-
gram will keep running after migration. Suspension on a reference
is explicit (via ulm:ref-set! for example), so the programmer
knows where potential suspension happens.

Whether the variables are dynamic or duplicated is left to the mod-
ule designer that provides the variable (in the case of global vari-
ables), so, for instance the programmer does not need to know (in
most cases) whether his implementation of map comes from one site
or another. In any case, the module designer knows what to declare
ubiquitous.

The only thing that might surprise programmers at first is the free
variable duplication, if they try to use them as a communication
means between migrated agents and sites for example. But this is a
habit worth losing in the case of ULM because inter-agent commu-
nication can be done via references, signals or dynamic variables.
The philosophy behind these types of variables is that local intra-
agent execution is the default. Any inter-agent communication is
explicitly marked so.

4 Extended Example

We now present an example which illustrates the benefits of ubiqui-
tous variables, along with a mobile reactive chase. The following is
a prey/predator example in which rabbits try to escape a fox. Rab-
bits eat grass in a field (we will use a field per site) until they are
fed up or hear a fox arriving or killing another rabbit, in which case
they migrate to a random site and leave a trail. The fox makes noise
when he arrives in a site, and then hides until rabbits come in or he
gives up. When a rabbit comes in the fox kills the first one and goes
away. In this example, ubiquitous variables (except those from the
ulm and std-scheme modules) are underwaved:

1: (ubiquitous-module salad-field
2: (import std-scheme ulm)
3: (export
4:

:::

kill ; local signal

5:
:::::::::::

fox-arriving ; local signal

6:
::::::::

eat-grass ; local signal

7: (
::::::

go-away)

8: (
:::::::::::

follow-trail)

9:))
10:
11: (define *trails* ’())
12:
13: (define

::::

kill (ulm:signal))

14: (define
::::::::::::

fox-arriving (ulm:signal))

15: (define
:::::::::

eat-grass (ulm:signal))

16: (define (
:::::::

go-away)

17: (let ((dest (random-other-site)))
18: (set! *trails* (cons dest *trails*))
19: (ulm:migrate-to dest)
20: (ulm:pause)))
21:
22: (define (

:::::::::::

follow-trail)

23: (let ((dest (if (pair? *trails*)
24: (car *trails*)
25: (random-other-site))))
26: (ulm:migrate-to dest)
27: (ulm:pause)))

We define an ubiquitous ULM module with three signals and
two procedures exported. These exported variables represent
signals and procedures local to a site: in this case a signal to
indicate the fox’s arrival (fox-arriving), one emitted by rabbits
while eating (eat-grass), and another to represent the fox killing
a rabbit (kill).

We now define a non-ubiquitous module where the behaviour of
rabbits and foxes are each defined in a procedure:

1: (module fox-rabbit
2: (import std-scheme ulm salad-field))
3:
4: (define (rabbit name)
5: (let ((killme (ulm:signal)))
6: (let watchout-loop ()
7: (ulm:watch killme
8: (lambda ()
9: (let ((bored #f))

10: (print name " Rabbit Arriving")
11: (ulm:watch-or (list

:::::::::::

fox-arriving
::::

kill)

12: (lambda ()
13: (let eat-loop ()
14: (ulm:emit

::::::::

eat-grass killme)

15: (print name " Rabbit Eating")
16: (ulm:pause)
17: (if (= 1 (random 5))
18: (set! bored #t)
19: (eat-loop)))))
20: (if bored
21: (print name " Rabbit Bored")
22: (print name " Rabbit Fleeing"))
23: (

:::::::

go-away)

24: (watchout-loop)))))
25: ; we got killed
26: (print name " Rabbit Dead")))

The behaviour of the rabbit agent is defined in the rabbit
procedure. The rabbit starts by creating a signal (line 5) by which it
will be identified in case it gets killed. It then enters a preemption
block on that signal (line 7): when that signal is emitted, the rabbit
dies. In that block it is going to eat (line 13) for a random amount
of instants while watching out for a fox arriving or the fox killing
another rabbit (this is a variant of ulm:watch which preempts on
any presence in a set of signals, line 11). The eating consists in
emitting the eat-signal with the signal representing the rabbit’s
life as value5 (line 14). When the rabbit is bored (line 18) or is
preempted by the fox’s arrival or killing another rabbit (line 11), it
goes away and loops (lines 23 and 24).

Notice how kill, fox-arriving, eat-grass and go-away
are ubiquitous variables: they are dynamic per-site.

5This introduces valued signals: you can assign several values
to a signal during the instant, the first one of which sets it as emitted.

94

The fox’s behaviour is defined in the procedure that follows:

1: (define (fox name)
2: (let loop ()
3: ; arrive somewhat noisily
4: (print name " Fox Arriving")
5: (ulm:emit

:::::::::::

fox-arriving)

6: (ulm:pause)
7: ; wait for a rabbit silently
8: (let wait ((i 20))
9: (if (> i 0)

10: (let ((eaters (ulm:present
::::::::

eat-grass)))

11: (if eaters
12: (begin
13: (print name " Fox Killing "
14: (car eaters))
15: (ulm:emit

::::

kill)

16: (ulm:emit (car eaters)))
17: (begin
18: (print name " Fox Hiding")
19: (wait (- i 1)))))))
20: (print name " Fox Going")
21: ; follow the first trail
22: (

:::::::::::

follow-trail)

23: (loop)))

The procedure (ulm:present s) (line 10) is used to query
the presence of the signal s at the current instant. If s is emitted
during this instant, ulm:present will unblock at the current
instant and return any value associated with it when it was emitted.
But there is no way to know whether a signal will not been emitted
within an instant, because we only know its absence when we have
decided to stop running threads in an instant. This is called the end
of instant, so in ULM, absence can only be determined at the end
of instant, and since no thread can run between instants, reaction
to absence is always done in the next instant. The behaviour of
ulm:present when s has not been emitted during the current
instant is to return #f at the next instant.

The fox emits the fox-arriving signal in the instant it arrives
(line 5), then it hides and waits for the first broadcast of eat-grass
(line 10), which is emitted by any eating rabbit. If there is nothing,
that call is blocking (implicit cooperation) and we can safely loop
because we’re already at the next instant when it returns (line 19).
If there is a rabbit, ulm:present returns the list of killme sig-
nals emitted by each rabbit while eating. Each signal represents
the life of a rabbit (the outer watch block of his loop, line 7 of the
rabbit procedure). The fox can then emit the kill signal to warn
all rabbits (line 15), and the signal that will kill the first rabbit that
showed up (line 16). After that, the fox follows the first trail it finds
and goes on another site (line 22).

Note that the killed rabbit is preempted twice in the same instant:
once by the emission of its killme signal, and the second time by
the kill signal. Whenever several watch blocks should be pre-
empted, it is the outermost block that is preempted, thus killing the
rabbit without making him flee. It is also worth noting that since
the preemption is weak, the rabbit still has time to chew his last bit
of grass before dying6.

The use of ubiquitous signals and methods to represent what hap-
pens in each site enables us to start rabbits and foxes on any differ-
ent site, and still have them interact on each site according to the
local signals and procedures.

6Which clearly shows the total lack of resemblance between
these rabbits and Evil ones with Big Sharp Pointy Teeth.

5 Implementation

We chose Scheme as the host language for the ULM primitives in
order to concentrate on the reactive and mobility issues and not
on complex host language syntax or semantics. Due to the strong
migration semantics, we opted for a bytecode compiler/VM cou-
ple, to avoid having an interpreter stack while executing ULM pro-
grams, since stacks are typically not first-class objects (and indeed
not in the target executables our interpreter is compiled in: Java,
C, .NET). We use an academic bytecode interpreter from Quein-
nec [3] to compile scheme primitives to bytecodes and to execute
those bytecodes. We also use the syntactic macros from Bigloo [13]
along with its implementation of most of the standard Scheme li-
brary used from ULM. The compiler and VM are also written in
Bigloo Scheme, for portability and native execution.

5.1 Reactivity

Reactive ULM primitives and scheduling are managed in the ulm
module, implemented in the host language itself, with only three
VM primitives added. In the VM, each thread is represented by
a closure object, a stack and any register that needs saving by the
VM when changing context (such as the program counter, stack
pointer, etc...). In the ulm module, scheduling is done with an extra
thread that is executed only at the end of instants to initiate the
next instant. The scheduling of threads during the instant is done
by the threads themselves, whenever they emit or wait for signals.
In theory the scheduler thread is optional since the end of instant
could be executed in any other thread, but using an extra thread
made things much easier to write and understand.

5.1.1 Contexts

Suspension and preemption are represented by a list of WW-cells
(When/Watch cells) that are augmented with either a When-cell
or a Watch-cell when entering a suspension or preemption block
(resp.). When-cells specify the signal of the ulm:when block, and
a boolean that indicates whether it is satisfied for this instant (it
is satisfied if the signal has been emitted). Watch-cells associate
the preemption signal with a procedure that can escape from the
ulm:watch block. Preemption is implemented using bind-exit7:
each time a ulm:watch block is entered, we enter a bind-exit
block and associate its exit procedure with the preemption signal.

5.1.2 End of Instant

At the end of the instant, the scheduler thread walks the list of
threads and reverts all When-cells to ’unsatisfied. Then for
the outermost Watch-cell that is satisfied, the scheduler notifies
the thread that it should be preempted (we will see where this is
done later). Any thread with no ’unsatisfied When-cells (that
includes preempted threads) is scheduled to run at the next instant.

5.1.3 Scheduling

We already revealed that intra-instant scheduling is done by the
threads themselves, during various ULM primitive calls. Emitting a
signal causes the list of threads waiting for it to be examined. Each
unsatisfied When-cell is checked and threads that only have satis-
fied When-cells are rescheduled for later in the instant. In other
words, threads that have several When-cells are only allowed to run

7A form of call/cc whose escape procedure is only valid in its
dynamic extent.

95

when all have been satisfied. This enables us to have threads wait-
ing for n signals only be present in any one signal queue at a time.
A thread will thus hop from one waiting queue to the other (as each
queue is satisfied) in the worst case, but be considered for schedul-
ing only once in the best case (if it is in the queue of the its last
unsatisfied signal).

5.1.4 Context Switching

Context switching is done when waiting for a signal that hasn’t been
emitted yet (by entering a ulm:when block8). When that happens,
the thread blocks and finds the next thread to schedule and tells the
VM to switch its context to it. Here is the procedure that switches
context in the ulm module:

1: (define (cooperate)
2: ; tell the VM to switch context
3: ; to the next thread
4: (switch-to-thread (get-next-thread))
5: ; treat preemption
6: (if (thread-preempted? *current-thread*)
7: ; get the Watch-cell of the signal
8: ; that preempted us
9: (let* ((watch-cell (thread-preempted-cell
10: *current-thread*))
11: (exit (cddr watch-cell)))
12: (exit))))

We can see here that all blocked threads are in the cooperate
procedure, blocked in the call to the switch-to-thread
VM primitive. When there is no thread left to schedule,
get-next-thread returns the scheduler thread, which declares
the end of instant.

5.1.5 Preemption

Preemption is decided at the end of the instant, and executed
in the next instant. Since all threads unblocked return from the
switch-to-thread call, we check for preemption there, before
returning from cooperate. When preemption is needed, we find
the exit escaper associated with the preempting signal, and exe-
cute it, thus unwinding at the end of the watch call. This is ef-
fectively done in the new instant and ensures that any preemption
handlers (such as unwind-protect9) are called in the new instant
and not during the end of instant phase.

5.2 Mobility

Mobility is implemented mostly in the VM, because serialisation of
the thread state (stack, memory and bytecodes) requires extensive
access to data that should be kept away from the interpreted lan-
guage. Migrating a thread from one site to another consists in find-
ing all accessed (and future accesses to) variables and bytecodes,
modification of bytecodes, serialisation, transport, deserialisation
and integration.

5.2.1 Finding Accessible Variables

Finding all accessible variables is done by looking through the cur-
rent environment, the stack, and the bytecode of all accessible clo-
sures. Each accessible object is assigned a unique serial number

8ulm:pause and ulm:await are derived from ulm:when .
9A variant of dynamic-wind with no before block.

used later to resolve circular references. Ubiquitous variables are
not traversed, since they will be dynamically bound after migration.

5.2.2 Modification of Bytecodes

The bytecode needs to be modified before migration for two rea-
sons: first, the migrating agent will become a special kind of mod-
ule during migration, and second because this is where variable
duplication takes place. Making a module out of each migrating
agent allows us to simplify the encapsulating process because an
agent migrates with bytecode, a list of constants, a list of global
variables and a name, which fits perfectly the role of modules and
makes inserting an agent in a site fairly easy. These are special
modules however, in the sense that they do not export any variable
and cannot be imported. The bytecode modification is needed be-
cause during the search for accessible variables, we come across
global variables that are not ubiquitous and need special treatment.

There are three types of bytecodes to access variables:
LOCAL-REF/SET, GLOBAL-REF and IMPORTED-REF.
LOCAL-REF/SET represent local variables, that is, lambda
parameters, and they can never be ubiquitous. GLOBAL-REF and
IMPORTED-REF are both global variables but the first one is a
global variable from the current module and is indexed, while the
second one is an imported global variable, referenced by module
and global names.

GLOBAL-REF bytecodes need to be changed into IMPORTED-REF if
the current module is ubiquitous, or phagocytized otherwise. We
call phagocytizing a global variable the action of duplicating it, and
adding it to the module we create for the agent migration. In effect
the agent keeps using that global variable, but it is relocated in its
own module, changes index and migrates with a copy of its current
value.

In a similar way, IMPORTED-REF bytecodes that refer to non-
ubiquitous variables need to be phagocytized and changed into a
GLOBAL-REF. The closures that are not referenced through ubiqui-
tous variables also need to be phagocytized, since we need to add
their bytecode to the agent’s module, bytecode which has to be re-
located and modified.

5.2.3 Serialisation and Transport

Serialisation is done by iterating all the values we affected serial
numbers to, and using either introspection or specialised treatment
to create an alist structure to represent them. References are seri-
alised specially, by mutating their state to remote where applicable:
all local references not allocated in the agent’s heap become remote
before migrating. Local references that stay behind but point to
the migrating agent’s heap also become remote. These serialised
values, along with the agent’s module and a pointer to the agent’s
thread structure (which happens to be the root of serialisation) are
then sent along the network asynchronously.

5.2.4 Deserialisation

On the other site, an asynchronous thread waits for incoming agents
and stores them during the ULM instants until synchronous incor-
poration at the end of instant phase. Deserialisation is done in two
phases: allocation of all the objects that have a serial number, and
affectation of all these object’s members that were referred to by
serial number. Reference mutation also happens during this phase:
remote references held by the agent that point to a local heap be-

96

come local, as do remote references present on the site that point to
the new agent’s heap.

5.2.5 Integration

Integration is the simplest phase, since after deserialisation we are
left with a pointer to the agent thread, and its module. We simply
load that module, add the agent thread to the list of threads and
notify the ulm library that there is a new agent to schedule.

5.3 Migration Examples

Now that we have seen all the details of global variables and migra-
tion, here is an example of how migration actually works, as far as
the programmer is concerned:

1: (module home-mod
2: (exports
3: home-var
4: (home-fun arg)))
5:
6: (define home-var 3)
7:
8: (define (home-fun arg)
9: (set! home-var arg))

10: (ubiquitous-module ubiq-mod
11: (import home-mod ulm)
12: (exports
13: ubiq-var
14: (ubiq-fun a b)))
15:
16: (define ubiq-var "dynamic")
17:
18: (define (ubiq-fun a b)
19: (* a b))
20:
21: (ulm:agent
22: (lambda ()
23: (ulm:migrate-to "host")
24: (ulm:pause)
25: (print ubiq-var)
26: (ubiq-fun home-var 2)))

27: (module main-mod
28: (import home-mod ubiq-mod ulm))
29:
30: (define my-var "hello")
31:
32: (ulm:agent
33: (lambda ()
34: (home-fun 5)
35: (ulm:migrate-to "host")
36: (ulm:pause)
37: (print my-var)
38: (ubiq-fun 2 3)))

We define three modules: home-mod exports non-ubiquitous
global variables, ubiq-mod defines and exports ubiquitous global
variables and sends an agent to host, while main-mod defines
non-ubiquitous variables and also sends an agent to host. After
the transformations of bytecode during migration, here is how the
two agents would look like upon arrival on host if their bytecode
was disassembled into this fictitious code:

1: (agent-module agent1
2: (import ubiq-mod ulm))
3:
4: (define home-var 5)
5:
6: (define agent1-body
7: (lambda ()
8: (ulm:migrate-to "host")
9: (ulm:pause)

10: (print ubiq-var)
11: (ubiq-fun home-var 2)))

12: (agent-module agent2
13: (import ubiq-mod ulm))
14:
15: (define home-var 5)
16:
17: (define (home-fun arg)
18: (set! home-var arg))
19:
20: (define my-var "hello")
21:
22: (define agent2-body
23: (lambda ()
24: (home-fun 5)
25: (ulm:migrate-to "host")
26: (ulm:pause)
27: (print my-var)
28: (ubiq-fun 2 3)))

This example illustrates several things. First, that the agents be-
come their own module (illustrated by the fictitious agent-module
directive). To their modules are added copies of any non-ubiquitous
global variable they were using (from their module or any other):
what we call phagocytizing. All ubiquitous global variables (like
ulm:pause or ubiq-fun) mutate (if not already) into a dynamic
variable bound upon arrival to the new site’s equivalent variables.

Note that while agent modules are a practical implementation tech-
nique, they are not directly available to the programmer, who will
likely never need to know about them.

6 Food For Thought

The ULM interpreter we have implemented is a prototype: it im-
plements the semantics of Scheme and the ULM primitives, and
adds the notion of ubiquitous variables for the migration semantics.
However, there are a number of things that still need to be worked
on: better compilation analysis and optimisation and a distributed
garbage collector. The possibility to call native code from ULM and
have that native code call back ULM code has been implemented,
and we are studying its implications regarding mobility.

Some other enhancements would benefit directly to the ULM prim-
itives: during compilation, bytecodes for global variable access
could be adapted for ubiquitous modules (this is currently done
during migration), as long as it does not impede on non-mobile ex-
ecution (since we expect migration to be less frequent than global
variable access). Better code analysis and compilation could lead
to reduced memory traversal during migration (unused variables or
dead code for example).

Implementation of derived ULM procedures (such as ulm:pause
or ulm:present) would benefit from direct support in the reactive
engine, instead of being implemented via ULM primitives.

An object system in ULM could allow us to implement classical
distributed proxies that could be used in migration to implement dif-

97

ferent argument passing styles for RPC (copy, migrate, visit, lazy,
etc...). Representing signals as objects could also open new ways to
interact with them. A preliminary work on implementing a mixin
object system as defined by G. Boudol [9] has been done, but is not
presented in this paper.

Mechanisms in case of migration transport failure or node unavail-
ability have not been studied yet, as these types of failures are hard
to represent semantically. We could imagine that migration would
return a signal that would be emitted in case of successful arrival,
with a notion of timeouts and retries (any agent that can migrate can
also be saved on disk10 to be used for retries or reentry).

The notion of ubiquitous modules implies that an agent expects
them to be on every site it visits. Mechanisms in case of missing
ubiquitous module upon arrival have not been studied. Automatic
retrieval, migration failure or blocking the agent are possible an-
swers, although the last one fits best the philosophy behind ULM.
Reifying modules as first-class objects could also provide clues on
how to treat this, as agents could perhaps fetch and load modules
explicitly during execution.

Although the ULM primitives integrate well with bind-exit and
unwind-protect (both presented in Section 5.1.1), this is be-
cause bind-exit can be seen as an intra-instant preemption akin
to ulm:watch . call/cc on the other hand, interferes with ULM
primitives, and introduces questions regarding the passing of con-
tinuations between threads which we do not wish to allow.

Even though an agent can acquire new procedure values during mi-
gration, which means the agent will collect the bytecode, together
with the captured and global variables of that procedure, each site’s
GC ensures that they will be collected when not used anymore. In
any case, the traversal done prior to migration will not collect un-
used procedures, and dead code analysis will help in leaving be-
hind any variable access that will never be reached in the bytecode
that needs to be taken. There is no reason why agents would grow
upon each migration unless they need to by collecting useful pro-
cedures. The captured bytecode could however often be shared be-
tween agents and even with local sites, but we have not studied such
a mechanism for our prototype.

7 Related Work

Few other languages offer both Mobility and Reactivity together
with a strong deterministic semantics. Junior [6] offers both a de-
terministic semantics and reactive programming but only reactive
mobility: the state of the reactive engine can be migrated, but not
the state of the host language (Java in this case). In Junior, this does
not have a big impact, since aside from the reactive instructions,
non-reactive Java code is supposed to be atomic and have finished
execution between instants. ULM on the other hand allows reac-
tive instructions (including migration) to be called by non-reactive
instructions.

ESTEREL [8] is the reactive language from which most reactive
primitives in ULM are inspired. Its model of execution is however
very different from ULM because it is based on calculation rather
than discovery. In our model we discover emitted signals as we ex-
ecute the code that emits them, while in ESTEREL the presence or
absence of signals is calculated for each instant, and holds through-
out the entire instant. Because of that, ESTEREL is less modular
and dynamic than ULM. It also does not provide mobility.

10This is the notion of checkpoints in Eden [1] and Emerald [5].

Bigloo FairThreads [6] add a reactive library to Bigloo Scheme (on
which parts of our reactive module are based), but do not support
migration. On the other hand, FairThreads support multiple sched-
ulers and asynchronous threads (that interact in a deterministic way
with synchronous threads by becoming synchronous during inter-
action).

Concurrent ML [11] offers a preemptive scheduling of multiple
threads in a functional language. Communication and synchroni-
sation between threads in CML is done via channels that can be
shared by multiple threads, whereas ULM synchronisation is done
via broadcast events. It should be possible to program in a simi-
lar way to ULM’s signals, but critical sections have to be explicitly
marked, as with traditional preemptive schedulings. CML does not
seem to have a preemption mechanism and does not offer mobility
in the language.

Obliq [12] is a functional language that supports strong mobility
and remote references through proxies. The semantics of their mi-
gration is to transform every free variable (here, all variables de-
fined prior to migration become free) into remote references. Obliq
also supports threads but the parallel, non-deterministic kind.

Kali Scheme [10] proposes mobile procedures that serve as RPC,
with the client providing the server with the procedure it wants it
to run. The remote procedure shares memory with the caller via
Address Spaces and proxies, which is comparable to ULM’s heaps
and references, except that ULM’s remote access is blocking while
Kali Scheme is proxied. Thread mobility is done by capturing the
current continuation of the thread and executing it remotely. Their
migration of the stack reuses a concept found in Emerald [5] where
only the top stack frames are migrated, while the rest are migrated
on-demand.

Erlang [4] is a functional language aimed at distributed program-
ming. It provides mobility in the same form as Kali Scheme, by
spawning an asynchronous process in a remote host by sending
a procedure there. Communication and synchronisation between
threads (remote or local) is done through messages and queues with
unidirectional and synchronous communication. The scheduling of
Erlang threads is preemptive, so critical sections have to be explic-
itly marked, and the execution of non-perfect critical sections is
non-deterministic and suffers from the usual debugging problems.

8 Conclusion

In this paper we have presented the ULM primitives and how to use
them to implement multi-threading and mobile programs that inter-
act with other unknown programs. We have shown the questions
mobility poses regarding variable access, and have proposed differ-
ent solutions to address them while preserving the local execution
reliability that ULM offers. We introduce duplicated and dynamic
variables for the Scheme implantation of the ULM primitives we
implemented, and show how this is intuitive for the programmer.
At the same time, we show how to use dynamic variables to inter-
act with other unknown agents.

Our prototype implementation of the compiler and virtual machine
serves as proof-of-concept for the ULM specification, and enables
us to implement functionalities as complex as RPCs with very few
lines of code. Indeed, we believe the set of primitives ULM pro-
vides is powerful enough to implement different types of distributed
programming techniques, while providing a clear and predictable
framework.

98

9 Bibliography

[1] A.P. Black – The Eden Programming Language – Technical Re-
port 85-09-01, Dept. of Computer Science, University of Washington,
Seattle, Washington, September, 1985.

[2] Alfonso Fuggetta and Gian Pietro Picco and Giovanni Vigna – Under-
standing Code Mobility – IEEE Trans. Softw. Eng., 24, (5), 1998, pp.
342–361.

[3] Christian Queinnec – Lisp in Small Pieces – Cambridge University
Press, 1996.

[4] ERLANG – http://www.erlang.org.

[5] Eric Jul and Henry Levy and Norman Hutchinson and Andrew Black –
Fine-Grained Mobility in the Emerald System – ACM Transactions
on Computer Systems, 6, (1), New York, NY, USA, February, 1988,
pp. 109–133.

[6] FairThreads – http://www-sop.inria.fr/mimosa/rp/FairThreads –
MIMOSA - INRIA.

[7] G. Boudol – ULM: a core programming model for global comput-
ing – Proceedings of ESOP 04, Lecture Notes in Computer Science
(LNCS), 2004, pp. 234-248.

[8] Gerard Berry – Constructive Semantics of Esterel: From Theory
to Practice (Abstract) – Algebraic Methodology and Software Tech-
nology, 1996, pp. 225.

[9] Gérard Boudol – The Recursive Record Semantics of Objects Re-
visited – Proceedings of the 10th European Symposium on Program-
ming Languages and Systems, 2001, pp. 269–283.

[10] Henry Cejtin and Suresh Jagannathan and Richard Kelsey – Higher-
Order Distributed Objects – ACM Transactions on Programming
Languages and Systems, 17, (5), September, 1995, pp. 704–739.

[11] John H. Reppy – Concurrent Programming in ML – Cambridge
Univ Press, 1999.

[12] Luca Cardelli – A language with distributed scope – Proceedings
of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1995, pp. 286–297.

[13] Manuel Serrano and Pierre Weis – Bigloo: A Portable and Opti-
mizing Compiler for Strict Functional Languages – Static Analysis
Symposium, 1995, pp. 366-381.

[14] Tatsurou Sekiguchi and Akinori Yonezawa – A calculus with code
mobility – Proceeding of the IFIP TC6 WG6.1 international workshop
on Formal methods for open object-based distributed systems, 1997,
pp. 21–36.

99

Shift to control

Chung-chieh Shan
Harvard University

ccshan@post.harvard.edu

Abstract

Delimited control operators abound, but their relationships are ill-
understood, and it remains unclear which (if any) to consider canon-
ical. Although all delimited control operators ever proposed can be
implemented using undelimited continuations and mutable state,
Gasbichler and Sperber [28] showed that an implementation that
does not rely on undelimited continuations can be much more ef-
ficient. Unfortunately, they only implemented Felleisen’s control
and prompt [18, 19, 21, 22, 49] and (from there) Danvy and Filin-
ski’s shift and reset [11–13], not other proposed operators with
which an expression may capture its context beyond an arbitrary
number of dynamically enclosing delimiters.

We show that shift and reset can macro-express control and
prompt, as well as the other operators, without capturing undelim-
ited continuations or keeping mutable state. This translation is pre-
viously unknown in the literature. As a consequence, research on
implementing shift and reset, such as Gasbichler and Sperber’s,
transfers to the other operators. Moreover, we treat all these opera-
tors by extending a standard CPS transform (defying some skepti-
cism in the literature whether such a treatment exists), so they can
be incorporated into CPS-based language implementations.

1 Introduction

The continuation is the rest of the computation, represented by the
context of the current expression being evaluated. For example, in
the program

(cons ’a (cons ’b (cons ’c ’())))

the continuation of (cons ’c ’()) is to cons the symbol b, then
the symbol a, onto the intermediate result. This continuation is
represented by the context (cons ’a (cons ’b _)), where _ is a
hole waiting to be plugged in.

Continuations can exist in a program at two levels. First, code may
be written in continuation-passing style (CPS), in which contin-

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Chung-chieh Shan.

uations are managed explicitly as values at all times. Second, the
underlying control flow of a program can be treated in terms of con-
tinuations. Scheme provides call-with-current-continuation
(hereafter call/cc) to access these implicit continuations as first-
class values [35]. Implicit continuations can be made explicit by
a CPS transform on programs; explicit continuations can be made
implicit by a corresponding direct-style transform [7, 14, 15, 46].

A delimited (or composable, or partial) continuation is a prefix of
the rest of the computation, represented by a delimited part of the
context of the current expression being evaluated. For example, in
the program

(cons ’a [(cons ’b (cons ’c ’()))])

the continuation of (cons ’c ’()), as delimited by the square
brackets, is to cons the symbol b onto the intermediate result.
This delimited continuation is represented by the delimited context
[(cons ’b _)].

Delimited continuations, like undelimited ones, can be explicit (in
CPS code) or implicit (in direct-style code). Since Felleisen’s work
[18, 19], many control operators have been proposed to access im-
plicit delimited continuations as first-class values. A typical pro-
posal provides, first, some way to delimit contexts, and second,
some way to capture the current context up to an enclosing delim-
iter. For example, Danvy and Filinski [11–13] proposed two control
operators shift and reset, with the following syntax.

Expressions E ::= · · ·
∣

∣ (shift f E)
∣

∣ (reset E) (1)

Contexts are captured by shift and delimited by reset. More
specifically, shift captures the current context up to the nearest
dynamically enclosing reset, replaces it abortively with the empty
delimited context [_], and binds f to the captured delimited context
as a functional value. For example, the program

(cons ’a (reset (cons ’b
(shift f (cons 1 (f (f (cons ’c ’()))))))))

evaluates to the list (a 1 b b c), because shift binds f to the
value (lambda (x) (reset (cons ’b x))), which represents
the delimited context [(cons ’b _)] captured by shift. At the
same time, shift also removes that context from evaluation—in
other words, it aborts the current computation up to the delimiting
reset—so the result is not (a b 1 b b c).

Continuations have found a wide variety of applications. Delimited
continuations, in particular, have been used in direct-style repre-
sentations of monads [23–25], partial evaluation [8, 17, 26, 38, 52],
Web interactions [29, 43, 44], mobile code [50], the CPS transform

100

itself [11–13], and linguistics [3, 47]. However, the proliferation
of delimited control operators remains a source of confusion for
users and work for implementors. Even though all delimited control
operators in the literature can be implemented using call/cc and
mutable state, we would prefer a direct implementation—that is, an
implementation that does not rely on undelimited continuations—in
hope of reaping the efficiency gains recently shown by Gasbichler
and Sperber [28] with their direct implementation. Unfortunately,
Gasbichler and Sperber only implement Felleisen’s control and
prompt [18, 19] and (from there) Danvy and Filinski’s shift and
reset [11–13], not other proposed operators that allow an expres-
sion to capture its context beyond an arbitrary number of dynami-
cally enclosing delimiters [30–32, 45]. Although it is clear that the
latter operators can macro-express1 the former ones in pure Scheme
without call/cc or set!, the converse “seems not to be known”
[30, 31]. Hence it is unclear how an improved implementation of
shift and reset, such as Gasbichler and Sperber’s, can help us
implement other control operators better.

Because the “static” control operators shift and reset correspond
closely to a standard CPS transform [12], to macro-express other,
“dynamic” control operators in terms of shift and reset is to ex-
tend that transform. In the literature, dynamic control operators like
control and prompt are often treated, as if by necessity, using a
non-standard CPS transform in which continuations are represented
as sequences of activation frames [21, 22, 42]. By contrast, we
show in this paper that a standard CPS transform suffices, as one
might expect from Filinski’s representation of monads in terms of
shift and reset [23–25] (see Section 3.1). What distinguishes dy-
namic control operators is that the continuation is recursive. Thus,
in a language supporting recursion like (pure) Scheme, shift and
reset can macro-express the other control operators after all. As a
consequence, any direct implementation of shift and reset, such
as Gasbichler and Sperber’s, gives rise to a direct implementation
of the other operators.2 Moreover, because our translation of all
these operators extends a standard CPS transform, they can be in-
corporated into CPS-based language implementations.

1By “macro-express” we mean Felleisen’s notion of macro ex-
pressibility [20], but we surround each program by a “top-level”
construct to mark its syntactic top level. We also impose an ad-
ditional requirement: given any space consumption bound s, there
must exist another space consumption bound s′, such that every pro-
gram within s translates to a program within s′. This requirement is
intended to rule out

• implementing delimited continuations by capturing undelim-
ited ones; and

• keeping mutable state by modeling memory in a single storage
cell, which shift and reset can simulate (while accumulat-
ing garbage in the simulated store).

Space consumption can be defined along the lines of Clinger [5],
for an abstract machine such as Biernacka et al.’s for shift and
reset [4].

2A reviewer suggests that Gasbichler and Sperber’s technique
can be easily adapted to other control operators. For example, to
implement the (dynamic) shift0 operator below, it seems that one
need only replace the reset flag in every frame with a reset count,
and decrement it after shifting. Given how many delimited control
operators have been (and will be?) proposed—several, like cupto
[30, 31], are related but not identical to the four considered in this
paper—macro-expressibility results like ours are attractive because
they do not require changing the Scheme implementation at all be-
fore new operators can be introduced.

The rest of this paper is structured as follows. Section 2 introduces
the static control operators shift and reset, and their dynamic
counterparts. Section 3 expresses dynamic control in terms of static
control with recursive continuations. Section 4 then concludes and
mentions additional related work.

2 A tale of two resets

Danvy and Filinski’s shift and reset [11–13] can be defined op-
erationally as well as denotationally. Operationally, we can specify
transition rules in the style of Felleisen [18]:3

M[(reset V)] B M[V] (2)

M[(reset C[(shift f E)])] B M[(reset E ′)]
where E ′ = E{f 7→ (lambda (x) (reset C[x]))} (3)

Here V stands for a value, C stands for an evaluation context that
does not cross a reset boundary, and M stands for an evaluation
context that may cross a reset boundary:

Values V ::= (lambda (x) E)
∣

∣ · · · (4)

Contexts C[] ::= []
∣

∣ C[([] E)]
∣

∣ C[(V [])]
∣

∣ · · · (5)

Metacontexts M[] ::= C[]
∣

∣ M[(reset C[])] (6)

Denotationally, we can specify a CPS transform to map programs
that use shift and reset to programs that do not. The core of this
transform is shown in Figure 1; its first three lines are what this
paper means by “a standard (call-by-value) CPS transform”.4

As Danvy and others have long observed [10], the syntactic defi-
nitions above of contexts and metacontexts are not rabbits out of
hats. Rather, contexts are defunctionalized representations of the
continuation functions in Figure 1.

Contexts of the form: represent continuations of the form:
[] (lambda (v) v)

C[([] E)] (lambda (f)
(E ′ (lambda (x) ((f x) C′))))

C[(V [])] (lambda (x) ((V ′ x) C′))

Similarly, metacontexts (such as (reset (f (reset (g [])))))
are defunctionalized representations of the implicit metacontinua-
tions in Figure 1—that is, of the continuations that can be made
explicit by CPS-transforming the right hand side of Figure 1.

The CPS transform relates not just terms but also types between the
source and target languages. If the source program is a well-typed
term in, say, the simply-typed λ-calculus, then the output of the
transform is also well-typed in the simply-typed λ-calculus: every
source type at the top level or to the right of a function arrow is

3To help the exposition below, these transition rules do not han-
dle the case when a shift term is evaluated with no dynamically
enclosing reset. Danvy and Filinski’s original proposal amounts
here to enclosing the entire program in a top-level reset.

4The right-hand-sides for shift and reset in Figure 1 contain
non-tail calls, as do (18–19) in Section 3.1 below. Thus these equa-
tions do not really constitute a CPS transform, only a continuation-
composing-style transform that extends a standard CPS transform
on the pure λ-calculus. In particular, the output of this transform
is sensitive to the evaluation order of the target language. Danvy
and Filinski [12] regain CPS by CPS-transforming the output of
this transform a second time. We can do so but need not, since by
Section 3.2 our equations’ right-hand-sides will be in CPS again,
with all arguments pure.

101

x = (lambda (c) (c x))

(lambda (x) E) = (lambda (c) (c (lambda (x) E)))

(E1 E2) = (lambda (c) (E1 (lambda (f) (E2 (lambda (x) ((f x) c))))))

(reset E) = (lambda (c) (c (E (lambda (v) v))))

(shift f E) = (lambda (c) (let ((f (lambda (x) (lambda (c2) (c2 (c x))))))
(E (lambda (v) v))))

Figure 1. A continuation-passing-style transform for shift and reset

mapped to a type of the form (τ → ω1) → ω2, where ω1 and ω2
are answer types [39]. Moreover, the type system of the target lan-
guage can be regarded as a type system for the source language. For
example, the expression

(shift f (if (f ’a) 1 2))

translates to a term of the type (Sym → Bool) → Int. In words, the
expression can appear in a context that produces a boolean when
plugged with a symbol, and produce an integer as the final an-
swer. We can take such descriptions as the types of source terms,
as Danvy and Filinski [11] do. They write the typing judgment

·,Bool ` (shift f (if (f ’a) 1 2)) : Sym, Int (7)

to mean that the expression behaves locally like a symbol, but incurs
a control effect that changes the answer type from Bool to Int.

The transition rule (3) for shift mentions reset twice on its right
hand side. On the first line, the reset that delimits the captured
context is preserved after the capture, so the context from a sin-
gle reset outward is protected from manipulation by any number
of dynamically enclosed shift invocations. Informally speaking,
reset makes any piece of code appear pure to the outside, that is,
devoid of control effects. On the second line, the captured context
is surrounded by reset, so f is bound to a pure function.

Neither occurrence of reset on the right hand side of (3) is acci-
dental; they are necessary for the operational semantics to match
the transform in Figure 1. Despite the appeal of this match, many
other delimited control operators have been proposed (historically,
both before and after Danvy and Filinski’s work) that remove one
or both occurrences of reset on the right hand side of (3). Three
such variations on shift are possible, namely control, shift0,
and control0 below.

M[(reset C[(control f E)])] B M[(reset E ′)]
where E ′ = E{f 7→ (lambda (x) C[x])} (8)

M[(reset C[(shift0 f E)])] B M[E ′]

where E ′ = E{f 7→ (lambda (x) (reset C[x]))} (9)

M[(reset C[(control0 f E)])] B M[E ′]

where E ′ = E{f 7→ (lambda (x) C[x])} (10)

Felleisen’s control operator [18, 19, 21, 22, 49], the first delimited
control operator in the literature, captures a delimited context with-
out surrounding it with reset, so f may operate on the contexts in
which it is subsequently invoked. The difference between shift
and control can be observed as follows: the program

(reset (let ((y (shift f (cons ’a (f ’())))))
(shift g y)))

evaluates to (a),5 whereas the program

(reset (let ((y (control f (cons ’a (f ’())))))
(control g y)))

evaluates to ().6 Sitaram’s fcontrol [48] is closely related to
control in nature. These authors refer to reset as prompt, run,
#, or %.

The shift0 operator captures a delimited context like shift does,
but removes the delimiting reset. For example, the program

(reset (cons ’a
(reset (shift f (shift g ’())))))

evaluates to (a),7 whereas the program

(reset (cons ’a
(reset (shift0 f (shift0 g ’())))))

evaluates to ().8 Danvy and Filinski [11] consider this shift0 op-
erator briefly. Also, Hieb and Dybvig’s spawn [32] can be thought
of as a reset that, each time it is invoked to insert a new delimiter,
creates a specific shift0 operator for that new delimiter.

The control0 operator is like control but removes the delimit-

5The reduction sequence begins:
(reset (cons ’a

((lambda (x)
(reset (let ((y x)) (shift g y))))

’())))
(reset (cons ’a

(reset (let ((y ’())) (shift g y)))))
(reset (cons ’a (reset (shift g ’()))))
(reset (cons ’a (reset ’())))

Here shift f introduces a reset under the lambda, which stops
shift g from capturing cons ’a.

6The reduction sequence begins:
(reset (cons ’a

((lambda (x)
(let ((y x)) (control g y)))

’())))
(reset (cons ’a

(let ((y ’())) (control g y))))
(reset (cons ’a (control g ’())))
(reset ’())

Here control f allows control g to capture cons ’a.
7The reduction sequence begins:
(reset (cons ’a (reset (shift g ’()))))
(reset (cons ’a (reset ’())))
8The reduction sequence is:
(reset (cons ’a (shift0 g ’())))
’()

102

ing reset. It is essentially Gunter et al.’s cupto [30, 31] stripped
down to one prompt variable, and closely related to Queinnec and
Serpette’s splitter [45].

Described operationally as in (8–10), these variations on shift
seem like minor changes with little sense of purpose. Because
adding reset is easy, control and shift0 can obviously macro-
express shift, and control0 can macro-express them all, without
call/cc or mutable state. The opposite direction—whether shift
can simulate any of its reset-removed cousins, for example—
“seems not to be known” to Gunter et al. [30, 31]. Since no version
of shift is clearly “right”, Gunter et al. choose to take control0
as primitive.

Concomitant with the apparent difficulty of using shift to simu-
late the other control operators is an apparent difficulty of devising
denotational semantics for these operators under a standard CPS
transform. More precisely, unlike with shift, it is unclear how to
translate control, shift0, or control0 away using a transform
that coincides on pure λ-terms with the first three lines of Figure 1,
where contexts are represented as continuation functions. Instead,
semantics for these operators in the literature either rely on com-
plex mutable data structures (in essence defining the operators by
implementing them in Scheme) or represent contexts as sequences
of activation frames,9 termed abstract continuations [21, 22, 42].
Standard continuation semantics is declared “inadequate” [21] and
“insufficient” [22],10 as control is said to “admit no such simple
static interpretation” [13]. Such claims are surprising in hindsight
of Filinski’s representation of monads in terms of shift and reset
[23–25]—surely even including control0 in a language would not
disqualify it from Moggi’s notions of computation [40]?

Danvy and Filinski [11–13] informally classify their shift and
reset operators as lexical and static, and other delimited control
operators such as control as dynamic. They use these words to
draw an analogy to lexical versus dynamic scoping for variables:
roughly speaking, shift and reset, unlike the other operators, can
be defined and implemented without traversing arbitrarily deeply
into data structures at run-time. The next section shows that, as
soon as we allow traversing arbitrarily deeply into data structures
at run-time, dynamic control operators can be treated with the same
transform as static ones. That is, continuation semantics is suffi-
cient after all, as long as the continuation can be recursive.11

Our development below of recursive continuations is guided by re-
cursive types. For example, if α is a type, then the type List α of
singly-linked α-lists can be defined by

List α = 1+α×List α, (11)

where 1 is the unit type and × constructs product types. For brevity,
we take the unfolding of a recursive type to give not just isomorphic
but in fact equivalent types. For example, (11) states an equation
between types, not just an isomorphism. To use terms coined by

9Or an algebra thereof.
10A reviewer states that these declarations are objections to the

non-tail calls in Figure 1 (as continuation semantics for shift and
reset) and (18–19) in Section 3.1 (as continuation semantics for
control and prompt). However, see footnote 4.

11One way to see the connection between dynamic control op-
erators and recursive continuations may be to observe how the fol-
lowing program enters an infinite loop.
(prompt (begin (control f (begin (f 0) (f 0)))

(control f (begin (f 0) (f 0)))))

Crary et al. [6, 27], this paper shows equi-recursive types, but iso-
recursive types can be used too.

3 Recursive continuations

In this central section of the paper, we treat dynamic control oper-
ators by extending the standard CPS transform, and by translating
them into shift and reset. The key to these treatments is to rep-
resent delimited contexts as functions whose types are recursive:
When a delimited context is captured with a dynamic control oper-
ator, then invoked, it may take control over the delimited context at
the invocation site. Hence, the former context must take the latter
context as an argument in our CPS transform. Roughly speaking,
then, the type of contexts must mention itself, that is, be recursive.

Let us first review delimited contexts captured by shift and reset.
The CPS transform in Figure 1 represents a delimited context as a
continuation, that is, a function of type τ → ω. Danvy and Filinski
identify τ with the type of the intermediate result (that is, the hole in
the context) and ω with the type of the answer (that is, the context
once plugged). For comparison with other control operators below,
we define the types

Context τ ω = τ → ω, (12)
Answer ω = ω, (13)

such that

Context τ ω = τ → Answer ω. (14)

To take an example, the delimited context [(< 1 _)] takes the type
Context Int Bool (or equivalently, Int→Bool) when captured with
shift, because plugging the hole _ with an integer gives an answer
that is a boolean. In other words, the function

(lambda (x)
(reset (< 1 x)))

(which represents that context, as captured by shift) maps in-
tegers to booleans. For another example, the delimited con-
text [(let ((y _)) (shift g (< 1 y)))], when captured by
shift, also has the type Context Int Bool. In other words, the
function

(lambda (x)
(reset (let ((y x)) (shift g (< 1 y)))))

(which represents that context, as captured by shift) also maps
integers to booleans. In fact, these two contexts captured by shift
are observationally equivalent, because the shift g above has only
the empty delimited context [_] to capture.

3.1 control

The context [(let ((y _)) (control g (< 1 y)))] captured
with control is not equivalent to [(< 1 _)], because the function

(lambda (x)
(let ((y x)) (control g (< 1 y))))

(which represents the first context, as captured by control) wipes
out its surrounding delimited context when invoked, whereas the
function

(lambda (x)
(< 1 x))

103

(which represents the second context, as captured by control) does
not. In general, when a delimited context captured by control
is invoked, it may further capture the surrounding delimited con-
text (up to the nearest dynamically enclosing reset) at the point
of invocation. Thus a delimited context captured by control, un-
like one captured by shift, is not a function from an intermedi-
ate result (with which to plug a hole) to a final answer. Rather, a
control-captured context can be thought of as a function from an
intermediate result and any surrounding delimited context to a fi-
nal answer. The surrounding context may be the empty context [_]
(if the captured context is invoked immediately within reset) or
not empty. Accordingly, we let a delimited context captured by
control whose hole is of type τ and answer is of type ω take the
type Context′ τ ω, where

Context′ τ ω = τ → Maybe(Context′ ω ω) → ω. (15)

In this recursive type definition, Maybe α means either an α-value
or the special token #f, like the discriminated union types Maybe a
in Haskell. We use #f to represent the empty surrounding context.

The function send below plugs an intermediate answer v (of
type ω) into a delimited context mc (of type Maybe(Context′ ω ω))
by calling mc with v and the trivial delimited context #f. If mc is the
special token #f, then we are plugging v into the empty context, so
the final answer is just v.

(define (send v)
(lambda (mc) (if mc ((mc v) #f) v)))

This function is of type Context′ ω ω: it is itself a delimited con-
text, namely the empty one. If our target language lets us compare
values against send (even intensionally using eq?, say), then we
can do so rather than comparing values against #f, and drop our
use of Maybe. That is, we could implement send as

(define (send v)
(lambda (mc)
(if (eq? send mc) v ((mc v) send))))

but do not, for clarity.

When two shift-captured contexts are composed as functions
at the source level, the result corresponds to concatenating con-
tinuations by function composition in the target language. By
contrast, to concatenate control-captured contexts of the recur-
sive type defined in (15), we define a recursive function, of type
(

Context′ τ ω×Maybe (Context′ ω ω)
)

→ Context′ τ ω:

(define (compose c mc1)
(if mc1 (lambda (v)

(lambda (mc2)
((c v) (compose mc1 mc2))))

c))

According to (15), the type Context′ τ ω is a function type, and τ
only appears in its domain, not codomain. In other words, a context
captured by control whose hole type is τ has the function type
of a τ-continuation, just like delimited contexts captured by shift,
except for the recursive answer type Answer′ ω defined by

Answer′ ω = Maybe (Context′ ω ω) → ω
= Maybe (ω → Answer′ ω) → ω, (16)

such that

Context′ τ ω = τ → Answer′ ω
= Context τ (Answer′ ω). (17)

Thus Context′ can be written in terms of Context! Hence, delim-
ited contexts captured by control can be represented as ordinary,
if recursive, continuations. The equations below extend the first
three lines of Figure 1 to control. It maps every source type τ,
at the top level or to the right of a function arrow, to a type of the
form (τ → Answer′ ω) →Answer′ ω. To distinguish the reset for
control here from the reset for shift above, we write prompt
instead of reset.

(prompt E) =

(lambda (c) (c ((E send) #f))) (18)

(control f E) =
(lambda (c1)
(lambda (mc1)

(let ((f (lambda (x)
(lambda (c2)
(lambda (mc2)
(((compose c1 mc1) x)
(compose c2 mc2)))))))

((E send) #f)))) (19)

Because this transform extends a standard call-by-value CPS trans-
form on the pure λ-calculus, it shows how to treat control and
prompt as operations in the continuation monad (with answer type
Answer′ ω). Then, because shift and reset expresses all op-
erations in the continuation monad, we can define control and
prompt in direct style as macros in terms of shift and reset.

(define-syntax prompt
(syntax-rules ()
((_ e) ((reset (send e)) #f))))

(define-syntax control
(syntax-rules ()
((_ f e)
(shift c1
(lambda (mc1)

(let ((f (lambda (x)
(shift c2
(lambda (mc2)
(((compose c1 mc1) x)
(compose c2 mc2)))))))

((reset (send e)) #f)))))))

These source-level macros correspond directly to the target-level
equations (18–19), except:

• Where the target-level equations abstract over a continua-
tion argument, the source-level macros use shift rather than
lambda.

• Where the equations pass the continuation send to E, the
macros say (reset (send E)), so as to place E in the de-
limited context [(send _)].

This implementation of control and prompt uses neither call/cc
nor mutable state; in particular, it does not capture any continuation
beyond the outermost delimiting prompt.

Another way to view the same definitions in hindsight is to rec-
ognize that a denotational semantics given by Felleisen et al. [21,
Section 4] encodes control and prompt in a monad that maps each
type τ to the type (τ→Answer′ ω)→ω. This monad is not the con-
tinuation monad, because the answer types Answer′ ω and ω are
different; hence, Felleisen et al.’s equations for their denotational
semantics do not give a standard CPS transform. Nevertheless, we

104

can still use Filinski’s representation of monads in terms of shift
and reset [23–25] to represent control and prompt—essentially
as above, in fact. As an anonymous reviewer hints, this observation
is one way to show our definitions to correctly implement control
and prompt.

Sitaram and Felleisen [49] implement control and prompt in
terms of call/cc in Scheme. That implementation uses both
call/cc and mutable state. Our implementation of control and
prompt using shift and reset can be composed with Filinski’s
implementation of shift and reset using call/cc [23] to yield
a more modular implementation of control and prompt using
call/cc. Sitaram and Felleisen’s implementation maintains a
global, mutable run-stack. The run-stack is comprised of sub-
stacks, one for each dynamically active prompt. Each sub-stack
is a list of invocation points (that is, undelimited continuations cap-
tured by call/cc). These data structures can be correlated with
our implementation: The run-stack is a sequence of “mc” functions
(of type Maybe(Context′ ω ω)), one for each dynamically active
prompt. Each mc function is a sub-stack, the result of concatenat-
ing control-captured contexts using compose.

3.2 shift0

When shift0 captures a delimited context, it does not replace it
with the trivial delimited context as shift does. Instead, it removes
the captured context along with its delimiting reset, exposing the
next-outer delimited context up to the next-nearest dynamically en-
closing reset. With shift0 in the language, reset is not idem-
potent: (reset E) is not equivalent to (reset (reset E)), be-
cause each reset only “defends against” one shift0. For example,
the program

(reset (cons ’a
(reset (shift0 f (shift0 g ’())))))

evaluates to (), but the program

(reset (cons ’a
(reset
(reset (shift0 f (shift0 g ’()))))))

evaluates to (a).

Because shift0 removes the delimiting reset when capturing a
delimited context, the context

[(let ((y _))
(shift0 f (shift0 g (< 1 y))))]

captured with shift0 is not equivalent to the contexts

[(let ((y _)) (shift0 g (< 1 y)))]
[(< 1 _)]

captured with shift0. That is, the function

(lambda (x)
(reset (let ((y x))

(shift0 f (shift0 g (< 1 y))))))

wipes out its surrounding delimited context when invoked, whereas
the functions

(lambda (x)
(reset (let ((y x)) (shift0 g (< 1 y)))))

(lambda (x)
(reset (< 1 x)))

do not.

Appendix C of Danvy and Filinski’s technical report [11] consid-
ers this variation on shift briefly. They model it denotationally by
passing around a list of delimited contexts, which can be thought of
as a sequence of activation frames, except each frame corresponds
to a reset rather than a function call.12 In our formulation, a de-
limited context captured by shift0 whose hole type is τ and whose
answer type is ω has the type Context0 τ ω, where

Context0 τ ω = τ → List (Context0 ω ω) → ω. (20)

In this recursive type definition, List α means a singly-linked list
of α-values, either a cons cell or the empty list (). A list of type
List (Context0 ω ω) contains delimited contexts from innermost to
outermost, separated by control delimiters.

The function propagate below plugs an intermediate answer v (of
type ω) into a list of contexts lc (of type List (Context0 ω ω)) by
calling the head of lc with v and the tail of lc. If c is empty, then
the final answer is simply v.

(define (propagate v)
(lambda (lc)
(if (null? lc) v

(((car lc) v) (cdr lc)))))

This function is of type Context0 ω ω: it is itself a delimited con-
text, namely the empty one.

Like the type Context′ τ ω in Section 3.1, Context0 τ ω is a func-
tion type in which τ only appears in the domain. Hence a delimited
context captured by shift0 is just like one captured by shift, ex-
cept the answer type Answer0 ω of the continuation is recursive,
defined by

Answer0 ω = List (Context0 ω ω) → ω
= List (ω → Answer0 ω) → ω, (21)

such that

Context0 τ ω = τ → Answer0 ω
= Context τ (Answer0 ω). (22)

Thus Context0 can be written in terms of Context. Therefore, just
as with control, delimited contexts captured by shift0 can be
represented as ordinary continuations. Following the Appendix C
mentioned above, the equations below extend the first three lines
of Figure 1 to a CPS transform for shift0. It maps every source
type τ, at the top level or to the right of a function arrow, to a type
of the form (τ → Answer0 ω) → Answer0 ω. To distinguish the
reset for shift0 here from the reset for shift above, we write
reset0 instead of reset.

(reset0 E) =
(lambda (c)
(lambda (lc)

((E propagate) (cons c lc)))) (23)

12Johnson and Duggan [34] add control facilities to the program-
ming language GL that provide power similar to that of shift0
and reset, but they make each function call delimit the context
(like Landin’s SECD machine [9, 10, 37]), so their frames do cor-
respond to function calls.

105

(shift0 f E) =
(lambda (c1)
(lambda (lc)

(let ((f (lambda (x)
(lambda (c2)
(lambda (lc)
((c1 x) (cons c2 lc)))))))

((E (car lc)) (cdr lc))))) (24)

As in Section 3.1, these equations13 can be turned into a direct im-
plementation of shift0 and reset0 in terms of shift and reset
that neither captures undelimited continuations nor keeps mutable
state.

3.3 control0

The control0 operator removes both occurrences of reset on
the right hand side of (3); it combines the dynamic properties of
control and shift0. It is thus not surprising that we can treat
control0 with recursive continuations and the CPS transform by
combining the ideas from Sections 3.1–2.

A delimited context captured by control0, with hole type τ and
answer type ω, has the type

Context′0 τ ω = τ → Maybe(Context′0 ω ω) →

List (Context′0 ω ω) → ω, (25)

in which τ only appears in the domain. A delimited context cap-
tured by control0 is thus just like one captured by shift with the
recursive answer type

Answer′0 ω = Maybe (Context′0 ω ω) →

List(Context′0 ω ω) → ω
= Maybe (ω → Answer′0 ω) →

List(ω → Answer′0 ω) → ω, (26)

such that

Context′0 τ ω = τ → Answer′0 ω
= Context τ (Answer′0 ω). (27)

Thus Context′0 can be written in terms of Context. Informally
speaking, the Maybe part of the types above keeps track of the
delimited context within the nearest dynamically enclosing reset,
and the List part keeps track of the delimited contexts beyond that
reset.

The trivial delimited context of type Context′0 ω ω is the function
send-propagate below, which combines send and propagate.

(define (send-propagate v)
(lambda (mc)
(if mc ((mc v) #f)

(lambda (lc)
(if (null? lc) v

((((car lc) v) #f)
(cdr lc)))))))

To compose delimited contexts captured by control0, we can sim-
ply use the code for compose above, because—although it is created

13Now in CPS; see footnote 4. Expressions like
((E propagate) (cons c lc))

may appear to contain a non-tail call, but should be regarded as a
curried call with two arguments.

for control—it also has the type
(

Context′0 τ ω×Maybe (Context′0 ω ω)
)

→ Context′0 τ ω. (28)

Finally, we can use send-propagate and compose to define an
ordinary CPS transform for control0. Here we write prompt0
instead of reset to mean the reset for control0.

(prompt0 E) =
(lambda (c)
(lambda (mc)
(lambda (lc)
(((E send-propagate) #f)
(cons (compose c mc) lc))))) (29)

(control0 f E) =
(lambda (c1)
(lambda (mc1)
(lambda (lc)
(let ((f (lambda (x)

(lambda (c2)
(lambda (mc2)
(((compose c1 mc1) x)
(compose c2 mc2)))))))

(((E (car lc)) #f) (cdr lc)))))) (30)

This CPS transform maps every source type τ, at the top level
or to the right of a function arrow, to a type of the form (τ →
Answer′0 ω) → Answer′0 ω. Again, these CPS equations can be
turned into an implementation of control0 and prompt0 using
shift and reset that neither captures undelimited continuations
nor keeps mutable state.

4 Conclusion and related work

This paper presents the first CPS transform for dynamic delimited
control operators, including Felleisen’s control and prompt, that
is consistent with a standard CPS transform. We have shown that
Danvy and Filinski’s static operators shift and reset are just as
expressive as dynamic ones. For a delimited control operator to be
dynamic is for it to require recursive continuations.

Now that we know how to implement dynamic operators in terms
of shift and reset without capturing undelimited continuations or
keeping mutable state, direct implementations of shift and reset
like Gasbichler and Sperber’s [28] give rise to direct implementa-
tions of dynamic operators. Moreover, because our CPS transform
extends a standard one, it can be incorporated into CPS-based lan-
guage implementations.

Besides explicating dynamic control operators, recursive continu-
ations are also useful in practical programming. For example, the
iterative interaction pattern between a coroutine and its environment
is reflected in a recursive continuation, specifically its recursive an-
swer type [25, Section 4.2], which can be depicted graphically as a
flowchart. Two special cases of such interactions are:

• the interaction between a Web server and user agents [16, 29,
43, 44]; and

• the interaction between a cursor iterating over a collection and
its client [36], as epitomized in the classic same-fringe prob-
lem.

Another potential application of recursive continuations lies in
Balat et al.’s type-directed partial evaluator for the λ-calculus with
products and sums [2], which computes normal forms for λ-terms

106

under βη-equivalence. To normalize terms that use sums, Balat
et al.’s algorithm uses Gunter et al.’s cupto operator [30, 31], rather
than shift as in previous work by Balat and Danvy [1]. As Balat
et al.’s algorithm evaluates a term, it keeps a list of possible scope
locations at which future case expressions may be inserted, in the
form of prompts for cupto. (By contrast, Balat and Danvy’s earlier
algorithm using shift only considers one scope location at which
to insert a case expression.) If cupto is replaced by shift with
a recursive continuation, then that list of prompts would be pleas-
ingly identified with the stack of control points that Gunter et al.
use to implement cupto in the first place. A direct implementation
of cupto or shift would also make the algorithm more efficient.

5 Acknowledgements

This paper would not be written without the help and encour-
agement of Oleg Kiselyov. Thanks also to Chris Barker, John
Clements, Olivier Danvy, Matthias Felleisen, Andrzej Filinski,
Shriram Krishnamurthi, Stuart Shieber, Sam Tobin-Hochstadt, and
six anonymous reviewers for ICFP 2004 and this workshop. This
work is supported by the United States National Science Founda-
tion Grant BCS-0236592.

References

[1] Balat, Vincent, and Olivier Danvy. 2002. Memoization in
type-directed partial evaluation. In Proceedings of GPCE
2002: 1st ACM conference on generative programming and
component engineering, ed. Don S. Batory, Charles Consel,
and Walid Taha, 78–92. Lecture Notes in Computer Science
2487, Berlin: Springer-Verlag.

[2] Balat, Vincent, Roberto Di Cosmo, and Marcelo Fiore. 2004.
Extensional normalisation and type-directed partial evalua-
tion for typed lambda calculus with sums. In POPL ’04: Con-
ference record of the annual ACM symposium on principles of
programming languages, 64–76. New York: ACM Press.

[3] Barker, Chris. 2004. Continuations in natural language (ex-
tended abstract). In [51], 1–11.

[4] Biernacka, Małgorzata, Dariusz Biernacki, and Olivier
Danvy. 2004. An operational foundation for delimited con-
tinuations. In [51], 25–33.

[5] Clinger, William D. 1998. Proper tail recursion and space
efficiency. In POPL ’98: Conference record of the annual
ACM symposium on principles of programming languages,
174–185. New York: ACM Press.

[6] Crary, Karl, Robert Harper, and Sidd Puri. 1999. What is a
recursive module? In PLDI ’99: Proceedings of the ACM
conference on programming language design and implemen-
tation, vol. 34(5) of ACM SIGPLAN Notices, 50–63. New
York: ACM Press.

[7] Danvy, Olivier. 1994. Back to direct style. Science of Com-
puter Programming 22(3):183–195.

[8] ———. 1996. Type-directed partial evaluation. In POPL ’96:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 242–257. New York: ACM
Press.

[9] ———. 2003. A rational deconstruction of Landin’s SECD
machine. Report RS-03-33, BRICS, Denmark.

[10] ———. 2004. On evaluation contexts, continuations, and the
rest of the computation. In [51].

[11] Danvy, Olivier, and Andrzej Filinski. 1989. A functional ab-
straction of typed contexts. Tech. Rep. 89/12, DIKU, Univer-
sity of Copenhagen, Denmark. http://www.daimi.au.dk/
~danvy/Papers/fatc.ps.gz.

[12] ———. 1990. Abstracting control. In Proceedings of the
1990 ACM conference on Lisp and functional programming,
151–160. New York: ACM Press.

[13] ———. 1992. Representing control: A study of the CPS
transformation. Mathematical Structures in Computer Sci-
ence 2(4):361–391.

[14] Danvy, Olivier, and Julia L. Lawall. 1992. Back to direct
style II: First-class continuations. In Proceedings of the 1992
ACM conference on Lisp and functional programming, ed.
William D. Clinger, vol. V(1) of Lisp Pointers, 299–310. New
York: ACM Press.

[15] ———. 1996. Back to direct style II: First-class continua-
tions. Report RS-96-20, BRICS, Denmark.

[16] Double, Chris. 2004. Partial continuations. http:
//www.double.co.nz/scheme/partial-continuations/
partial-continuations.html.

[17] Dybjer, Peter, and Andrzej Filinski. 2002. Normalization and
partial evaluation. In APPSEM 2000: International summer
school on applied semantics, advanced lectures, ed. Gilles
Barthe, Peter Dybjer, Luis Pinto, and João Saraiva, 137–192.
Lecture Notes in Computer Science 2395, Berlin: Springer-
Verlag.

[18] Felleisen, Matthias. 1987. The calculi of λv-CS conversion:
A syntactic theory of control and state in imperative higher-
order programming languages. Ph.D. thesis, Indiana Univer-
sity. Also as Tech. Rep. 226, Department of Computer Sci-
ence, Indiana University.

[19] ———. 1988. The theory and practice of first-class prompts.
In [41], 180–190.

[20] ———. 1991. On the expressive power of programming lan-
guages. Science of Computer Programming 17(1–3):35–75.

[21] Felleisen, Matthias, Daniel P. Friedman, Bruce F. Duba, and
John Merrill. 1987. Beyond continuations. Tech. Rep. 216,
Computer Science Department, Indiana University.

[22] Felleisen, Matthias, Mitchell Wand, Daniel P. Friedman, and
Bruce F. Duba. 1988. Abstract continuations: A mathematical
semantics for handling full jumps. In Proceedings of the 1988
ACM conference on Lisp and functional programming, 52–62.
New York: ACM Press.

[23] Filinski, Andrzej. 1994. Representing monads. In POPL ’94:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 446–457. New York: ACM
Press.

[24] ———. 1996. Controlling effects. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University. Also as Tech.
Rep. CMU-CS-96-119.

[25] ———. 1999. Representing layered monads. In POPL ’99:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 175–188. New York: ACM
Press.

[26] ———. 2001. Normalization by evaluation for the compu-
ational lambda-calculus. In TLCA 2001: Proceedings of the
5th international conference on typed lambda calculi and ap-
plications, ed. Samson Abramsky, 151–165. Lecture Notes in
Computer Science 2044, Berlin: Springer-Verlag.

107

[27] Gapeyev, Vladimir, Michael Y. Levin, and Benjamin C.
Pierce. 2000. Recursive subtyping revealed. In [33], 221–
231.

[28] Gasbichler, Martin, and Michael Sperber. 2002. Final shift for
call/cc: Direct implementation of shift and reset. In ICFP ’02:
Proceedings of the ACM international conference on func-
tional programming, 271–282. New York: ACM Press.

[29] Graunke, Paul Thorsen. 2003. Web interactions. Ph.D. thesis,
College of Computer Science, Northeastern University.

[30] Gunter, Carl A., Didier Rémy, and Jon G. Riecke. 1995.
A generalization of exceptions and control in ML-like lan-
guages. In Functional programming languages and computer
architecture: 7th conference, ed. Simon L. Peyton Jones, 12–
23. New York: ACM Press.

[31] ———. 1998. Return types for functional continuations.
http://pauillac.inria.fr/~remy/work/cupto/.

[32] Hieb, Robert, and R. Kent Dybvig. 1990. Continuations and
concurrency. In Proceedings of the 2nd ACM SIGPLAN sym-
posium on principles and practice of parallel programming,
128–136. New York: ACM Press.

[33] ICFP. 2000. ICFP ’00: Proceedings of the ACM interna-
tional conference on functional programming, vol. 35(9) of
ACM SIGPLAN Notices. New York: ACM Press.

[34] Johnson, Gregory F., and Dominic Duggan. 1988. Stores and
partial continuations as first-class objects in a language and its
environment. In [41], 158–168.

[35] Kelsey, Richard, William D. Clinger, Jonathan Rees, Harold
Abelson, R. Kent Dybvig, Christopher T. Haynes, G. J. Rozas,
N. I. Adams, IV, Daniel P. Friedman, Eugene Kohlbecker,
Guy L. Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J.
Sussman, G. Brooks, C. Hanson, K. M. Pitman, and Mitchell
Wand. 1998. Revised5 report on the algorithmic language
Scheme. Higher-Order and Symbolic Computation 11(1):7–
105. Also as ACM SIGPLAN Notices 33(9):26–76.

[36] Kiselyov, Oleg. 2004. General ways to traverse collections.
http://okmij.org/ftp/Scheme/enumerators-callcc.
html.

[37] Landin, Peter J. 1964. The mechanical evaluation of expres-
sions. The Computer Journal 6(4):308–320.

[38] Lawall, Julia L., and Olivier Danvy. 1994. Continuation-based
partial evaluation. In Proceedings of the 1994 ACM con-
ference on Lisp and functional programming, 227–238. New
York: ACM Press.

[39] Meyer, Albert R., and Mitchell Wand. 1985. Continuation
semantics in typed lambda-calculi (summary). In Logics of

programs, ed. Rohit Parikh, 219–224. Lecture Notes in Com-
puter Science 193, Berlin: Springer-Verlag.

[40] Moggi, Eugenio. 1991. Notions of computation and monads.
Information and Computation 93(1):55–92.

[41] POPL. 1988. POPL ’88: Conference record of the annual
ACM symposium on principles of programming languages.
New York: ACM Press.

[42] Queinnec, Christian. 1993. A library of high-level control
operators. Lisp Pointers 6(4):11–26.

[43] ———. 2000. The influence of browsers on evaluators or,
continuations to program web servers. In [33], 23–33.

[44] ———. 2001. Inverting back the inversion of control or,
continuations versus page-centric programming. Rapport
de Recherche LIP6 2001/007, Laboratoire d’Informatique de
Paris 6.

[45] Queinnec, Christian, and Bernard Serpette. 1991. A dynamic
extent control operator for partial continuations. In POPL ’91:
Conference record of the annual ACM symposium on princi-
ples of programming languages, 174–184. New York: ACM
Press.

[46] Sabry, Amr, and Matthias Felleisen. 1993. Reasoning about
programs in continuation-passing style. Lisp and Symbolic
Computation 6(3–4):289–360.

[47] Shan, Chung-chieh. 2004. Delimited continuations in natural
language: Quantification and polarity sensitivity. In [51], 55–
64.

[48] Sitaram, Dorai. 1993. Handling control. In PLDI ’93: Pro-
ceedings of the ACM conference on programming language
design and implementation, vol. 28(6) of ACM SIGPLAN No-
tices, 147–155. New York: ACM Press.

[49] Sitaram, Dorai, and Matthias Felleisen. 1990. Control delim-
iters and their hierarchies. Lisp and Symbolic Computation
3(1):67–99.

[50] Sumii, Eijiro. 2000. An implementation of transparent migra-
tion on standard Scheme. In Proceedings of the workshop on
Scheme and functional programming, ed. Matthias Felleisen,
61–63. Tech. Rep. 00-368, Department of Computer Science,
Rice University.

[51] Thielecke, Hayo, ed. 2004. CW’04: Proceedings of the 4th
ACM SIGPLAN workshop on continuations. Tech. Rep. CSR-
04-1, School of Computer Science, University of Birming-
ham.

[52] Thiemann, Peter. 1999. Combinators for program generation.
Journal of Functional Programming 9(5):483–525.

108

109

Cleaning up the Tower: Numbers in Scheme

Sebastian Egner
Philips Research Laboratories

sebastian.egner@philips.com

Richard A. Kelsey
Ember Corporation
kelsey@s48.org

Michael Sperber
sperber@deinprogramm.de

Abstract

The R5RS specification of numerical operations leads to unportable
and intransparent behavior of programs. Specifically, the notion
of “exact/inexact numbers” and the misleading distinction between
“real” and “rational” numbers are two primary sources of confu-
sion. Consequently, the way R5RS organizes numbers is signifi-
cantly less useful than it could be. Based on this diagnosis, we pro-
pose to abandon the concept of exact/inexact numbers from Scheme
altogether. In this paper, we examine designs in which exact and in-
exact rounding operations are explicitly separated, while there is no
distinction between exact and inexact numbers. Through examining
alternatives and practical ramifications, we arrive at an alternative
proposal for the design of the numerical operations in Scheme.

1 Introduction

The set of numerical operations of a wide-spectrum programming
language ideally satisfies the following requirements:

efficiency The programming language’s operations are reasonably
efficient relative to the capabilities of the underlying machine.
In practice, this means that a program can employ fixnum and
floating-point arithmetic where reduced precision is accept-
able.

accuracy A program computes with numbers without introducing
error.

reproducibility The same program, run on different language im-
plementations, will produce the same result.

transparency The programmer can tell when a result is the out-
come of inexact operations and thus contains error, or when a
computation is reproducible exactly.

In practice, efficiency and accuracy are often in conflict: Accu-
rate computations on non-integral numbers are often (but not al-
ways) prohibitively expensive. Fast floating-point arithmetic intro-
duces error. Thus, a realistic programming language must choose a

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Sebastian Egner, Richard A. Kelsey, Michael Sper-
ber.

Scheme 48 1.1 (default mode) 7/10
Petite Chez Scheme 6.0a,
Gambit-C 3.0,
Scheme 48 1.1 (after ,open
floatnums)

3152519739159347/
4503599627370496

SCM 5d9 1
Chicken 0/1082: “can not be represented

as an exact number”

Table 1. Value of (inexact->exact 0.7) in various R5RS
Scheme implementations

compromise between the two—which introduces the need for trans-
parency. Reproducibility is clearly desirable, but also often in con-
flict with efficiency—the most efficient method for performing a
computation on one machine may be inefficient on another. At
least, a programmer should be able to predict whether a program
computes a reproducible result. Moreover, as many practical pro-
grams as possible should in fact run reproducibly.

R5RS [13] provides for exact and inexact numbers, with the idea
that operations on exact numbers are accurate but potentially ineffi-
cient and operations on inexact numbers are efficient but introduce
error. The intention behind R5RS is to hide the actual machine rep-
resentation of numbers, and to allow the program (or the program-
mer) to look at a number object and determine whether it contains
error. In theory, this would fulfill a reasonable transparency require-
ment. In practice, however, the numerical operations in Scheme are
anything but transparent.

For a trivial example exhibiting the poor reproducibility of R5RS
programs, consider the value of the expression (inexact->exact
0.7) in various Scheme systems, all of which are completely
R5RS-compliant. Table 1 shows that the results vary wildly—
Scheme 48 can even change its behavior at run time. This is only
one of a wide variety of problems a programmer faces who tries
to predict the outcome of a computation on numbers in a Scheme
program. Clearly, R5RS provides for little reproducibility.

What is the cause of these problems? R5RS takes the stance that
programs using exact arithmetic are essentially the same as pro-
grams using inexact arithmetic. The procedures they use are the
same, after all—only the numbers are different. In reality, pro-
grams using inexact arithmetic operations are inherently different
from programs using only exact operations. By blurring the dis-
tinction, R5RS complicates writing many programs dealing with
numbers. We know of no design approach which does successfully
unite exact and inexact arithmetic into a common set of operations
without sacrificing transparency and reproducibility.

110

In this paper, we examine the specific problems with the numeri-
cal operations specified in R5RS, and consider alternative designs.
Specifically, our contributions are the following:

• We identify the design fallacies concerning the numerical op-
erations specified in R5RS, and their practical consequences.

• We show how to design numerical operations around the idea
that operations rather than numbers are exact or inexact. The
design has the following properties:

– It uses a different numerical tower that is a more appro-
priate model for realistic program, and which a Scheme
system can realistically represent accurately.

– All standard numerical operations operate exactly on ra-
tional numbers of infinite precision.

– The floating-point operations are separate procedures.

• We examine the choices available in such a design, and dis-
cuss their consequences and relative merits. The choices
concern the relationship between the rational numbers and
the floating-point numbers—whether floating-point numbers
count as rationals and vice versa. We also discuss the nature
of ±∞ and “not-a-number,” and where they fit in our frame-
work.

All of the design alternatives we examine allow compromises
between efficiency and accuracy similar to what R5RS cur-
rently provides, as well as improved transparency and re-
producibility: Any program that does not contain calls to
floating-point operations always computes exactly and repro-
ducibly, independent of the Scheme implementation it runs
on. Rounding conversions from rational to floating-point
numbers only occur at clearly identifiable places in a program.

• We identify some weaknesses in the R5RS set of numerical
operations as they pertain to the new design, and describe pos-
sible approaches to addressing them. This includes the defi-
nitions of quotient, remainder, and modulo, the definitions
of the rounding operations, and dealing with external repre-
sentations.

We do not address all the issues concerning numbers that a future
revision of the Scheme standard should address. Specifically, we
do not discuss the relative merits of tying the Scheme standard to
a specific floating-point representation. We do not touch the issue
of offering abstractions for explicitly controlling their propagation,
as well as the rounding mode of floating-point operations: This is
addressed in detail elsewhere, for example in the recent work on
floating-point arithmetic in Java [4]. Also, we omit complex num-
bers and other advanced number representations (such as algebraic
numbers, interval arithmetic, cyclotomic fields etc.) from the dis-
cussion; they are largely orthogonal to the subject of this paper.

Overview We identify the main problems with the R5RS ap-
proach in Section 2. In Section 3, we present a new model for exact
rational arithmetic and a set of typical machine representations for
it. Section 4 describes how to add inexact arithmetic to the model,
along with the design issues arising from this. Section 5 explores
design alternatives within our model. In Section 6, details a possible
set of exact numerical operations. Some implementation issues are
discussed in Section 7. Finally, Section 8 lists some related work,
and Section 9 concludes.

2 Problems with the R5RS approach

R5RS specifies that the objects representing numbers in a Scheme
system must be organized according to a subtype hierarchy called
the numerical tower:

number ⊇ complex ⊇ real ⊇ rational ⊇ integer

Section 6.2.3 of R5RS requires implementations to provide “a co-
herent subset consistent with both the purposes of the implementa-
tion and the spirit of the Scheme language.” Moreover, implemen-
tations may provide “only a limited range of numbers of any type,
[. . .]”. As a minimal requirement, exact integers must be present
“throughout the range of numbers that may be used for indexes of
lists, vectors, and strings [. . .]”.

In addition, Section 6.2.2 specifies that the representation of a num-
ber is flagged either exact or inexact and that operations should
propagate inexactness as a contagious property. Hence, numbers
in R5RS are not just organized according to the numerical tower,
but also according to exactness. The exact/inexact distinction is
claimed to be “orthogonal to the dimension of type.”

The rest of this section enumerates some of the most significant
problems with the R5RS specification.

2.1 Not enough numbers

Numbers are in short supply in R5RS. As quoted above, the only
numbers a Scheme system must support are indices for arrays,
lists and strings. A Scheme system that supports only integers
{0, . . . ,255} can be perfectly conformant.

Of course, the use of limited-precision fixnum arithmetic can
improve performance. However, we conjecture that the cost
of allowing the standard arithmetic operations to only support
limited precision—the loss of algebraic laws, transparency and
reproducibility—is greater than the benefit.

2.2 Unspecified precision of inexact numbers

R5RS puts no constraints on the range or precision of inexact
numbers. In particular, the description of exact->inexact and
inexact->exact says

These procedures implement the natural one-to-one
correspondence between exact and inexact integers
throughout an implementation-dependent range.

More tellingly, it also says

If an exact[inexact] argument has no reasonably close
inexact[exact] equivalent, then a violation of an imple-
mentation restriction may be reported.

The “may” implies that implementations are free to use an arbi-
trarily inaccurate equivalent. Moreover, the meaning of “reason-
ably close” is similarly underspecified: Table 1 shows that a call to
inexact->exact that works fine on one implementation may ac-
tually signal an error on another, even if the argument is the same.

2.3 No exact fixnum-only arithmetic

R5RS specifies in Section 6.2.2:

111

If two implementations produce exact results for a com-
putation that did not involve inexact intermediate results,
the two ultimate results will be mathematically equiva-
lent.

This makes it hard for a Scheme system to support only limited-
precision integers, as it requires the system to mark results of over-
flows as inexact—which in turn usually means some loss of effi-
ciency (if boxing is involved in the construction of inexact numbers
or a conversion to a different representation) or additional loss of
precision (if an additional bit in the fixed-size representation de-
notes inexactness).1

2.4 Numerical promotion loses information

The idea of a “numerical tower” suggests that the more general
number types contain the more specific ones. In particular, there
is usually a mechanism converting number types automatically
when required for an operation, a process often called “numeri-
cal promotion”, [15, Section 6.5.2.2, §§6, 7], [9, Section 5.6]. In
Scheme, automatic conversion can occur both along the integer–
number axis and along the exact–inexact axis. Also, information
may get lost during any conversion of numbers, even up the tower.
In MzScheme, for example, the following occurs:

(+ (expt 10 309) 0.0) =⇒ +inf.0

even though (expt 10 309) has an exact representation as an in-
teger.

There are several reasons for loss of information. Bignums can
be arbitrarily large, whereas fixed-precision floating-point formats
are limited in range. Exact rationals can have arbitrary precision,
whereas binary floating-point formats, even if they have arbitrary
precision, can only represent binary fractions where the denomina-
tor is a power of two.

In effect, the intuition of the numerical tower as a chain of sub-
sets is invalid for all actual Scheme systems having a floating-point
representation or imposing limits on the number types.

2.5 Lack of “inexact control-flow”

R5RS defines in Section 6.2.2 which numbers are exact:

A number is exact if it was written as an exact constant
or was derived from exact numbers using only exact op-
erations.

Unfortunately, the following function is perfectly capable of return-
ing an exact result given inexact input:

(lambda (x y) (if (< x y) -1 1))

Clearly, the reason is that the comparison < returns an exact result,
either #t or #f. This is especially pernicious given that comparisons
are one place where the inaccuracies of floating-point numbers may
really hurt. In effect, the accuracy of the function’s value is no
greater than the accuracy of the input—but in Scheme’s type system
the result is treated as entirely exact.

1This seems to be why Bigloo 2.5c, for instance, has (expt
2 50) ⇒ 0 but (exact? (expt 2 50)) ⇒ #t (in violation
of the standard). Chicken 0/1082, which also does not sup-
port bignums, has (expt 2 50) ⇒ 1125899906842624. and
(exact? (expt 2 50)) ⇒ #f.

To ensure that an exact result is not dependent on inexact operations
the programmer either has to do a careful analysis of the program
(in which case any run-time checking is irrelevant) or use exact
comparison operations like the following:

(define (exact< x y)
(if (and (exact? x) (exact? y))

(< x y)
(error ...)))

2.6 Exactness of numerical literals

Section 6.2.4 of R5RS states: “If the written representation of a
number has no exactness prefix, the constant may be either inexact
or exact. It is inexact if it contains a decimal point, an exponent, or
a “#” character in the place of a digit, otherwise it is exact.”

The consequence is often that the global behavior of a program is
governed by the presence or absence of a single decimal point: A
program can become intolerably inaccurate through the presence of
a decimal point, or intolerably slow through the omission of one.
The example described in Figure 1 illustrates why this may be un-
fortunate.

2.7 Meaning of standard procedures

Some of the standard procedures defined in R5RS only make sense
for certain types of numbers, e.g., gcd for exact integers or log for
inexact real or complex numbers.

This is a temptation for implementations to fill in the gap and define
things like (gcd 2.0 6.0) in the “obvious” way, violating the in-
tended meaning of standard procedures. In the following example
(again run under MzScheme), the “greatest common divisor” might
be greater than expected:

(gcd (expt 2 40) (expt 3 40)) =⇒ 1
(gcd (expt 2 40) (expt 3 40.)) =⇒ 2048.0

2.8 Exchanging numbers between Scheme sys-
tems

There is no guarantee that two R5RS-compliant Scheme systems
can successfully exchange numerical data via the written represen-
tations provided by the standard procedures. For exact integers,
there seems to be no problem—provided the receiving system cov-
ers the range required by the sender. The notation 1/2 already
poses a problem because rationals are not mandatory. The speci-
fication of number->string and string->number laudably caters
to read/write invariance, but does so only for numbers written and
read by the same Scheme system.

3 Exact arithmetic

The analysis in the previous section suggests that the numerical
tower of R5RS is not a good model for numerical computations in a
computer program—at least not for all of them. Moreover, attribut-
ing exactness to numbers in the way R5RS leads to inconsistencies.

In this section and the following two, we examine the consequences
of splitting operations along the exact/inexact axis instead of the
numbers. The exact arithmetic operations satisfy strong algebraic
properties such as associativity, commutativity, distributivity, total

112

A typical example of surprises with mixed exact/inexact computation appeared in Sperber’s Introductory Computing class. Students had to write a procedure
for visualizing the Mandelbrot set. The task boils down to iterating the function z 7→ z2 −c for different complex parameters c. For visualization, the procedure
draw-mandelbrot enumerates points in a rectangle defined by upper left corner, width and height.

Many students observed that their program seemed to “hang” for some inputs, but not for others. This occurred when only literals without decimal point
were used as operands for draw-mandelbrot—in which case the program computes the iteration using exact fractions. As the iteration progresses, the internal
representation of the fraction gets very large very quickly.
Putting a decimal point into one of the numerical literals or placing an exact->inexact at almost any point in the program would fix things; there is no
recognizably “right” place for it. Students find especially confusing that the seemingly “simpler”—integral—numblers cause problems, while the “more
complicated” floating-point numbers do not.

The example illustrates the limited predictability of Scheme programs mixing exact and inexact numbers.

Figure 1. A real-world example

ordering etc. Initially, we consider the exact world only. We show
how to add inexact operations later.

We take the following abstract numerical tower as the basis for our
numerical operations:

Q ⊇ Q10 ⊇ Q2 ⊇ Z ⊇ Z≥0 ⊇ Z>0.

In this chain Q denotes the rational numbers, Qb denotes the b-ary
fractions, i.e. the set of rational numbers with denominator a power
of b (binary fractions for b = 2 and decimal fractions for b = 10.)2

Z denotes the integers, Z≥0 denotes the non-negative integers, and
Z>0 denotes the positive integers.

While this view of the rational numbers may appear arbitrary or the-
oretical at first glance, it identifies and names the kinds of numbers
that computer programs typically distinguish. In particular, positive
and non-negative integers are so frequent in any sort of program that
we propose to name them in the core language itself.

To relate the tower elements to machine representations, we use
the following terminology, borrowed from R5RS: Fixnums are
the fixed-width machine representation for integers—denoted by
fixnum. Bignums are the arbitrary-width exact representations for
arbitrary integers, named bignum. Flonums are the fixed-precision
floating-point machine representation for rational numbers, named
flonum. Finally, fractions are the tuple representations for ra-
tional numbers, using bignum numerator and denominator, called
fraction.

The relationships between the tower elements and the machine rep-
resentations are as follows:

1. The fixnum representation implements a subset of Z.

2. The bignum representation implements Z, only limited by
available memory.

3. The flonum representation implements a subset of Q2, pos-
sibly augmented by special objects like −0, ±∞ and NaN,
which are not elements of Q.

4. Human-readable representations are typically decimal
fractions—elements of Q10—at least conceptually.

5. The fraction representation implements Q, only limited by
available memory.

We propose that the default operations on rational numbers, that
means the standard procedures +, -, *, /, <=, etc., are all exact: Con-
ceptually, they accept rational arguments and return rational results.
Of course, implementations may take advantage of more efficient
machine representations (employing fixnums and flonums) if pos-

2What we denote as Qb is not identical to the algebraic concept
of “field of p-adic numbers.”

sible, but conversion may only take place if no loss of information
occurs in the process. Thus, the particular machine representation
of a number is purely an efficiency issue.

In practice, this means the following:

• Each number object represents a unique, precisely defined ra-
tional number. Rational numbers have conceptually infinite
precision.

• Different machine representations of the same rational num-
ber may coexist, but they are all equivalent. (Processing time
may differ, of course.)

• Rational numbers are treated exactly the same way as R5RS
currently treats exact integers and rationals.

• The exact operations satisfy all algebraic properties (associa-
tivity, commutativity, distributivity, total ordering, etc.) of
their mathematical counterparts.

4 Adding inexact arithmetic

Exact operations alone, even combined with explicit rounding, are
not sufficiently efficient for many numerical computations. There-
fore, the language should provide access to the underlying floating-
point hardware, if available, through a default set of inexact opera-
tions. For example, float+ would accept two flonums and return
a flonum. By nature, float+ sacrifices algebraic properties to gain
efficient execution. However, by distinguishing exact and inexact
operations explicitly, the actual arithmetic used becomes a property
of the program, rather than a property of the numbers it processes.
(Note that the arithmetic model remains a dynamic property in any
language with exact and inexact numbers, even if operations are
required to accept only all exact or all inexact argument values.)

By distinguishing exact and inexact operations explictly, we give
up a potential source of code reuse: Even if an algorithm works for
both exact and inexact operations alike, our proposal requires two
different programs—one calling the exact operations, one calling
the rounding operations. We are proposing to pay this price be-
cause sensible algebraic and numerical algorithms seem to be dis-
tinct most of the time.

Of course, practical implementations of the inexact operations will
use a limited-precision floating-point representation for numbers.
This raises the question of how these representations relate to the
other representations for rational numbers. Do the floating-point
representations form a subset of the rational representations? What
about ±∞, NaN, and distinct −0? The issue of the special floating-
point objects is central to this issue. We discuss ±∞ and NaN sep-
arately from distinct −0:

113

4.1 The case against rational ±∞ and NaN

The special objects +∞ and −∞ are used in the floating-point world
as a mechanism to carry on with a computation in the presence of
overflow. They are usually the results of positive/tiny = +∞ and
positive/(−tiny) =−∞, which can happen without the programmer
being aware of it.

In the exact world, however, the only way of obtaining infinity is a
division by zero. The question is whether the system should then
signal an error, or return a special object representing infinity. An
argument in favor of ±∞ is that they provide neutral elements for
the minimum and maximum, i.e., (min)⇒ +∞, (max)⇒−∞.

Nevertheless, an exact division by zero is virtually always a symp-
tom of a genuine programming error or of illegal input data, and the
introduction of infinity will only mask this error.

NaN (“not a number”) is the strongest form of delaying an er-
ror message. NaN is a special object indicating that the result of
an arithmetic operation is undefined; one way it could emerge is
(+∞)+ (−∞) = NaN. The advantage of returning NaN instead of
raising an error is that the computation still continues, postponing
the interpretation of the results to a more convenient point in the
program. In this way, NaN is quite useful in numerical computa-
tions.

The problem with NaN is that the program control structure will
mostly not recognize the NaN case explicitly. Assume we define
comparisons with NaN always to result in #f, as IEEE 754 does,
then

(do ((x NaN (+ x 1))) ((> x 10)))

will hang but

(do ((x NaN (+ x 1))) ((not (<= x 10))))

will stop, which is counter-intuitive and may be surprising.

While ±∞ and NaN are quite useful for inexact computations, there
is a high price to pay when they are carried over into the exact
world: The rational numbers must be extended by the special ob-
jects, and the usual algebraic laws will not hold for the extension
anymore. Moreover, the special objects obscure exact programs by
masking mistakes.

4.2 The case against rational −0

The purpose of distinguishing a “positive zero” (+0) and a “neg-
ative zero” (−0) in a floating-point format is to retain the sign of
numbers in the presence of underflow, e.g.,−0 = positive/(−huge).
Since comparisons must allow for tolerances, there is no real harm
done identifying +0 (positive) with the zero, which is neither pos-
itive nor negative. The use of signed zeros simplifies dealing with
branch cuts [11] and generally helps obtaining meaningful numeri-
cal output.

In the exact world, on the other hand, there is no underflow—
only memory overflow. Even worse, adding one (or even two)
signed “zeros” to the rational numbers completely destroys the rich,
clean and simple algebraic structure which the rational numbers do
posses. We briefly detail this mathematical fact.

The set Q of rational numbers equipped with the addition operation

+ form an abelian group. This means the following:

(C) For all x,y ∈ Q : x+ y = y+ x.

(A) For all x,y, z ∈ Q : (x+ y)+ z = x+(y+ z).

(Z) There is Z ∈ Q such that for all x ∈ Q : Z + x = x.

(I) For all x ∈ Q there is a y ∈ Q : x+ y = Z.

Now take elements Z,Z′ ∈ Q such that Z′ + x = x for all x ∈ Q and
also Z +x = x for all x ∈ Q. Then Z = Z′ +Z = Z +Z′ = Z′, where
the second equation holds by (C). Consequently, there is only one
element Z ∈Q having property (Z). Therefore, this element receives
the special name 0 (read “zero”). Now if we augment the set Q into
Q′ by forcibly adding another algebraic zero as in Q′ = Q∪ {?}
where ?+x = x for all x ∈Q′ and ? 6∈Q, then either property (C), or
property (Z), or both get lost. This implies that property (I) at least
suffers, because the uniqueness of y (which is in fact −x) gets lost.
This carries on like wildfire, usually destroying nearly all algebraic
properties at the same time; associativity may survive.

More generally, four different alternatives for dealing with ‘−0’ in
the exact world can be identified:

(a) Augment the rational numbers by one (or two) objects behav-
ing like “a zero.” Algorithmically, this means that all exact
operations must dispatch on these special objects and define
some action.

(b) Identify both floating-point values +0 and −0 with the ratio-
nal number 0. In other words, exact operations treat ±0 and 0
identically.

(c) Represent the floating-point value −0 by some negative ra-
tional number, say −Z. Conceptually, exact operations first
replace −0 by the rational number −Z and then do their work.

(d) It is an error to apply an exact operation to −0.

As explained above, the semantic cost of adding one or more “ze-
ros” is quite high. This is a strong argument against alternative
(a). In the other extreme, alternative (d) breaks the symmetry be-
tween positive and negative numbers. The problem with alterna-
tive (c) is to find a sensible definition of the rational equivalent of
−0 (read “negative underflow.”) A first approach might be: “−0
behaves like the smallest negative rational larger than any repre-
sentable float.” Unfortunately, there is no such rational number: Let
− f denote the largest representable negative float. Then − f +1/n,
n∈ {1,2,3, . . .}, are not representable and increasingly close to − f .
So there must be a gap between − f and whichever rational num-
ber −Z is choosen as the rational interpretation of ‘−0’—unless the
definition reads: “Any −Z for − f < −Z < 0 may be chosen as the
rational interpretation of ‘−0’;” an approach we do not pursue.

Whatever the choice, a negative number equivalent −Z of −0 will
behave surprisingly different from the float −0. For example, re-
peatedly squaring −Z will soon exhaust memory and printing the
square of −Z will print unrecognizably, unless one is willing to
sacrifice Scheme’s facility to print rationals without loss of infor-
mation.

Since alternatives (a), (c) and (d) are unattractive, alternative (b)
appears to us as the least disadvantagous; there simply seems to be
no place for −0 6= 0 in the exact world of rational numbers.

114

5 Relating exact and inexact arithmetic

As the previous discussion has shown, the special floating-point
values −0, ±∞, and NaN have no place in the exact world—they
are not rational numbers. Hence, in the following, we assume that
it is an error to apply an exact operation such as + to ±∞ or NaN,
whereas ±0 are both treated as 0 by the exact operations.

At this point, it is natural to ask whether the inexact numerical oper-
ations such as float+, float- etc. should accept all rational num-
bers, or only those represented as flonum. If the inexact operations
only accept flonum arguments, a Scheme system must provide at
least a conversion operation rational->float. Similarly, should
the exact operations accept flonums (unless they are special val-
ues)? In other words, should the domains for exact and inexact
operations be completely disjoint, with explicit conversion at all
times? Three basic alternative kinds of “type permeability” seem to
exist in this spectrum:

#1 The flonum representation is just another partial machine rep-
resentation for rational numbers (plus special values), and
all numerical operations, exact or inexact, accept all rational
numbers as arguments. It is, however, an error to apply exact
operations to ±∞ and NaN.

#2 As in #1, flonum is just another partial representation of ratio-
nal numbers (plus special values), but inexact operations are
only defined on flonum. Programs make use of the (rounding)
operation rational->float to convert explicitly.

#3 The flonum representation is completely distinct from imple-
mentation of rationals. In other words, the exact operations
are not defined on flonum and the inexact operations are un-
defined for the non-flonum rational numbers. Programs use
of float->rational and rational->float to convert ex-
plicitly.

All three alternatives could support a float? predicate that an-
swers #t for all flonum arguments—including ±∞ and NaN. A
rational? predicate would probably behave differently in the dif-
ferent alternatives: Whereas it would answer #t to all numbers ex-
cept for ±∞ and NaN in #1 and #2, it would naturally be a converse
of float? in #3. Probably, a float-not-rational? predicate
that identifies ±∞ and NaN would also be useful.

Alternatives #2 and #3 both also require distinct external represen-
tations for flonum and non-flonum rationals. If an external repre-
sentation denotes a flonum, it may also be desirable to require rep-
resentation information to accurately determine the meaning of the
literal. (More on the issue of external representation in Section 6.6.)
Alternatively, all numerical literals denote rational numbers, and the
program must convert them to flonum representation explicitly via
rational->float.

Alternatives #1 and #2 can both be implemented as conservative
extensions of R5RS by the following measures:

• Support integers and rationals of arbitrary precision.

• Have all R5RS numerical operations convert flonum argu-
ments to fraction before proceeding. (Or assert correctness
by other means.)

• Interpret “inexact” as “float.” Specifically, take inexact?
to mean float? and exact? as ¬inexact?. Define
exact->inexact and inexact->exact as follows:
(define (exact->inexact n)

(if (float? n)
n
(rational->float n)))

(define (inexact->exact n)
(cond
((float? n) (float->rational n))
((number? n) n)
(else
(error ...))))

Note that (number? NaN) ⇒ #f and (number? ±∞)
⇒ #f, while (float? NaN) ⇒ #t and (float? ±∞)
⇒ #t.

• Finally, add operations on flonum with a float prefix.

(Of course, inexact?, exact?, exact->inexact, and
inexact->exact serve no purpose in this new organization
of numbers and should disappear eventually.)

The only problem is that of literals: Alternative #1 would work
most intuitively if unannotated numerical literals would always rep-
resent their rational counterparts exactly. Unfortunately, R5RS re-
quires that the presence of a decimal point or an exponent forces
a literal to denote an inexact, and, thus, a floating-point number.
Therefore, a true conservative extension still requires that “exact”
numerical literals carry a #e prefix.

In any case, all alternatives feature full reproducibility for exact
computations, and much-improved transparency because the pro-
gram source code clearly shows when floating-point arithmetic hap-
pens. (As for the example in Figure 1: In our design, the program
would always compute slowly. However, the program now behaves
in a much more consistent and less confusing manner, and the cause
for the problems is much easier to explain than with R5RS, as is the
remedy.)

6 Useful numerical operations

In this section, we disucss alternatives to R5RS’s default set of nu-
merical representations. Any such design necessarily represents a
subjective choice, however. It should be rich enough to be con-
venient (e.g. having both < and >) but leave less frequently used
operations (like gcd and lcm) to specialized libraries.3 Here is pos-
sible list of exact operations to be present in the core language of a
Scheme system:

rational? decimal-fraction? binary-fraction?
integer? non-negative-integer? positive-integer?

(Section 6.1)
negative? zero? non-negative? positive?
compare [= sign(x− y)] (Section 6.2)
< <= = >= > min max sign abs
(if-sign x negative zero positive) (Section 6.2)
+ - * / ˆ [alias expt]
floor ceiling truncate extend round (Section 6.3)
round-fraction floor-log-abs (Section 6.4)
div mod (Section 6.5)
numerator denominator
string->rational rational->string (Section 6.6)

3Of course, fractional arithmetics requires a gcd operation
internally—but including rarely used operations in the default set
carries a conceptual cost.

115

We discuss the major deviations from R5RS.

6.1 Numbers

The type predicates rational? decimal-fraction?
binary-fraction? integer? non-negative-integer?
positive-integer? reflect the abstract chain of numbers as
introduced in Section 3.

As mentioned already in Section 3, non-negative and positive in-
tegers are exposed because of their ubiquitous nature. Concerning
decimal and binary fractions, refer to Section 6.4.

6.2 Comparisons

The additional comparison operations increase programming con-
venience. With respect to R5RS, there are two major additions:
The compare procedure and the if-sign special form dispatching
on the sign of a rational number.

Compare has been included for efficiency. All other comparisons
can be expressed in terms of a single call to compare, which can be
implemented without allocating any intermediate objects at all.

If-sign has been included because a frequent task in programming
is distinguishing between the three possible results of a comparison.

6.3 Rounding rationals to integers

For rounding rationals into integers, the procedures floor,
ceiling, truncate, extend and round provide the rounding
modes towards −∞, +∞, 0, ±∞ and towards the nearest integer.
The precise mathematical definitions of these functions are the ob-
vious ones, with the exception of breaking ties in round, which
breaks ties towards even, just like R5RS and IEEE 754.

All of these operations are useful and common in numerical pro-
grams: Breaking ties towards even and towards zero is symmet-
ric in the sense that ρ(−x) = −ρ(x) for all x, where ρ denotes the
rounding function. Breaking ties towards −∞ appears naturally in
div and mod as defined in Section 6.5. Finally observe that round-
ing with breaking ties towards ±∞ is naturally related to floor and
ceiling by dx−1/2e and bx+1/2c.

6.4 Binary and decimal fractions

By providing a convenient function for rounding rationals into
binary and decimal fractions, programs can easily implement
floating-point operations of arbitrary precision in the absence of,
or in addition to, proper floats. Among others, this provides a natu-
ral way of defining external representations for binary and decimal
fractions accurately and portably. (A proposal is in Section 6.6.)
We propose that

(round-fraction base mantissa round x)

maps the rational x into a number that has mantissa significant digits
in its base-ary expansion and where rounding has been performed
by applying the procedure round mapping rationals into integers.
Figure 4 shows a possible implementation in R5RS, assuming the
presence of (bignum) rational arithmetics.

More explicitly, (round-fraction b m ρ x) should result either in
0, or in a number of the form

x̂ = sign(x) · (x̂0.x̂1 · · · x̂m−1)b ·bê, (1)

for b-ary digits x̂0, . . . , x̂m−1 ∈ {0, . . . ,b−1}, x̂0 6= 0, and integer ê.
Clearly, this only makes sense for integer b and m where b ≥ 2 and
m ≥ 1.

Now consider the case x̂ 6= 0. Then

1 = (1.0 · · ·)b ≤ (x̂0.x̂1 · · · x̂m−1)b < b = (10.0 · · ·)b.

This implies 0 ≤ logb(x̂0.x̂1 · · · x̂m−1)b < 1, from which follows

blogb |x̂|c = ê.

This is the primary reason for proposing that

(floor-log-abs b x)

computes the largest integer e such that be ≤ |x| for integer b, b ≥ 2,
and non-zero rational x. Note that e is negative if and only if |x|< 1.

Coming back to round-fraction, define for x 6= 0

x̂ = ρ
(

xbm−e−1
)

·b−(m−e−1), e = blogb |x|c. (2)

Clearly, this definition can only result in the form (1) if the rounding
function ρ(−) is well-behaved. For this reason, we require that ρ(u)
is integer and |ρ(u)− u| < 1 for all rational u. This is the case for
round, floor, ceiling, truncate, and extend. (In the case of
round, even the tighter bound |ρ(u)− u| ≤ 1/2 holds.) For x = 0
define x̂ = 0.

Under these conditions, the following error bound holds:

|x̂− x| < b−m+1|x|.

Proof:

|x̂− x| = |ρ
(

xbm−e−1
)

b−(m−e−1) − x|

= b−(m−e−1)|ρ
(

xbm−e−1
)

− xbm−e−1|

< b−(m−e−1)

≤ b−m+1|x|.

It remains to be shown that the conditions on ρ(−) imply the form
(1). Observe that a positive u is never rounded into a negative ρ(u),
and vice versa. This means that we only need to consider x > 0. In
this case, be ≤ x < be+1 by definition of e, which implies bm−1 ≤
xbm−e−1 < bm. Applying ρ, we obtain

bm−1 ≤ ρ(xbm−e−1) ≤ bm,

because buc ≤ ρ(u)≤due. Hence, we have shown that x̂ has at most
m non-zero digits in its b-ary expansion.

Note that round-fraction ignores several details of actual
floating-point formats: The exponent of round-fraction is un-
limited in magnitude, which means overflow and mantissa denor-
malization (x̂0 = 0) do not occur. Also underflow, the production of
a number of magnitude too small to be represented, is not detected;
it is simply rounded to zero.

116

6.5 Div and mod

Given an unlimited integer type, it is a trivial matter to derive
signed and unsigned integer types of finite range from it by mod-
ular reduction. For example, arithmetic using 32-bit signed two’s-
complement behaves like computing with the residue classes “mod
232,” where the set {−231, . . . ,231 − 1} represents the residue
classes. Likewise, unsigned 32-bit arithmetic also behaves like
computing “mod 232,” but using a different set of representatives:
{0, . . . ,232 −1}.

Unfortunately, the R5RS-operations quotient, remainder, and
modulo are not ideal for this purpose. In the following example,
remainder fails to transport the additive group structure of the in-
tegers over to the residues modulo 3.

(define (r x) (remainder x 3))
(r (+ -2 3)) =⇒ 1
(r (+ (r -2) (r 3))) =⇒ -2

In fact, modulo should have been used, producing residues in
{0,1,2}. For modular reduction with symmetric residues, i.e. in
{−1,0,1} in the example, it is necessary to define a more compli-
cated reduction altogether.

Therefore we propose operations div and mod (with Scheme coun-
terparts div and mod), defined on all integers x,y, by the following
properties

x = (xdivy) · y+(xmody), (3)

0 ≤ (xmody) < y if y > 0,
y/2 ≤ (xmody) < −y/2 if y < 0,

(4)

xdivy is integer, and xdiv0 = 0. (5)

In other words, the sign of the modulus y determines which system
of representatives of the residue class ring Z/yZ is being chosen,
either non-negative (y > 0), symmetric around zero (y < 0), or the
integers (y = 0).

The definition above implies

xdivy =

b x
y c if y > 0,

0 if y = 0,

d x
y −

1
2e if y < 0.

This simplicity is the reason why the definition can be extended
literally to define div and mod for all rational x,y. Mathematically,
it even makes sense for all real x,y. For example, (xmod2π) and
(xmod−2π) both reduces x modulo 2π, and

0 ≤ (xmod2π) < 2π and −π ≤ (xmod−2π) < π.

Since div and mod offer both conventions which make sense, the
R5RS procedures modulo, remainder, and quotient can easily
be defined in terms of div and mod. Of course it is also possible the
other way around, albeit with more effort. Figures 2 and 3 show the
definitions, respectively.

6.6 External Representations

We discuss some of the issues regarding external representatives
arising from our design proposal in this section.

External representations occur in several contexts:

• literals in program source code,

(define (quotient n1 n2)
(* (sign n1) (sign n2) (div (abs n1) (abs n2))))

(define (remainder n1 n2)
(* (sign n1) (mod (abs n1) (abs n2))))

(define (modulo n1 n2)
(* (sign n2) (mod (* (sign n2) n1) (abs n2))))

Figure 2. Defining quotient, remainder, modulo in terms
of div, mod, sign, and abs.

(define (div x y)
(cond
((positive? y)
(let ((n (* (numerator x)

(denominator y)))
(d (* (denominator x)

(numerator y))))
(if (negative? n)

(- (quotient (- d n 1) d))
(quotient n d))))

((zero? y)
0)
((negative? y)
(let ((n (* -2

(numerator x)
(denominator y)))

(d (* (denominator x)
(- (numerator y)))))

(if (< n d)
(- (quotient (- d n) (* 2 d)))
(quotient (+ n d -1) (* 2 d)))))))

(define (mod x y)
(- x (* (div x y) y)))

Figure 3. Defining mod and div using R5RS, assuming exact
rational arithmetics.

• the output of write and the input of read,

• numbers printed out for human readers,

• numbers printed for consumption by other (non-Scheme) pro-
grams and read from other programs.

Since the number formats used for consumption by humans and
non-Scheme programs vary wildly and uncontrollably, they are
properly the subject of one or probably several libraries and be-
yond the scope of this paper. We focus on literal syntax and on the
syntax used by read and write.

In Scheme, to preserve some of the desirable properties of the lan-
guage, the literal syntax must be compatible with the format used
by read and write.

The simple-minded approach to the external-representation issue
is to just have one uniform external representation for all machine
number formats—each representation stands for a unique rational
number, and converting a number to its representation is an exact
operation. However, many floating-point numbers have quite long
representations as fractions, making this choice prohibitive in terms
of both space (for storage of the representation) and time (for con-
verting back and forth between the numbers and their representa-
tion).

117

(define (floor-log-abs base x)
(define (log b x e bˆe offset)

(let ((bˆe+1 (* bˆe b)))
(if (> bˆe+1 x)

(if (= bˆe x) e (+ e offset))
(log b x (+ e 1) bˆe+1 offset))))

(let ((abs-x (abs x)))
(if (>= abs-x 1)

(log base abs-x 0 1 0)
(- (log base (/ 1 abs-x) 0 1 1)))))

(define (round-fraction base mantissa round x)
(if (zero? x)

0
(let ((k (- mantissa

(floor-log-abs base x)
1)))

(* (round (* x (expt base k)))
(expt base (- k))))))

Figure 4. Floor-log-abs and round-fraction as defined
in Sections 6.3 and 6.4, implemented in R5RS, assuming ratio-
nal arithmetics.

Hence, it is desirable to be able to use a shorter, floating-point (in
the true sense of “using a point”) external representation for num-
bers, preferably using the familiar decimal-point format. In that
case, read/write invariance requires tagging the result explicitly as
a floating-point number. Moreover, to better support the exchange
of external representations between different Scheme systems, or
to support distinguishing between several machine floating-point
formats used by a single Scheme system, it is desirable to provide
information about the nature of the floating-point format used.

We suggest using a suffix indicating the length of the bi-
nary mantissa of the floating-point format. Thus, In our pro-
posal, 0.7 would always denote 7/10 (unless R5RS compatibil-
ity is important, see Section 5), whereas the IEEE 754 64-bit
float closest to 0.7 would print as 0.7|52, which is equal to
3152519739159347/4503599627370496. We call this format the
mantissa-width tagged format.

From the point of view of communication, the mantissa-width
tagged format is not so much an indicator for “floating point” but
rather a source coding (compression) method for a frequently used
subset of the rational numbers—binary fractions. The mantissa-
width tagged format for binary fractions achieves accuracy without
loss of performance.

The mantissa-width tagged format can be specified accurately
in terms of the procedures round-fraction and round of Sec-
tions 6.4 and 6.3. To be specific, we propose procedures
string->rational and rational->string (serving the function
of R5RS’s string->number and number->string) that convert
between internal and external representations of rational numbers.
Apart from the usual formats (base 2/8/10/16, fractions via /, and
decimal scientific “e”-notation), string->rational understands
the number syntax

scientific|mantissa

and interprets it as

(round-fraction 2 mantissa round scientific)

Rational->string and string->rational satisfy the

“read/write-invariance” property of R5RS: For each rational
number x (in the sense of rational?), the following holds:

(= (string->rational (rational->string x)) x)

(Note that our = is an exact comparison, unlike the = of R5RS,
which is the reason R5RS formulates this property in terms of
eqv?.)

To summarize, we suggest the following (partly departing from
R5RS):

• Each external number representation without annotation de-
notes exactly the rational number the “learned in high school
interpretation” would assign it. That is, 0.7 = 7/10 and
1.3e-2 = 13/1000.

• The mantissa-width tagged format specifies a binary fraction
(like a floating point number) by decimal digits: 0.7|5 =

11/16 and 0.7|52 = 3152519739159347 ·2−52.

• The #e and #i prefixes go away.

Note that we expect the mantissa-width tagged format to occur only
rarely in numerical literals—the programmer can simply specify a
rational number and rely on the automatic conversion for float
operations.

The R5RS requirement that number->string must use the mini-
mum number of digits for decimal-point external representations
must be adjusted for rational->string, as there might be several
different representations for the same number. For example, 11/32
= 0.34|4 = 0.34375: Although the mantissa-width tagged format
is shorter, the purely decimal format is arguably clearer.

Consequently, we propose to require the minimum number of digits
only within one particular number format, but give the implemen-
tations the freedom to choose the format. Nevertheless, printing
with the absolute minimum of characters is also possible and even
computationally inexpensive.

7 Implementation Issues

In this section, we address the most important implementation is-
sues that arise with our proposal:

7.1 Exact operations on flonums

In design alternatives #1 and #2, numbers represented as flonums
will be converted into fractions when an exact operation requires
it. This might lead to surprises in terms of time and memory con-
sumed, because exact representations can and generally do grow
quickly with arithmetic depth. This is the price of exactness.

However, if problems arise from exact operations on flonums, they
are easy to detect (slow execution) and have a specific remedy: Re-
place exact operations by inexact operations and investigate numer-
ical stability. R5RS, on the other hand, makes it much harder to
identify and systematically fix this kind of problems because ex-
actness is not a static property of the program. In other words, the
programmer must investigate the run-time propagation of inexact-
ness in order to understand the algorithm actually being executed.

118

7.2 Generic arithmetic

The exact arithmetic operations need to dispatch on the represen-
tations of their arguments—a typical implementation will at least
use separate representations for fixnums, bignums, and true frac-
tions. This is no different from the situation in R5RS, and a Scheme
system can employ the same technique as before to perform the
dispatch—for example, via exhaustive case analysis or a suitable
exception system.

7.3 Coercion of constants

If number literals containing a decimal point (and without a
mantissa-width specification) are interpreted as rationals, and
floating-point operations accept rational arguments (as in design al-
ternative #1), the implementation will typically need to convert the
rational number to a floating-point representation. This may be a
relatively expensive operation, and a straightforward program may
perform it often. To reduce the cost, an implementation could mem-
oize the floating-point approximation of a rational number, or per-
form a static analysis to determine what literals are used exclusively
as arguments to floating-point operations. We conjecture that a sim-
ple analysis would be quite effective for most realistic programs.

7.4 Fixnum arithmetic

Many Scheme implementations already use fixnum arithmetic to
optimize common-case numerical operations. However, implemen-
tations might want to offer exclusively fixnum arithmetic to opti-
mize away the generic-arithmetic dispatch and the overflow detec-
tion. Doing this in the default set of numerical operations on exact
numbers is already in violation of R5RS. (See Section 2.)

Thus, the best way of offering fixnum-only operations would be
through a set of separate procedures, analogous to the floating-
point operations, with their algebraic meaning defined as calculat-
ing “mod ±2w”, w ∈ {8,16,32,64}, as proposed in Section 6.5.

7.5 Floating-point representation

We have said nothing about the particular machine floating-point
representation a Scheme system may use or should be required to
use by a standard. This is a touchy issue—requiring, say, a par-
ticular IEEE 754 representation would lead to completely repro-
ducible computations, but, depending on the hardware a program
runs on, results in an unacceptable loss in either accuracy or ef-
ficiency [4, 12] and might pose a considerable obstacle for imple-
mentations on platforms not supporting this representation natively.

For this reason, we would expect a standard to specify that the
floating-point operations use the widest floating-point format the
underlying hardware supports efficiently. In practice, this would
probably mean IEEE 754 double extended on the Intel x87 or the
68xxx architecture, and IEEE 754 double on, say, the PowerPC, or
the Alpha.

Of course, implementations could also offer sets of floating-point
operations specific to a specific machine representation or with pa-
rameters (e.g. multiprecision.) However, as few programs seem to
require this degree of control, it should probably not be included
into the core language by default.

7.6 Floating-point storage

The choice of the storage format for large quantities of floating-
point numbers is independent of the choice of the format used for
computations. Uniform vectors that explicitly specify the floating-
point format used, such as those proposed in SRFI 4 [8] are an
appropriate mechanism for this.

7.7 Mantissa-width tagged format

Reading the mantissa-width tagged format proposed in Section 6.6
can be done efficiently using Clinger’s method [3, 2].

Similarly, printing the mantissa-width tagged format using the min-
imum number of total digits can be reduced to Burger and Dybvig’s
efficient method for printing a binary fraction as an approximate
decimal fraction [19, 1]. The most important difference is that the
mantissa width may vary with the number being printed. In effect,
the mantissa-width tagged format can often be shorter, as for ex-
ample in 1e9|1 = 230. Whether the system should really use the
mantissa-width tagged format in this case is a different matter.

8 Related Work

Some Scheme implementations targeted at high performance
programs—such as Chez Scheme [6], and Bigloo [17]—offer spe-
cialized numerical operations for floating-point numbers. This un-
derlines the need for separating floating-point arithmetic from the
usual generic arithmetic for performance reason, but does not really
address the concerns raised in this paper: The remaining numerical
operations are unaffected in these systems. Gambit-C [7] offers a
declaration which locally declares all R5RS numerical operations to
perform floating-point arithmetic—again, for performance reasons.

The teaching languages of DrScheme [5] use exact arithmetic by
default, to spare beginning students the confusion of programming
with mixed exact and inexact floating-point arithmetic.

Objective Caml [14] keeps the domains and types for floating-point
numbers completely separate from that of integers: A program can-
not use them interchangeably, it must explicit convert. The floating-
point operations have names different from the integer operations.
(+. for floating point addition, etc.) Keeping the floating-point
numbers separate from the rest is easier in Objective Caml than it is
in Scheme because Caml does not have built-in rational numbers.
Hence, there is no choice but the read 0.7 as a float.

Haskell 98 [10] also has a sophisticated type hierarchy for its nu-
merical types, including rational numbers and single- and double-
precision floating-point numbers. It keeps the various numerical
types separate, but uses its type class mechanism to use a single
set of operators for all numerical types and make parts of the nu-
merical domains look like subtype hierarchies. Just like our pro-
posal, Haskell mandates that a literal containing a decimal dots rep-
resents its corresponding rational number accurately. Two methods
fromInteger and fromRational, overloaded over their respective
result types, negotiate between literals and the contexts that receive
them. Ambiguities concerning the numerical types are frequent,
which is why the default declaration can specify a strategy for
resolving them.

Common Lisp [18] does not have inexactness as a property of num-
bers orthogonal to the representation type. However, numerical op-
erations will always convert rational arguments to float arguments

119

if any other arguments are floats. Comparisons between floats and
rationals always convert the floats to rationals. Unlike Scheme,
Common Lisp does at least give a recommendation for the min-
imum precision offered by the various floating-point operations,
which, we conjecture, reduces the variance between different Com-
mon Lisp systems considerably. However, the basic arithmetic op-
erations are still overloaded and do not always respect the various
algebraic laws.

Mathematica [20] provides an arbitrary-precision floating-point
representation and applies a mechanism of decreasing precision
during inexact computation. In practice, however, this approach
suffers from the same weaknesses as R5RS: When inexact numbers
enter the computation, it is usually time to design a new program.
Moreover, the automatic decreasing of precision makes it difficult
to run entire computations at a higher precision; a stray 1.0 (de-
fault precision) instead of a N[1, 50] (high precision) propagates
its low precision uncontrollably, usually ruining the calculation.

An alternative approach to preserve read/write invariance (and a
number of the other issues raised in this paper) would be to fix the
floating-point representation in the language specification once and
for all, as for example has been done in Java [9]. In that case, no tag-
ging is necessary. The controversy around this approach suggests
against it [12].

Scheme has long been one of the few languages to specify that a
round-trip of conversion of a number to an external representation
and back should preserve that number. Hence, it comes as little
surprise that the most important publications about efficient and ac-
curate algorithms to achieve this purpose come from the Scheme
community [3, 2, 19, 1].

9 Conclusion

In Section 1.1, R5RS says:

Scheme’s model of arithmetic is designed to remain as
independent as possible of the particular ways in which
numbers are represented within a computer. [...] Thus
the distinction between integer and real arithmetic, so
important to many programming languages, does not ap-
pear in Scheme.

We have shown that the behavior of realistic programs is in fact
very much dependent on the particular number representations cho-
sen by an implementation. The distinction between integer and real
arithmetic is important to many other languages because it is im-
portant to programs. Following this design guideline, R5RS makes
is very difficult to write portable programs employing inexact arith-
metic: Inexact arithmetic is too underspecified to allow a program-
mer to predict what a particular program will do running in different
Scheme implementations. At the heart of the problem is the notion
of inexact numbers itself—a more useful basis for the design of a
set of numerical operations is attributing inexactness to the opera-
tions rather than the numbers.

We have designed the basis for such a set of numerical operations,
and identified design alternatives within its framework. The most
important property of our design is that the default numerical oper-
ations are always exact. Floating-point arithmetic is relegated to a
separate set of operations. Most of the choices available within the
design concern the degree of separation between the inexact and ex-
act worlds. However, all of the alternatives we propose have more
pleasant properties than what R5RS currently requires—in particu-

lar, greater transparency and full reproducibility for exact compu-
tations. They also require similar, if not less implementation effort.
We have also identified some weaknesses in the set of numerical
operations offered by R5RS, and proposed alternatives.

Arguably, the result is still “strange” in that it is unlike basically
every other programming language. We conjecture that this dif-
ference is good and necessary: In particular, most programming
languages do not offer infinite-precision integers and rational num-
bers at all, which reduces the design space, but comes with its
own problems: Limited precision of the various numerical types
along with implicit coercion rules often cause programming errors
and non-reproducible behavior. Of the languages that do support
infinite-precision integers and rationals, only Common Lisp stands
out, which takes a less principled but otherwise similar approach to
Scheme. We conjecture that programmers experience similar sur-
prises in Common Lisp as in Scheme. However, given Common
Lisp’s much tighter specification and as much fewer Common Lisp
systems exist than Scheme systems, these surprises may not matter
as much in practice. All in all, we believe that Scheme is special
enough to warrant a special design for its numerical operations.

10 References

[1] Robert G. Burger and R. Kent Dybvig. Printing floating-point
numbers quickly and accurately. In Proc. of the ACM SIG-
PLAN ’96 Conference on Programming Language Design and
Implementation, pages 108–116, Philadelphia, PA, USA, May
1996. ACM Press.

[2] William D. Clinger. How to read floating point numbers ac-
curately. In PLDI 1990 [16], pages 92–101.

[3] William D. Clinger. How to read floating point numbers ac-
curately. In Kathryn S. McKinley, editor, 20 Years of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (1979-1999): A Selection. ACM,
April 2004. SIGPLAN Notices 39(4).

[4] Joseph Darcy. Adding IEEE 754 floating point support to
Java. Master’s thesis, University of California at Berkeley,
1998. http://www.cs.berkeley.edu/˜darcy/Borneo/
spec.html.

[5] PLT DrScheme: Programming Environment Manual, May
2004. Version 207.

[6] R. Kent Dybvig. Chez Scheme User’s Guide. Cadence
Research Systems, 1998. http://www.scheme.com/csug/
index.html.

[7] Marc Feeley. Gambit-C, version 3.0, A portable implemen-
tation of Scheme, 3.0 edition, May 1998. http://www.iro.
umontreal.ca/˜gambit/doc/gambit-c.html.

[8] Marc Feeley. SRFI 4: Homogeneous numeric vector
datatypes. http://srfi.schemers.org/srfi-14, May
1999.

[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification. Addison-Wesley, 2nd edition,
2000.

[10] Haskell 98, a non-strict, purely functional language. http:
//www.haskell.org/definition, December 1998.

[11] William Kahan. Branch cuts for complex elementary func-
tions, or much ado about nothing’s sign bit. In A. Iserles
and M.J.D. Powell, editors, The State of the Art in Numeri-
cal Analysis. Clarendon Press, 1987.

120

[12] William W. Kahan and Joseph D. Darcy. How Java’s
floating-point hurts everyone everywhere. http://www.cs.
berkeley.edu/˜wkahan/JAVAhurt.pdf, March 1998.

[13] Richard Kelsey, William Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme. Higher-
Order and Symbolic Computation, 11(1):7–105, 1998.

[14] Xavier Leroy. The Objective Caml system release 3.08 , Doc-
umentation and user’s manual. INRIA, France, July 2004.
http://pauillac.inria.fr/caml.

[15] International Standards Organization. Programming language
— C, 1999. ISO/IEC 9899.

[16] Proc. Conference on Programming Language Design and Im-
plementation ’90, White Plains, New York, USA, June 1990.
ACM.

[17] Manuel Serrano. Bigloo—A “practical Scheme compiler”—
User manual for version 2.6d, April 2004. http://www-sop.
inria.fr/mimosa/fp/Bigloo/doc/bigloo.html/.

[18] Guy Steele. Common LISP: The Language. Digital Press,
Bedford, MA, 2nd edition, 1990.

[19] Guy L. Steele and Jon L. White. How to print floating-point
numbers accurately. In PLDI 1990 [16], pages 112–126.

[20] Stephen Wolfram. The Mathematica Book. Wolfram Media,
5th edition, 2003.

121

The R6RS Status Report

Marc Feeley
Université de Montréal

feeley@iro.umontreal.ca

Editors’ note: This article is the lightly edited text of the
progress report submitted by the Scheme Language Edi-
tors Committee to the Scheme Language Steering Com-
mittee on September 2, 2004. We have included it in the
workshop proceedings to represent the concluding pre-
sentation of the workshop on the state of the standardis-
ation effort by the editors committee.

The members of the Scheme Language Editors Commit-
tee are:

Marc Feeley, editor in chief (Université de Montréal)
Will Clinger (Northeastern University)
Kent Dybvig (Indiana University)
Matthew Flatt (University of Utah)
Richard Kelsey (Ember Corporation)
Manuel Serrano (INRIA)
Michael Sperber (DeinProgramm)

The members of the Scheme Language Steering Com-
mittee are:

Alan Bawden (Brandeis University)
Guy L. Steele Jr. (Sun Microsystems)
Mitch Wand (Northeastern University)

–Waddell & Shivers

At the 2003 Scheme workshop in November, the strategy com-
mittee (Alan Bawden, Will Clinger, Kent Dybvig, Matthew Flatt,
Richard Kelsey, Manuel Serrano, Mike Sperber) was given a man-
date to nominate a steering committee and an editors committee to
work on the R6RS standard. In January 2004, the editors commit-
tee was nominated: Feeley (editor in chief), Clinger, Dybvig, Flatt,
Kelsey, Serrano, and Sperber.

On January 19, a private mailing list was created to keep a record
of the email exchanges between the editors. Although some editors
suggested that a more open process would be desirable, we chose to

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming. September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Marc Feeley.

keep this mailing list private to avoid outside interference and keep
the process disciplined and focused. Sometime in the future the
archive of the discussions will be made public so that the reasons
for the design decisions are clear.

Because of the expected difficulty in managing productive discus-
sions for a seven-member committee by email, we adopted some
ground rules for ensuring progress. If an editor does not participate
in an email discussion within a reasonable time limit (which was
set to seven days), then the other editors may assume that editor
does not have an opinion on the subject (or does not want to voice
his opinion), and can be ignored (in the discussion, in a vote, etc.).
I think this has been helpful to create a certain pressure to keep
up-to-date in the discussion.

The subject of backward compatibility was also discussed early on.
That is, will R5RS code work unchanged in an R6RS-compliant
Scheme implementation? Our position is that backward compati-
bility is desirable but that there may be some incompatibilities (for
example at the lexical syntax level) that prevent R5RS code from
working under R6RS. Our first objective is to improve the Scheme
language. Backward compatibility, while important, is a secondary
objective.

We then set off on our first technical task: come up with a list of
goals that is more precise than the one in the draft charter (which
had four items: produce a core Scheme specification, define a mod-
ule system, define a macro system, and designate library modules).
Our plan was to use this list of goals (1) to organize the design pro-
cess, and (2) to identify which changes were uncontroversial (and
thus easier to standardize) and which would require considerable ef-
fort (and where consensus might not be achievable during the R6RS
design process).

All the editors were polled to get a list of specific issues that they
thought needed to be addressed in the R6RS design process (i.e.,
features the committee should consider adding/removing). At the
end of March, we had merged all the editors’ lists into a single
list with each editor’s position. At this point, there had been very
little technical discussion of these issues (on purpose), so that we
could order the issues and discuss them in a disciplined way. As
suggested by Will Clinger, the list was organized into the following
categories:

• Deletions of R5RS-Scheme features;

• Incompatible changes to R5RS Scheme;

• Extensions that could be entirely compatible with R5RS
Scheme

122

– but would break some implementation-specific exten-
sions;

– but would be controversial and aren’t worth it;

– that are controversial or difficult but necessary;

– that are probably uncontroversial.

Below is the list of issues, without each editor’s position. Note that
this list is still open to be expanded as new issues arise in the design
process.

Deletions from R5RS

• remove transcript-on and transcript-off

• remove force and delay

• remove multiple values

Incompatible changes to R5RS

• make syntax case-sensitive

Extensions that would break implementation-specific features

• specify evaluation order

• support for processes

• support for network programming

• object-oriented programming

• external representation for records

• serialization

Extensions to R5RS (controversial and probably unnecessary)

• pattern matching / destructuring

• abstract data type for continuations

• composable continuations

• box types

• uninterned symbols

• extended symbol syntax

• add letrec*, define internal define in terms of it

• optional and keyword arguments as in DSSSL

Extensions to R5RS (controversial or difficult but necessary)

• module system

• non-hygienic macros

• records

• mechanism for new primitive types

• Unicode support

• errors and exceptions

• require a mode where “it is an error” means “an error is sig-
naled”

Extensions to R5RS (probably not terribly controversial)

• multiline comments

• external representation for circular structures

• #!eof

• more escape characters

• require that #f, #t, and characters be followed by a delimiter

• case-lambda

• cond-expand

• allow the name of the macro being defined in syntax-rules
to be arbitrary (or _)

• allow continuations created by begin to accept any number
of values

• tighten up specification of eq? and eqv? (or otherwise address
their portability problems)

• tighten up specification of inexact arithmetic

• add +0, -0, +inf, -inf, +nan

• bitwise operations on exact integers

• SRFI 4 homogeneous numeric vectors

• specify dynamic environment

• operations on files

• binary I/O or new I/O subsystem entirely

• string code

• regular expressions

• command-line parsing

• hash tables

• library for dates

• system operations

Editorial changes

• split language into core and libraries

Additional extensions

• expression comments

• subset of Common Lisp format (in a library)

Because of the central role of the module system and its probable
use in splitting the Scheme language into a core and libraries, we
decided that the most pressing issue was the design of the module
system. Our starting point was the “strawman module system” pro-
posed by Flatt, which is based on the MzScheme system. Various
aspects of the proposed system were discussed, mainly to under-
stand it better and to add constructive criticism. Because many as-
pects are interrelated, we did not achieve consensus on any specific
aspect (nor did we really try to achieve it given that this is early in
the design process).

Over May and June, the discussion on the module system was slow
and only two of the seven editors were active. At the end of June,
I suggested that the reason for this apathy might be a lack of prac-
tical experience with the proposed module system (the two editors
that were active both had experience with the MzScheme module
system). I proposed that we should work on building a portable im-
plementation of the module system so that the editors can all exper-
iment with it in our own Scheme implementations. This would get
the editors more involved in the details of the module system, allow
proposed changes to be made and evaluated on-the-fly by changing
the portable implementation, and the resulting public-domain code

123

would greatly increase acceptance of R6RS by other implementors.
It still remains to be seen if this portable implementation becomes
a reality, as it represents quite a bit of work.

Dybvig noted that there are few differences between the mod-
ule system proposed by Flatt and the one in Chez Scheme. This
prompted an effort by Dybvig and Flatt to design a new module
system that combines both systems. There has been a very active
discussion since then.

We have made arrangements to have a whole-day meeting (Septem-
ber 18) in Snowbird to discuss these issues face to face. All editors
will be there, except for Kelsey. We expect the module system to be
the main topic of discussion and to make significant progress. We
will also start discussing other issues on our list.

128

	1 Introduction
	1.1 Preemptive or Cooperative Scheduling
	1.2 An Hybrid Solution
	1.3 Overview

	2 Scheme Fair Threads
	2.1 Fair Threads and Fair Scheduling
	2.2 A Simple Program
	2.3 API Overview
	2.3.1 Basic Thread Manipulation
	2.3.2 Communication by Signals
	2.3.3 Asynchronous I/O and SMP

	2.4 Classification of Fair Threads Bugs

	3 Debugging Fair Threads
	3.1 The Fair Threads Debugging Toolbox
	3.1.1 Enhanced Single Stepping
	3.1.2 Trace of Events
	3.1.3 List of Fair Threads

	3.2 Fair Thread Inspector
	3.2.1 Object Inspectors
	3.2.2 The Scheduler View
	3.2.3 The Fair Thread View
	3.2.4 The Signal View

	4 Tracing the Scheduling of Fair Threads
	4.1 The Trace Tool

	5 Bugloo in Action
	5.1 First Implementation
	5.2 Improving Notification
	5.3 Introducing Non-Determinism
	5.4 Profiling the Scheduling

	6 Practical Experience
	6.1 Implementation
	6.2 Benefits of the Tools
	6.3 Current Limitations

	7 Related Work
	7.1 Debugging Concurrent Programs in Scheme
	7.2 Advanced Traces Visualization

	8 Conclusion
	9 References

