
Brief Announcement: Branching Time Refinement

Panagiotis Manolios
College of Computing, CERCS Lab, Georgia Institute of Technology

801 Atlantic Drive, Atlanta, Georgia, 30332, USA
http://www.cc.gatech.edu/∼ manolios

manolios@cc.gatech.edu

I develop notions of refinement for branching time based on
stuttering simulation and bisimulation and I show that if
one system refines another, then a refinement map always
exists, without relying on any of the conditions present in
the approach taken by Abadi and Lamport, e.g., machine
closure, finite invisible nondeterminism, internally continu-
ity, the use of history and prophecy variables, etc. The
added generality is obtained by using relations (instead of
functions) to relate implementation states with specification
states and by requiring the use of well-founded relations.
There are two reasons why I chose to work in the branching-
time framework. Firstly, I am primarily interested in me-
chanical verification where algorithmic issues are paramount:
simulation and bisimulation can be decided in polynomial
time, whereas trace containment and trace equivalence are
PSPACE-complete problems. Secondly, when one proves
refinement theorems about infinite-state systems, one uses
inductive arguments which depend on the structure of the
systems in question. The branching-time notions are struc-
tural and local. The linear-time notions are not; as a result,
the proof rules are more complicated.
Refinement is used to reason about distributed systems as
follows: we specify a sequence of related systems, starting
with an abstract system, the specification, and ending with
a concrete system, the implementation. We then prove that
every pair of adjacent systems is related, via a suitable, com-
positional notion of refinement.
A transition system (TS) M is a tuple 〈S, 99K, L〉, where
S is the set of states of M, 99K⊆ S × S is the transition
relation of M, and L is the labeling function: its domain is
S and it tells us what is observable at a state. A relation
on B ⊆ S×S is a stuttering simulation, if for any s, w such
that sBw, s and w are identically labeled and any infinite
path starting at s can be matched by some infinite path
starting at w. By “matched” I mean that it is possible to
partition the infinite paths into finite, non-empty segments
such that states in related segments are related by B. I now
show how to relate transition systems by defining simulation
refinement. Let M = 〈S, 99K, L〉, M′ = 〈S′, 99K′, L′〉, and

To appear in the Twenty-Second ACM Symposium on Principles of Dis-
tributed Computing (PODC 2003) July 13-16, 2003, Boston, Massachusetts.

r : S → S′. We say that M, the implementation, is a
simulation refinement of M′, the specification, with respect
to refinement map r if there exists a relation, B, such that
〈∀s ∈ S :: sB(r.s)〉 and B is a stuttering simulation on the
〈S] S′, 99K] 99K′,L〉, where] denotes disjoint union and
L.s = L′(r.s) for s an S state and L.s = L′(s) otherwise.
That M is a simulation refinement of M′ with respect to
r implies that every visible behavior of M (where what is
visible depends on r) is a behavior of M′. In order to check
this, we must show that infinite sequences match, but this
requires a global analysis and we would much rather reason
locally, about states and their successors. To this end, I
introduce a local proof rule called well-founded simulation.
B ⊆ S × S is a well-founded simulation on M = 〈S, 99K, L〉
iff: (1) 〈∀s, w ∈ S :: sBw ⇒ L(s) = L(w)〉 and (2) There
exist functions, rankt : S × S → W , rankl : S × S × S → N,
s.t. l is a well-founded relation on W and for all s, u, w ∈ S
such that sBw and s 99K u we have: 〈∃v :: w 99K v ∧ uBv〉
∨ (uBw ∧ rankt(u, w) l rankt(s, w)) ∨ 〈∃v :: w 99K v ∧
sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉.

Theorem 1 B is a well-founded simulation iff it is a stut-
tering simulation.

Theorem 1 shows that we have a sound and complete proof
rule. After developing some theory we can show the follow-
ing compositionality result.

Theorem 2
If Mvr M′ and M′ vq M′′ then Mvr;q M′′.

There are temporal logic implications, which I now outline.
Informally, a typed TS is one where the labeling function
applied to a state returns the values of a set of variables, each
of a particular type, for the state. In the case of refinement
maps that hide some of the implementation variables, we
can show that the implementation satisfies every ACTL∗ \X
formula that the specification satisfies.

Theorem 3 If M = 〈S, 99K, L〉 vr M′ = 〈S′, 99K′, L′〉,
both M and M′ are typed TSs, and L′(r.s) = L.s|V , then
for any pair of states s, r.s such that s ∈ S, and any ACTL∗\
X formula, f , built out of expressions that only depend on
variables in V , we have M′, r.s |= f ⇒ M, s |= f .

I carry out a similar program with stuttering bisimulation.
In addition, I have added mechanical support to the ACL2
theorem proving system for proving stuttering simulations
and stuttering bisimulations and have conducted several ver-
ification case studies.

