
45

Automatic Verification of Safety
and Liveness for Pipelined Machines
Using WEB Refinement

PANAGIOTIS MANOLIOS

Northeastern University

and

SUDARSHAN K. SRINIVASAN

North Dakota State University

We show how to automatically verify that complex pipelined machine models satisfy the same safety

and liveness properties as their instruction-set architecture (ISA) models by using well-founded

equivalence bisimulation (WEB) refinement. We show how to reduce WEB-refinement proof obliga-

tions to formulas expressible in the decidable logic of counter arithmetic with lambda expressions

and uninterpreted functions (CLU). This allows us to automate the verification of the pipelined

machine models by using the UCLID decision procedure to transform CLU formulas to Boolean

satisfiability problems. To relate pipelined machine states to ISA states, we use the commitment

and flushing refinement maps. We evaluate our work using 17 pipelined machine models that con-

tain various features, including deep pipelines, precise exceptions, branch prediction, interrupts,

and instruction queues. Our experimental results show that the overhead of proving liveness, ob-

tained by comparing the cost of proving both safety and liveness with the cost of only proving safety,

is about 17%, but depends on the refinement map used; for example, the liveness overhead is 23%

when flushing is used and is negligible when commitment is used.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engineering

General Terms: Design, Reliability

Additional Key Words and Phrases: Refinement maps, flushing, commitment, SAT, pipelined

machines, verification, refinement, bisimulation, liveness

ACM Reference Format:
Manolios, P. and Srinivasan, S. K. 2008. Automatic verification of safety and liveness for pipelined

machines using WEB refinement. ACM Trans. Des. Autom. Electron. Syst. 13, 3, Article 45 (July

2008), 19 pages, DOI = 10.1145/1367045.1367054 http://doi.acm.org/10.1145/1367045.1367054

This research was funded in part by NSF grants CCF-0429924, IIS-0417413 and CCF-043887, and

by ND EPSCoR through NSF grant EPS-0447679.

Authors’ addresses: P. Manolios, College of Computer and Information Science, Northwestern Uni-

versity, Boston, MA 02115; S. K. Srinivasan, Department of Electrical and Computer Engineering,

North Dakota State University, Fargo, ND 58105; email: sudarshan.srinivasan@ndsu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/07-ART45 $5.00 DOI 10.1145/1367045.1367054 http://doi.acm.org/

10.1145/1367045.1367054

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:2 • P. Manolios and S. K. Srinivasan

1. INTRODUCTION

Functional validation and verification are critical problems in the microproces-
sor industry because the cost of fixing defective products is prohibitively high
and because processor designs are extremely complex and highly optimized.
For example, in 1994 a bug in the floating-point division (FDIV) unit of the
Intel Pentium processor cost Intel 475 million dollars. Estimates show that a
similar bug in the current generation of Intel processors would cost Intel about
12 billion dollars [Bentley 2005].

Currently, the predominant method for validating microprocessor designs
is simulation. Large teams of engineers using workstation clusters containing
thousands of machines, run simulations over the course of several years. Even
so, they are only able to simulate about one minute of actual running time
[Bentley 2005, 2001]. To overcome the limitations of simulation, the industry
is starting to use semiformal and formal methods, examples of which include
efforts at Intel [Bentley 2005], IBM [Ludden et al. 2002], and Motorola [Abadir
et al. 2003]. Intel’s first use of formal verification on a large scale was during the
Pentium-4 design cycle and consisted of about 60 person-years. Formal meth-
ods were used to verify that the design satisfied various properties describing
the expected behavior of the microprocessor and, to date, no bugs have been
discovered in those parts of the design that were formally verified [Bentley
2005].

In this article, we focus on the verification of pipelining, one of the main
techniques used to increase microprocessor performance. We present an au-
tomatic, refinement-based methodology for verifying that abstract pipelined
machine models satisfy the same safety and liveness properties as their
instruction-set architectures. The work presented here extends a previ-
ous conference paper [Manolios and Srinivasan 2004] and technical report
[Manolios and Srinivasan 2003] by including a detailed description of the tech-
niques developed and a more thorough experimental analysis.

The pipelined machine models we consider are abstract term-level models.
Such models abstract away the datapath using (unbounded) integers, abstract
away combinational circuit blocks (such as the ALU) using uninterpreted func-
tions, and employ numerous other abstractions. The use of term-level models
allows us to focus on the pipeline while ignoring other aspects of microprocessor
design. This helps make the verification problem tractable because there are
powerful tools capable of automatically analyzing term-level models [Bryant
et al. 2002].

The notion of correctness we use is based on well-founded equivalence bisim-
ulation (WEB) refinement. WEB refinement guarantees that the pipelined ma-
chine and its ISA (instruction-set architecture) satisfy the same safety and
liveness properties. A consequence is that the pipelined machine satisfies ex-
actly the same CTL∗ \ X properties satisfied by its ISA. Manolios [2000] intro-
duced WEB refinement and showed how to apply it to verify simple three-stage
pipelined machines using the ACL2 theorem-proving system [Kaufmann et al.
2000a, 2000b]. The main contribution of this work is to show how to automate
the verification of term-level pipelined machine models using WEB refinement.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:3

The use of refinement allows us to avoid the two main limitations of using
property-based verification for establishing the correctness of pipelined ma-
chines. First, a large number of design-dependent properties are required to
describe the behavior of pipelined machines. Second, the properties themselves
are complex and it is difficult to avoid erroneous properties and to ensure com-
pleteness. To avoid these problems, Burch and Dill introduced a notion of cor-
rectness based on the commuting diagrams upon which much of the previous
work in the area is based [Burch and Dill 1994]. Unfortunately, this notion is
not as complete as we would like; for example, it does not fully address live-
ness and even when augmented with various liveness properties, it can still be
satisfied by machines that deadlock [Manolios 2000].

We present a method for automatically verifying that a pipelined machine
refines its instruction-set architecture (ISA). Automation is achieved in the
following ways. First, we use domain knowledge about pipelined machines to
strengthen the WEB-refinement theorem to a statement expressible in the logic
of counter arithmetic with lambda expressions and uninterpreted functions
(CLU), a decidable logic. Second, we show how to define the refinement maps
and rank functions required to state the refinement theorem. Refinement maps
are functions that map pipelined machine states to ISA states and rank func-
tions map pipelined machine states to natural numbers. As our machines are
modeled at term-level and our refinement-based correctness statements are
expressible in CLU, we can use UCLID, a decision procedure for CLU logic, to
automatically check the correctness statements [Bryant et al. 2002]. UCLID
translates CLU formulas to SAT problems which can then be checked using
SAT solvers. We use the Siege SAT solver [Ryan] because we have found it the
most effective SAT solver for our problems.

The rest of the article is organized as follows. In Section 2, we provide
an overview of WEB refinement. In Section 3, we give a brief description of
the pipelined machine models used for our experiments, and in Section 4,
we describe the verification of these models using refinement maps that are
based on flushing and commitment. In Section 5, we report and analyze re-
sults obtained from verifying 17 pipelined machine models, using both flush-
ing and commitment refinement maps. We compare the two refinement maps,
and also compare the cost of safety proofs with the cost of safety and live-
ness proofs. The UCLID specifications and corresponding SAT problems in
conjunctive-normal form (CNF) used for our experiments are available online
[Manolios and Srinivasan 2005c]. We describe related work in Section 6 and
conclude in Section 7.

2. REFINEMENT

We present a theory of refinement that can be used to establish that MA, a
machine modeled at microarchitecture level (i.e., a low-level description that
includes the pipeline), correctly implements the ISA, a machine modeled at
instruction-set architecture level. We accomplish this by first defining a re-
finement map r, a function from MA states to ISA states; think of r as show-
ing us how to view an MA state as an ISA state. We then prove a stuttering

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:4 • P. Manolios and S. K. Srinivasan

bisimulation refinement: For every pair of states w, s such that w is an MA
state and s = r(w), for every infinite path σ starting at s, there is a “matching”
infinite path δ starting at w, and conversely. That σ and δ match implies that
applying r to the states in δ results in a sequence that can be obtained from
σ by repeating, but only finitely often, some of σ ’s states, as MA may require
several steps before matching a single step of ISA.

As presented earlier, our approach requires reasoning about infinite paths,
which is difficult to automate. WEB refinement is an equivalent formulation,
but requires only local reasoning [Manolios 2001]. One of the key ideas is the
use of rank functions, which map MA states to the natural numbers, to ensure
that there is only finite stuttering. We now give the relevant definitions, which
are given in terms of general transition systems (TS). Specifically, a TS M is a
triple 〈S, ���, L〉 consisting of a set of states S, a transition relation ���, and a
labeling function L with domain S, where L(s) is what is visible at s.

Definition 2.1 (WEB Refinement). Let M = 〈S, ���, L〉, M′ = 〈S′, ���′, L′〉,
and r : S→S′. We say that M is a WEB refinement of M′ with respect to
refinement map r, written M≈rM′, if there exists a relation B such that 〈∀s ∈
S :: sBr(s)〉 and B is a WEB on the TS 〈S�S′, ��� � ���′, L〉, where L(s) = L′(s)
for s an S′ state and L(s) = L′(r(s)) otherwise.

In the preceding definition, it helps to think of M′ as corresponding to ISA
and M as corresponding to MA. Note that in the disjoint union (�) of M and
M′, the label of every M state, s, matches the label of the corresponding M′

state, r(s). WEBs are defined next; the main property enjoyed by a WEB, say B,
is that all states related by B have the same (up to stuttering) visible behaviors.

Definition 2.2. B ⊆ S × S is a WEB on TS M = 〈S, ���, L〉 iff:

(1) B is an equivalence relation on S;
(2) 〈∀s, w ∈ S :: sBw ⇒ L(s) = L(w)〉; and
(3) there exist functions rankl : S × S→N, rankt : S→W,

such that 〈W, �〉 is well founded, and
〈∀s, u, w ∈ S :: sBw ∧ s ��� u ⇒

(a) 〈∃v :: w ��� v ∧ uBv〉 ∨
(b) (uBw ∧ rankt(u) � rankt(s)) ∨
(c) 〈∃v :: w ��� v ∧ sBv ∧ rankl(v, u) < rankl(w, u)〉〉.

The third WEB condition says that, given states s and w in the same class
such that s can step to u, the u is either matched by a step from w; or u and
w are in the same class and a rank function decreases (to guarantee that w is
eventually forced to take a step); or some successor v of w is in the same class
as s and a rank function decreases (to guarantee that u is eventually matched).
To prove that a relation is a WEB, reasoning about single steps of ��� suffices.
It turns out that if MA is a refinement of ISA, then the two machines satisfy
the same formulas expressible in the temporal logic CTL∗ \ X, over the state
components visible at instruction-set-architecture level.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:5

Fig. 1. Diagram showing the core theorem that can be expressed in CLU logic.

The idea now is to strengthen the WEB-refinement proof obligation such
that we obtain a CLU-expressible statement that holds for the examples we
consider. We start by defining the equivalence classes of B to consist of one
ISA state and all those MA states that map to the ISA state under r. Now,
condition 2 of the WEB definition clearly holds. Also, since the ISA does not
stutter with respect to the MA, we can ignore the second disjunct of the third
condition in the WEB definition. Our ISA and MA machines are deterministic
(actually there is some nondeterminism in MA, but we use oracle variables to
transform MA into a deterministic machine [Manolios 2003]); thus, after some
symbolic manipulation, we can strengthen condition 3 of the WEB definition to
the following “core theorem,” where rank is a function that maps states of MA
into the natural numbers.

〈∀w ∈ MA :: 〈∀s, u, v :: s = r(w) ∧ u = ISA-step(s) ∧
v = MA-step(w) ∧ u �= r(v)

=⇒ s = r(v) ∧ rank(v) < rank(w)〉〉
In the preceding formula and corresponding diagram in Figure 1, w and v are
MA states, and s and u are ISA states; MA-step is a function corresponding
to stepping the MA machine once and ISA-step is a function corresponding to
stepping the ISA machine once. The core theorem says that if w refines s, and
u is obtained by stepping s, v is obtained by stepping w, and v does not refine
u, then v refines s and the rank of v is less than the rank of w. Note that for
the machines we consider, w uniquely determines s, u, and v. Also, the proof
obligation relating s and v can be thought of as the safety component, and the
proof obligation rank(v) < rank(w) can be thought of as the liveness component.

In the sequel, we use two types of refinement maps and provide a general
method for defining rank functions in both cases. The details appear in Sec-
tion 4, after we describe the pipelined machine models.

We end this section by noting that the question of correctness is a basic con-
cern in pipelined machine verification and by outlining the two advantages of

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:6 • P. Manolios and S. K. Srinivasan

Fig. 2. High-level organization of the ten-stage pipelined machine model with a pipelined fetch

stage, branch prediction, and an instruction queue.

our approach over variants of the widely used Burch and Dill notion of cor-
rectness. First, pipelined machines are complicated enough that certain types
of error may avoid detection; for example, it does not necessarily follow from
a Burch and Dill correctness proof, even when augmented with theorems that
researchers thought would establish liveness, that the pipelined machine can-
not deadlock [Manolios 2000]. In contrast, after we prove a WEB refinement,
it follows directly from the metatheory that deadlock is not possible. If the
deadlock arises only in certain rare corner cases, then the bug can also easily
avoid detection from simulation. Second, by using a theory of refinement, we
can strengthen the proof obligations in ways that make automation possible
without risking inconsistencies. It was this line of reasoning that led to the
work described in this article, the first method we know of for automatically
proving both safety and liveness properties for pipelined machines. Note, how-
ever, that one cannot prove a WEB refinement for pipelined machines that can
commit multiple instructions in a single cycle, as the infinite executions of such
a pipelined machine and its ISA will not match.

3. PIPELINED MACHINE MODELS

We automatically verify a number of pipelined machine models that are ob-
tained by extending a base model with various features. The base model has 6
pipeline stages, including an instruction fetch (IF1), an instruction decode (ID),
an execute (EX), a two-cycle memory access (M1 and M2), and a writeback (WB).
The models implement four instruction types, including ALU, load, store, and
branch. The branch and store instructions complete out of order with respect
to the ALU instructions. This base model is extended with a pipelined fetch
stage, branch prediction, ALU exceptions, interrupts, and an instruction queue.
Figure 2 shows the high-level organization of a complex ten-stage pipelined ma-
chine model with branch prediction, a pipelined fetch stage, and a three-stage
instruction queue. The seven-stage models are inspired by the Intel XScale ar-
chitecture, and the other pipelined machine models are obtained by extending
these seven-stage models. Some of our modeling techniques, such as those used

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:7

for branch prediction and exceptions, are based on Velev and Bryant [2000].
Modeling issues are not the point of this article; nevertheless, a brief overview
of CLU and the processor models we use is helpful for understanding the rest
of the work.

The CLU logic [Bryant et al. 2002] is a decidable logic that is limited in
its expressive power, but powerful enough to describe various features of mi-
croprocessors at an abstract level. The CLU logic contains the Boolean con-
nectives, uninterpreted functions (UFs) and predicates (UPs), equality, counter
arithmetic, ordering, and restricted lambda expressions. The basic CLU types
are Booleans and terms. Terms can be thought of as integers and are used
to abstract word-level values. The only property satisfied by UFs and UPs is
functional consistency, that is, given equal inputs, the outputs are also equal.
UFs and UPs can be used to abstract combinational circuit blocks; for example,
the ALU is abstracted away using a UF that takes the operands and opcode
as input and returns a term, the result. The register file is modeled using re-
stricted lambda expressions. The restrictions on lambda expressions do not
allow one to define recursive definitions in CLU. The read and write accesses
to data memory in the pipelined machine models we consider are in order.
Therefore, we use a term variable to model the data memory and UFs to model
the read and write functions of the data memory. Since the instruction mem-
ory is never updated, we model it using a UF. Counter arithmetic (specifically,
the interpreted function’s successor and predecessor) is used to define rank
functions.

Interrupts are modeled with a term variable INPState that stores the state
associated with the generation of the interrupt, a UF NextINPState that takes
INPState as input and produces the next interrupt state, and UP IsInterrupt
that also takes INPState as input and produces a Boolean value that indicates
whether an interrupt is raised. Interrupts are detected in the M1 stage and
result in the invalidation of all younger instructions, including the instruction
that caused the interrupt. We use temporal abstraction to model the behavior
of interrupts, as in our model the result of an interrupt can be seen in one step
of the machine. An interrupt modifies the data memory arbitrarily to model
the result of running an interrupt handler and sets the PC to the instruction-
memory address corresponding to the first instruction that was invalidated by
the interrupt. An arbitrary modification to the data memory is implemented
using an uninterpreted function that takes the current data memory as input
and returns the modified data memory.

We use two approaches to abstract the branch predictors. In the first ap-
proach, a branch predictor is abstracted with a term variable BPState that
corresponds to the current state of the branch predictor. Also, the two UFs
NextBPState and PredictTarget, and a UP PredictDirection are used, all of
which have one input, BPState. The output of NextBPState, PredictDirection,
and PredictTarget is the next state of the branch predictor, a prediction on
the direction, and a prediction on the target of the branch, respectively. We call
this the general-branch-prediction abstraction scheme. In the second approach,
the branch predictor is abstracted using a nondeterministic input that corre-
sponds to the state of the branch predictor. The predictions on the direction

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:8 • P. Manolios and S. K. Srinivasan

and target of the branch are determined using the UP PredictDirection and
the UF PredictTarget, respectively. We call this the nondeterministic-branch-
prediction abstraction scheme. The actual direction and target of a branch are
determined in EX. Mispredictions are corrected in M1. What is verified is the
circuit that implements the misprediction logic.

ALU exceptions are modeled with a UP that takes the same input as the
ALU, and outputs a predicate indicating whether an exception is raised. M1
handles ALU exceptions in the following way. In case of an ALU exception,
all younger instructions are invalidated, the program counter is updated with
the address corresponding to the ALU exception-handler routine, and the PC
of the excepting instruction is stored in the exception program counter (EPC).
A return-from-exception instruction is also implemented that restores the PC
with the EPC.

4. VERIFICATION OF PIPELINED MACHINE MODELS

Stating the core theorem described in Section 2 involves defining refinement
maps and rank functions. We use two refinement maps: flushing and commit-
ment. In this section, we describe these refinement maps and their associated
rank functions.

As stated earlier, refinement maps are functions that map pipelined machine
states to ISA states. ISA states contain the programmer-visible components, in-
cluding the program counter, instruction memory, data memory, and register
file. For machines with exceptions, the programmer-visible components also
include the exception program counter and the exception flag. Pipelined ma-
chine states contain all the programmer-visible components, and also include
the pipeline registers.

4.1 Flushing Refinement Map

The flushing refinement map is defined using a flush operation that “pushes” in-
structions in the pipeline forward without fetching any new instructions [Burch
and Dill 1994]. A pipelined machine state is flushed by applying a sufficient
number of flush operations successively so that all partially executed instruc-
tions in the pipeline are forced to complete without fetching any new instruc-
tions. The flushing refinement map is defined by flushing a pipelined machine
state and projecting out the programmer-visible components, resulting in an
ISA state.

A pipelined machine model can be easily instrumented to enable such flush-
ing by introducing an external input signal flush. A regular step is one in which
the pipelined machine model is stepped with flush set to false, in which case
the pipelined machine behaves the same way as the uninstrumented machine.
During a flushing step, flush is set to true, and the machine is stepped without
fetching a new instruction. In this case, the program counter is not incremented
but can be updated by existing instructions in the pipeline (e.g., a branch in-
struction that mispredicts), and a bubble is introduced in the first stage of
the pipeline. The maximum number of flushing steps, n, required to flush a

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:9

pipelined machine state depends on the machine under consideration. For ex-
ample, we require a maximum of eight flushing steps to flush the pipelined
machine model with seven stages, as the youngest instruction in the pipeline
(the instruction in the pipeline register after the first fetch stage) can stall at
most two times before it completes. When n flushing steps are applied to a
pipelined machine, it reaches a flushed state: a state in which all its pipeline
registers are invalid.

To check the safety component of the refinement theorem for the pipelined
machine, we start from an arbitrary pipelined machine state w, and apply n
flushing steps to reach wf, the flushed state corresponding to w. Projecting
out the programmer-visible components from wf results in the ISA state s.
Next, we apply a regular step to the pipelined machine in state w to get v.
Applying n flushing steps to v results in the flushed state vf. Projecting out the
programmer-visible components in vf results in the ISA state r(v). The ISA state
u is obtained by stepping the ISA machine in state s. Now, the safety property
based on the “core theorem” can be defined using states s, u, and r(v). It turns
out that for a single-issue pipelined machine, the safety proof of the core WEB
theorem is similar to the Burch and Dill approach [Burch and Dill 1994].

The liveness component of the refinement theorem is checked by comparing
the ranks of w and v. For the flushing refinement map, we define the rank of a
pipelined machine state to be the number of pipelined machine steps required
to fetch an instruction that eventually completes. An initial attempt at auto-
matically computing the rank of a state is as follows. Starting with a state, say
p0, we take n steps, leading to states p1, . . . , pn. We also apply the refinement
map to each of the p states, leading to the sequence of states q0, . . . , qn. The
rank of p is the smallest value of i such that qi �= q0. Unfortunately, defining
rank in this way requires a larger number of symbolic simulation steps than
UCLID can handle.

We now introduce another method for defining rank. This new method is the
one we actually use and is much more amenable to analysis. Starting with a
state, say p0, we take k steps, where k is the number of steps required for the
data in the first pipeline register of p0 to reach the last pipeline register (of pk).
We then keep stepping pk until we reach a state pl such that the last pipeline
register of pl is valid. The rank of p0 is then l − k; that is, the rank of a state
is the number of steps required for a new instruction to reach the end of the
pipeline, after all previous instructions have finished.

As a final remark, note that even if the rank function is erroneously defined,
no unsoundness can result. This is because the core theorem guarantees that a
WEB refinement exists if any rank function makes it true. The practical result
is that erroneous rank definitions are caught during verification.

4.2 Commitment Refinement Map

Given a pipelined machined state, the commitment refinement map returns
the ISA state obtained by invalidating all partially executed instructions in the
pipeline, undoing any effect they had on the programmer-visible components,
and projecting out the programmer-visible components [Manolios 2000].

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:10 • P. Manolios and S. K. Srinivasan

The commitment refinement map can be easily implemented by record-
ing some of the history of the programmer-visible components using history
variables (variables that store past values of state components). We track the
values of the programmer-visible components before they were updated by each
of the partially executed instructions in the pipeline. For example, in seven-
stage machine models, we track the last six values of the program counter.
The commitment refinement map invalidates the partially executed instruc-
tions and assigns to the programmer-visible components the values they had
before they were updated by the oldest instruction in the pipeline. Note that no
symbolic simulations are required.

For the commitment refinement map, we define the rank of a pipelined ma-
chine state to be the number of steps required to commit an instruction. The
first instruction that gets committed is the oldest. In addition, for the machines
we consider, the flow of an instruction through the pipeline is only affected by
older instructions in the pipeline. Therefore, the number of steps required to
commit the oldest instruction is essentially the number of pipeline registers
between this instruction and the end of the pipeline, which is how we define
rank.

To use the commitment refinement map, we require an invariant that char-
acterizes the set of reachable pipelined machine states. To see why, consider a
state w of the seven-stage pipelined machine that has only one instruction in
the pipeline, but this instruction does not match any instruction in the instruc-
tion memory. Committing and projecting the programmer-visible components
in w results in state s; however, w and s will not have the same infinite execu-
tions up to stuttering because w will eventually execute its instruction, which
will differ from the instruction s executes.

We now show how to define the required invariant. First we define the no-
tion of a committed state, which is a pipelined state in which all the pipeline
registers are invalid. A pipelined state is “good” if it is reachable from a commit-
ted state. The set of good states is an invariant that we call the least-fixpoint
(LFP) invariant, as computing this set involves a least-fixpoint computation
(see Figure 3(a)). To check that a pipelined machine state w is good, we start
by computing c, the committed state corresponding to w. State w is good if it is
equal to any of the states obtained by stepping c for some number of steps up
to u, an upper bound depending on the pipelined machine design. For example,
for the machine model with seven stages, the upper bound is six, which is the
largest number of steps required for a new instruction to travel through and
reach the end of the pipeline.

To prove that the LFP invariant really is an invariant requires we show
the good states to be closed under the pipelined machine-transition relation.
The invariant proof is trivially true for those good MA states that are less
than u steps from a committed state, as their successors are within u steps
from a committed state. Therefore, all we need show is that the successor
of any state that is u steps from a committed state is good, as depicted in
Figure 3(b).

Having established the LFP invariant, we prove the refinement theorem
using case analysis. A good state is either an arbitrary committed state or a

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:11

Fig. 3. The least-fixpoint (LFP) invariant.

state reachable in 1, . . . , u steps from an arbitrary committed state. We then
prove the core theorem for each of these possibilities.

4.3 Remarks

The flushing approach does not usually require use of an invariant. Why not?
This is because inconsistent states such as the one mentioned before are flushed
away; that is, inconsistent states are related to ISA states. Deciding between
using the commitment approach or the flushing approach depends on whether
this aspect of flushing is acceptable.

The core theorem is easily expressible in the CLU logic, as the successor
function can be used to directly define the rank functions. However, we can do
without the successor function, since the rank of a state is always less than
the number of registers in the pipeline. This means our approach is applicable
even with tools that only support propositional logic, equality, uninterpreted

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:12 • P. Manolios and S. K. Srinivasan

functions, and memories, but we find that defining the rank explicitly is clearer.
Finally, the UCLID tool generates a concrete counterexample if it finds a bug.

5. RESULTS

In this section, we describe the results obtained from automatically verifying
safety and liveness for 17 pipelined machine models using both flushing and
commitment refinement maps. In summary, we find that verification times in-
crease 17% when proving safety and liveness over the time required to prove
just safety. Interestingly, when using the commitment refinement map there is
no increase in verification times, but when using the flushing refinement map
verification times increase by about 23%. Finally, commitment takes less time
overall and scales better than flushing.

5.1 Benchmark Suite

The verification times and statistics for the Boolean correctness formulas are
shown in Table I. We report the number of CNF variables and clauses and the
verification time for both the safety proofs and the safety and liveness proofs,
that is, for the proofs of the core theorem. The total verification time reported
includes the time taken by Siege and UCLID, thus the time taken by UCLID can
be obtained by subtracting the “Siege” column from the “Total” column. Siege
uses a random-number generator which leads to (sometimes large) variations
in the execution times obtained from multiple runs of the same input; thus, in
order to make reasonable comparisons, every Siege entry is the average over
ten runs. We also report the standard deviation of the ten runs for every Siege
entry in the safety and liveness proofs. The experiments were performed using
the UCLID system (version 1.0) and the Siege SAT solver (variant 4) and run
on a 3.06 GHz Intel Xeon machine with an L2 cache size of 512KB.

We use the following naming convention for the pipelined machine models
and verification problems. A model name begins with a number that indicates
the number of pipeline stages. This is followed by the optional letters “b”, “n”,
“e”, and “p”, indicating the presence of the general-branch-prediction abstrac-
tion scheme, the nondeterministic-branch-prediction abstraction scheme, ex-
ceptions, and interrupts, respectively. A verification problem begins with either
“c” or “f”, indicating that the commitment or flushing refinement map is used,
respectively, followed by a model name.

The overhead cost of liveness, computed by subtracting the sum of the “Safety
Verification Times Total” column from that of the “Safety and Liveness Verifica-
tion Times Total” column and dividing by the latter, is 17%; notice that for the
commitment approach it is −1.6%, whereas it is 23% for the flushing approach.
Since the liveness and safety theorems share considerable structure (e.g., the
machine models), SAT solvers are able to prove the conjunction of the two the-
orems in time comparable to that required to prove just one of the theorems.
In fact, in some cases the verification times for safety and liveness are slightly
less than those for safety alone (as with some of the commitment problems),
indicating that the heuristics of the SAT solver are able to effectively exploit
the shared structure.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:13

Table I. Pipelined Machine-Verification Times and Statistics

Safety Safety and Liveness

Verification Times Verification Times

Verification CNF CNF (secs) CNF CNF (secs)

Problem Vars Clauses Siege Total Vars Clauses Siege Stdev Total

c6 12,817 37,876 28 30 12,334 36,442 28 5.4 30

f6 13,429 39,694 10 12 28,256 83,725 10 2.1 14

c6n 37,718 111,790 160 165 37,147 110,077 170 35.5 175

f6n 16,462 48,529 10 13 37,452 110,920 12 2.7 17

c6b 22,410 66,223 121 124 21,850 64,558 119 16.0 122

f6b 17,135 50,548 11 14 37,002 109,570 15 3.6 20

c7 13,728 40,609 25 27 13,296 39,328 26 3.8 28

f7 28,477 84,535 134 138 53,165 158,182 135 6.8 142

c7n 28,007 82,978 226 230 27,500 81,472 234 43.4 237

f7n 33,160 98,212 109 114 70,667 210,172 136 14.9 145

c7b 26,785 79,294 201 204 26,058 77,128 222 52.6 225

f7b 33,674 99,754 124 129 70,985 211,126 139 24.5 148

c7be 26,766 79,186 199 203 26,264 77,695 213 25.3 217

f7be 35,961 106,516 134 139 74,702 222,145 157 23.2 167

c7bep 26,806 79,291 239 243 26,615 78,733 260 73.7 264

f7bep 37,599 111,406 120 126 81,759 243,259 171 20.9 182

c8 14,528 43,009 27 29 14,100 41,740 31 5.8 33

f8 47,551 141,538 821 828 95,092 283,465 697 31.8 709

c8n 54,252 161,260 770 776 53,697 159,595 758 66.9 764

f8n 56,790 168,742 597 605 121,499 361,954 716 49.5 731

c8b 32,569 96,526 560 564 31,914 94,576 493 83.8 497

f8b 58,180 172,912 594 602 121,645 362,392 699 55.1 715

c9 15,648 46,369 30 32 15,214 45,082 29 6.1 31

f9 70,295 209,551 2,574 2,584 144,045 429,973 2,309 100.1 2,328

c9n 63,101 187,771 1,455 1,462 62,536 186,076 1,517 238.0 1,524

f9n 87,650 261,001 1,998 2,010 185,149 552,412 2,546 117.7 2,570

c9b 37,539 111,376 982 987 36,757 109,045 934 169.2 939

f9b 87,278 259,885 2,089 2,101 183,371 547,078 2,333 124.7 2,357

c10 17,526 52,003 33 36 17,121 50,803 31 7.1 34

f10 111,631 333,124 5,407 5,422 198,375 592,660 6,385 506.9 6,411

c10n 73,727 219,613 2,901 2,910 73,163 217,921 2,641 358.2 2,650

f10n 129,085 384,793 4,229 4,247 255,780 763,861 6,726 365.8 6,761

c10b 44,287 131,560 1,675 1,681 43,517 129,265 1,774 423.2 1,780

f10b 129,957 387,409 4,039 4,057 256,272 765,337 6,540 584.9 6,575

5.2 Commitment vs. Flushing

Figure 4 is a scatter plot that compares commitment and flushing using 17
pipelined machine models. Notice that both the x and y axes have logarithmic
scale. As can be seen from the figure, commitment does better than flushing on
most of the models, especially on those with longer pipelines. This is depicted
more clearly in Figure 5, which shows the variation in verification time as the
length of pipeline increases, for both flushing and commitment. Note that the
y axis in Figure 5 has logarithmic scale.

A crucial factor in understanding the results is the notion of symbolic distance
of a problem, which is the maximum number of nested symbolic simulations
required to state the refinement theorem for the problem. The complexity of

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:14 • P. Manolios and S. K. Srinivasan

Fig. 4. Comparison of commitment and flushing based on verification times. The keys “W”, “N”,

and “B” in the figure indicate models without a branch-prediction abstraction scheme, models with

the nondeterministic-branch-prediction abstraction scheme, and models with the general-branch-

prediction abstraction scheme, respectively.

Fig. 5. Graph of verification times for commitment and flushing as the length of pipeline is in-

creased.

the verification problem and size of the CNF formulas generated both increase
as the symbolic distance increases. The intuition is just that larger symbolic
distances mean that we have to reason about longer traces.

The symbolic distance required for flushing is greater than that required for
commitment because the rank function for commitment is trivial, whereas the
rank function for flushing is quite complicated. In fact, the latter is responsible
for the larger symbolic distance required for the flushing refinement map.

The differences in verification time for the commitment approach when in-
cluding a branch-prediction abstraction scheme (e.g., c7 and c7b) can be un-
derstood by noting that we compute the strongest invariant and introducing
branch mispredicts leads to an irregular set of good states. Since exceptions
and interrupts are very similar to branch mispredicts, introducing these fea-
tures does not much affect verification times. We would also like to note that
a very large portion of the verification time for the commitment approach is
spent in proving the LFP invariant [Manolios and Srinivasan 2005b].

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:15

When deciding between the commitment and flushing approaches, con-
sider the following. First, flushing-verification times are more sensitive to
the depth of pipeline than are commitment-verification times. Second, there
are ways of optimizing both methods that should be considered [Manolios
and Srinivasan 2005b, 2005d; Kane et al. 2006]. Where possible, we pre-
fer the commitment approach because its refinement map seems clearer
and it has various advantages in the context of nondeterministic machines
[Manolios 2000].

6. RELATED WORK

We now review previous work on pipelined machine verification. The correct-
ness of pipelined machines is a subject that has received much attention. Early
work in this area is by Burch and Dill, who introduced a notion of correctness
based on commuting diagrams that we call the BD correctness criterion [Burch
and Dill 1994]. Aagaard et al. [2003, 2001] have provided a survey of the vari-
ous notions of correctness for pipelined machines, most of which are variations
of the BD correctness criterion.

Unfortunately, the BD notion is not as complete as we would like. For in-
stance, it does not address liveness and thus does not guarantee that the
pipelined machine is free of deadlock and livelock. To overcome this limitation,
a variation of the BD correctness criterion augmented with a liveness property
was proposed by Sawada and used to verify some very complex processor mod-
els, using the ACL2 theorem-proving system [Sawada 1999]. This strengthened
notion of correctness is still not complete, as it is possible to mechanically prove
that certain pipelined machines which can deadlock nevertheless satisfy this
notion of correctness [Manolios 2000]. Velev proposed another approach that
handles both safety and liveness and is also a variation of the BD correctness
criterion [Velev 2004]. Liveness is proved by showing that the pipelined ma-
chine makes forward progress after a finite number of steps. The reported over-
head of proving liveness for single-issue pipelines is about 80%, compared with
17% using our approach. Another difference is that our approach is based on
proving refinement, which has certain advantages. For example, a consequence
of our proofs is that the pipelined machine satisfies the same CTL∗ \ X prop-
erties as its ISA. Another advantage is that refinement is a compositional no-
tion that can be exploited to verify complex pipelined machines, which cannot
be handled using automatic monolithic approaches [Manolios and Srinivasan
2005a].

Automatic verification of term-level pipelined machines has directly bene-
fited from advances in decision procedures. Burch and Dill [1994] showed how
to use a decision procedure for the logic of equality with uninterpreted func-
tions to automatically verify term-level pipelined processor models. An efficient
decision procedure for the same logic was given by Bryant et al. [1999], and that
work was further extended by Bryant et al. [2002], where a decision procedure
for the CLU logic was given. The decision procedure is implemented in UCLID,
which has been used to verify out-of-order microprocessors [Lahiri et al. 2002].
Also worth mentioning is the SVC decision procedure which was used to check

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:16 • P. Manolios and S. K. Srinivasan

the correct flow of instructions in a pipelined DLX model [Mishra and Dutt
2002]. Jones et al. [1998] employed SVC to verify an out-of-order execution unit,
using incremental flushing. Recently, there have been significant advances in
decision procedures and initial experiments show that they will be able to auto-
matically handle significantly harder pipelined machine verification problems
than can be currently handled by UCLID. Examples of such decision procedures
include DPLL(T) [Ganzinger et al. 2004] and Yices [de Moura 2006].

There are also approaches based on the use of theorem provers for pipelined
machine verification. A very early approach by Srivas and Bickford was based
on the use of skewed abstraction functions [Srivas and Bickford 1990]. Sawada
[1999] and Sawada and Hunt [2002] have used the ACL2 theorem prover
[Kaufmann et al. 2000a, 2000b] and an intermediate abstraction called MAETT
to verify very complex pipelined machines. Another example of a theorem-
proving approach is the work by Hosabettu et al., who use the notion of com-
pletion functions [Hosabettu et al. 1999] to compute the abstraction function or
refinement map. The correctness proofs are carried out using the PVS theorem
prover [Owre et al. 2001]. Arons and Pnueli [2000] have also used the PVS the-
orem prover to verify a machine with speculative instruction execution. They
use an inductive proof to show that machines which differ only in the size of
retirement buffer are related; however, due to the complexity of the refinement
maps involved, they conclude that a direct approach is far simpler than the
inductive one. Kroening [2001] verified the data consistency of pipelined ma-
chine models using the PVS theorem prover. The models are synthesizable and
described very close to the gate level.

Other approaches to the pipelined machine verification problem include work
based on model checking; for example, McMillan uses compositional model
checking and symmetry reduction [McMillan 1998]. Symbolic trajectory eval-
uation (STE) is used by Patankar et al. to verify a processor that is a hybrid
between ARM7 and StrongARM [Patankar et al. 1999]. Abstract state ma-
chines are used to prove the correctness of refinement steps that transform
a nonpipelined ARM processor into a pipelined implementation [Huggins and
Campenhout 1998].

7. CONCLUSIONS AND FUTURE WORK

We have presented a method to automatically verify safety and liveness proper-
ties of complex pipelined machine models based on WEB refinement. Automa-
tion is achieved in two steps. First, we strengthen the WEB-refinement theorem
so that it is expressible in the CLU logic. Second, we provide simple and gen-
eral methods for defining commitment and flushing refinement maps and their
associated rank functions. We conducted a thorough, extensive experimental
validation of our techniques that involved the use of seventeen pipelined ma-
chine models containing various features, including branch prediction, precise
exceptions, interrupts, instruction queues, and deep pipelines. Our experimen-
tal results show that proving safety and liveness leads to an increase of about
17% over the verification time required to prove just safety. Interestingly, the
choice of refinement map used leads to significant differences in running times:

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:17

The use of flushing leads to a 23% increase in verification time, whereas the
use of commitment does not lead to any increase in verification time. Also, the
commitment refinement map required less time overall and scaled better than
the flushing refinement map.

For future work, we plan to apply the refinement-based verification paradigm
to executable pipelined machine models defined at bit level. We propose to do
this by using a combination of decision procedures and deductive reasoning.

REFERENCES

AAGAARD, M., COOK, B., DAY, N. A., AND JONES, R. B. 2001. A framework for microprocessor cor-

rectness statements. In Proceedings of the Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME), Livingston, UK. T. Margaria and T. F.

Melham, eds. Lecture Notes in Computer Science, vol. 2144. Springer, 433–448.

AAGAARD, M., COOK, B., DAY, N. A., AND JONES, R. B. 2003. A framework for superscalar micropro-

cessor correctness statements. Int. J. Softw. Tools Technol. Transfer 4, 3, 298–312.

ABADIR, M. S., ALBIN, K., HAVLICEK, J., KRISHNAMURTHY, N., AND MARTIN, A. K. 2003. Formal verifi-

cation successes at Motorola. Formal Meth. Syst. Des. 22, 2, 117–123.

ARONS, T. AND PNUELI, A. 2000. A comparison of two verification methods for speculative instruc-

tion execution. In Proceedings of the Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), Berlin. Lecture Notes in Computer Science, vol. 1785. Springer, 487–502.

BENTLEY, B. 2001. Validating the Intel Pentium 4 microprocessor. In Proceedings of the ACM
Design Automation Conference (DAC). ACM, 244–248.

BENTLEY, B. 2005. Validating a modern microprocessor. http://www.cav2005.inf.ed.ac.uk/-

bentley CAV 07 08 2005.ppt.

BRYANT, R. E., GERMAN, S., AND VELEV, M. N. 1999. Exploiting positive equality in a logic of equality

with uninterpreted functions. In Proceedings of the Computer-Aided Verification (CAV), Trento,

Italy. N. Halbwachs and D. Peled, eds. Lecture Notes in Computer Science, vol. 1633. Springer,

470–482.

BRYANT, R. E., LAHIRI, S. K., AND SESHIA, S. A. 2002. Modeling and verifying systems using a logic

of counter arithmetic with lambda expressions and uninterpreted functions. In Proceedings of
the Computer-Aided Verification (CAV), E. Brinksma and K. G. Larsen, eds. Lecture Notes in

Computer Science, vol. 2404. Springer, 78–92.

BURCH, J. R. AND DILL, D. L. 1994. Automatic verification of pipelined microprocessor control. In

Proceedings of the Computer-Aided Verification (CAV), D. L. Dill, ed. Lecture Notes in Computer

Science, vol. 818. Springer, 68–80.

DE MOURA, L. 2006. Yices homepage. http://fm.csl.sri.com/yices.

GANZINGER, H., HAGEN, G., NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2004. DPLL(T): Fast de-

cision procedures. In Proceedings of the Computer-Aided Verification (CAV), Boston, MA. R. Alur

and D. Peled, eds. Lecture Notes in Computer Science, vol. 3114. Springer, 175–188.

HOSABETTU, R., SRIVAS, M., AND GOPALAKRISHNAN, G. 1999. Proof of correctness of a processor with

reorder buffer using the completion functions approach. In Proceedings of the Computer-Aided
Verification (CAV), Trento, Italy. N. Halbwachs and D. Peled, eds. Lecture Notes in Computer

Science, vol. 1633. Springer, 686–698.

HUGGINS, J. K. AND CAMPENHOUT, D. V. 1998. Specification and verification of pipelining in the

ARM2 RISC microprocessor. ACM Trans. Des. Autom. Electron. Syst. 3, 4, 563–580.

JONES, R., SKAKKEBæK, J., AND DILL, D. 1998. Reducing manual abstraction in formal verifica-

tion of out-of-order execution. In Proceedings of the Formal Methods in Computer-Aided Design
(FMCAD), Palo Alto, CA. G. Gopalakrishnan and P. Windley, eds. Lecture Notes in Computer

Science, vol. 1522. Springer, 2–17.

KANE, R., MANOLIOS, P., AND SRINIVASAN, S. K. 2006. Monolithic verification of deep pipelines with

collapsed flushing. In Proceedings of the Design Automation and Test in Europe (DATE), Leuven,

Belgium. G. G. E. Gielen, ed. European Design and Automation Association, 1234–1239.

KAUFMANN, M., MANOLIOS, P., AND MOORE, J. S., Eds. 2000a. Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

45:18 • P. Manolios and S. K. Srinivasan

KAUFMANN, M., MANOLIOS, P., AND MOORE, J. S. 2000b. Computer-Aided Reasoning: An Approach.

Kluwer Academic.

KROENING, D. 2001. Formal verification of pipelined microprocessors. Ph.D. thesis, Universität

des Saarlandes.

LAHIRI, S., SESHIA, S., AND BRYANT, R. 2002. Modeling and verification of out-of-order microproces-

sors using UCLID. In Proceedings of the Formal Methods in Computer-Aided Design (FMCAD),
Portland, OR. Lecture Notes in Computer Science, vol. 2517. Springer, 142–159.

LUDDEN, J. M., ROESNER, W., HEILING, G. M., REYSA, J. R., JACKSON, J. R., CHU, B.-L., BEHM, M. L.,

BAUMGARTNER, J., PETERSON, R. D., ABDULHAFIZ, J., BUCY, W. E., KLAUS, J. H., KLEMA, D. J., LE, T. N.,

LEWIS, F. D., MILLING, P. E., MCCONVILLE, L. A., NELSON, B. S., PARUTHI, V., POUARZ, T. W., ROMONOSKY,

A. D., STUECHELI, J., THOMPSON, K. D., VICTOR, D. W., AND WILE, B. 2002. Functional verification

of the POWER4 microprocessor and POWER4 multiprocessor system. IBM J. Res. Devel. 46, 1,

53–76.

MANOLIOS, P. 2000. Correctness of pipelined machines. In Proceedings of the Formal Methods
in Computer-Aided Design (FMCAD), W. A. H., Jr. and S. D. Johnson, eds. Lecture Notes in

Computer Science, vol. 1954. Springer, 161–178.

MANOLIOS, P. 2001. Mechanical verification of reactive systems. Ph.D. thesis, University of Texas

at Austin. http://www.cc.gatech.edu/∼manolios/publications.html.

MANOLIOS, P. 2003. A compositional theory of refinement for branching time. In Proceedings of the
12th IFIP WG 10.5 Advanced Research Working Conference (CHARME), D. Geist and E. Tronci,

eds. Lecture Notes in Computer Science, vol. 2860. Springer, 304–318.

MANOLIOS, P. AND SRINIVASAN, S. K. 2003. Automatic verification of safety and liveness for XScale-

like processor models using WEB refinements. Tech. Rep. GIT-CERCS-03-17, Georgia Institute

of Technology, College of Computing. September.

MANOLIOS, P. AND SRINIVASAN, S. K. 2004. Automatic verification of safety and liveness for XScale-

like processor models using WEB refinements. In Proceedings of the Design, Automation, and
Test in Europe (DATE). IEEE Computer Society, 168–175.

MANOLIOS, P. AND SRINIVASAN, S. K. 2005a. A complete compositional reasoning framework for the

efficient verification of pipelined machines. In Proceedings of the International Conference on
Computer-Aided Design (ICCAD), San Jose, CA. IEEE Computer Society, 863–870.

MANOLIOS, P. AND SRINIVASAN, S. K. 2005b. A computationally efficient method based on com-

mitment refinement maps for verifying pipelined machines. In Proceedings of the International
Conference on Formal Methods and Models for Codesign (MEMOCODE). IEEE, 188–197.

MANOLIOS, P. AND SRINIVASAN, S. K. 2005c. A parameterized benchmark suite of hard pipelined ma-

chine verification problems. http://www.cc.gatech.edu/∼manolios/benchmarks/charme.html.

MANOLIOS, P. AND SRINIVASAN, S. K. 2005d. Refinement maps for efficient verification of processor

models. In Proceedings of the Design Automation and Test in Europe (DATE). IEEE Computer

Society, 1304–1309.

MCMILLAN, K. L. 1998. Verification of an implementation of Tomasulo’s algorithm by composi-

tional model checking. In Proceedings of the Computer Aided Verification (CAV), Van Couver,

British Colombia, Canada. A. J. Hu and M. Y. Vardi, eds. Lecture Notes in Computer Science,

vol. 1427. Springer, 110–121.

MISHRA, P. AND DUTT, N. D. 2002. Modeling and verification of pipelined embedded processors in

the presence of hazards and exceptions. In Proceedings of the IFIP WCC Stream 7 on Distributed
and Parallel Embedded Systems (DIPES), Montreal, Qubec, Canada, vol. 219. B. Kleinjohann

et al., eds. Kluwer, 81–90.

OWRE, S., SHANKAR, N., RUSHBY, J. M., AND STRINGER-CALVERT, D. W. J. 2001. PVS system guide.

http://pvs.csl.sri.com/doc/pvs-system-guide.pdf.

PATANKAR, V. A., JAIN, A., AND BRYANT, R. E. 1999. Formal verification of an ARM processor. In

Proceedings of the 12th International Conference on VLSI Design, Goa, India. IEEE, 282–287.

RYAN, L. 2008. Siege homepage. http://www.cs.sfu.ca/∼loryan/personal.

SAWADA, J. 1999. Formal verification of an advanced pipelined machine. Ph.D. thesis, University

of Texas at Austin. http://www.cs.utexas.edu/users/sawada/dissertation/.

SAWADA, J. AND HUNT, W. A. 2002. Verification of FM9801: An out-of-order microprocessor model

with speculative execution, exceptions, and program-modifying capability. Formal Meth. Syst.
Des. 20, 2, 187–222.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

Automatic Verification of Safety and Liveness • 45:19

SRIVAS, M. AND BICKFORD, M. 1990. Formal verification of a pipelined microprocessor. IEEE
Softw. 7, 5, 52–64.

VELEV, M. N. 2004. Using positive equality to prove liveness for pipelined microprocessors. In

Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC), Yokohama,

Japan. M. Imai, ed. IEEE, 316–321.

VELEV, M. N. AND BRYANT, R. E. 2000. Formal verification of superscalar microprocessors with

multicycle functional units, exceptions, and branch prediction. In Proceedings of the ACM Design
Automation Conference (DAC), Los Angeles, CA. ACM Press, 112–117.

Received December 2005; revised September 2006; accepted November 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 45, Pub. date: July 2008.

