
Quantifier Elimination via Clause Redundancy

Eugene Goldberg and Panagiotis Manolios
Northeastern University, USA, {eigold,pete}@ccs.neu.edu

Abstract—We consider the problem of existential quantifier
elimination for Boolean formulas in conjunctive normal form.
Recently we presented a new method for solving this problem
based on the machinery of Dependency sequents (D-sequents).
The essence of this method is to add to the quantified formula
implied clauses until all the clauses with quantified variables
become redundant. A D-sequent is a record of the fact that a
set of quantified variables is redundant in some subspace. In this
paper, we introduce a quantifier elimination algorithm based on
a new type of D-sequents called clause D-sequents that express
redundancy of clauses rather than variables. Clause D-sequents
significantly extend our ability to introduce and algorithmically
exploit redundancy, as our experimental results show.

I. INTRODUCTION

In this paper, we consider elimination of quantifiers from
formulas of the form ∃X[F ] where F is a Boolean formula in
conjunctive normal form (CNF). We will refer to such formulas
as ∃CNF. The Quantifier Elimination (QE) problem, is to
find a quantifier-free CNF formula G such that G ≡ ∃X[F ].
The equivalence ’≡’ is semantic. That is for every complete
assignment s to the non-quantified variables of F , the logical
value of Gs is equal to that of ∃X[Fs]. Here Fs and Gs are
formulas F and G under assignment s.

The motivation for studying the QE problem is twofold.
First, a QE algorithm can be used for solving many verification
problems e.g. computing reachable states [5], [17]. Second,
the methods developed for QE may come handy for other
problems. For example, the machinery of Dependency sequents
(D-sequents) [9], [10] that we continue developing in this
paper can be used for SAT-solving [8].

In [9], [10], we developed a QE algorithm called
DDS (Derivation of D-Sequents) based on the following two
ideas. The first idea is that adding resolvent clauses to formula
F eventually makes the clauses containing a variable of X (we
will call them X-clauses) redundant. Let H denote formula
F ∧G where G is the set of added resolvent clauses. For the
sake of convenience, since a CNF formula can be considered
as a set of clauses, we will use logical and set-based notation
interchangeably. For example, formula F ∧ G can also be
written as F ∪ G. The redundancy of X-clauses in ∃X[H]
means that ∃X[H] ≡ ∃X[H \HX ] where HX is the set
of X-clauses of H . Since H \ HX does not depend on
X , the quantifiers can be dropped. So the set of clauses
H \HX is a quantifier-free formula equivalent to ∃X[H] and
so to ∃X[F ]. The second idea is to use a divide-and-conquer
strategy. DDS proves redundancy of X-clauses in subspaces
and then merges the results of different branches.

A successful implementation of DDS became possible only
due to development of the machinery of D-sequents that was
the main contribution of [9], [10]. A D-sequent is a record
of the form (∃X[F ], q) → Z where q is a partial assignment

to variables of F and Z ⊆ X . This D-sequent says that the
variables of Z are redundant in ∃X[F ] in subspace q. The
redundancy of variables of Z means redundancy of all X-
clauses containing a variable of Z. For the sake of brevity, in
the following exposition we use the same symbol F to denote
the initial and the current CNF formula consisting of the initial
clauses and resolvents. So symbol F used in the D-sequent
above is the current CNF formula.

DDS keeps adding resolvent clauses to formula F until D-
sequent (∃X[F ], ∅) → X is derived stating that the variables
of X are redundant in formula ∃X[F ] globally. (This means
that F \ FX is a solution to the QE problem.) The derivation
of such D-sequent is achieved by generation of atomic D-
sequents and using a resolution-like operation join. An atomic
D-sequent is derived when redundancy of a variable of X in a
subspace can be trivially proved. Operation join is applied to
D-sequents (∃X[F ], q′) → Z and (∃X[F ], q′′) → Z where
q′ and q′′ contain opposite assignments to a variable v of F .
The result of join is a new D-sequent (∃X[F ], q) → Z where
q consists of all assignments of q′,q′′ but those to variable v.

The main contribution of this paper is the development
of the machinery of a new type of D-sequents called clause
D-sequents. A clause D-sequent is a record of the form
(∃X[F ], q) → R where R ⊆ FX . It states that the X-clauses
of R are redundant in ∃X[F ] in subspace q. Clause D-sequents
can be used to express redundancy of any subset of X-clauses
while D-sequents of [9] can do this only for some subsets of
X-clauses. Namely, a D-sequent of [9] can express redundancy
of a set R ⊆ FX only if R is the set of all X-clauses
containing variables from a set Z. (To distinguish new and
old D-sequents we will refer to the latter as D-sequents based
on variable redundancy.) For instance, a D-sequent based on
variable redundancy cannot express the fact that a single X-
clause C is redundant in ∃X[F ] in subspace q. Similarly
to D-sequents based on variable redundancy, the machinery
of clause D-sequents is based on a) derivation of atomic
clause D-sequents, b) a resolution-like operation join and c)
removing redundant X-clauses from the formula to guarantee
the composability of D-sequents. The latter means that proving
redundancy of sets of clauses R′ and R′′ independently implies
that the set R′ ∪R′′ is also redundant.

To show the advantages of clause D-sequents we describe
a new QE algorithm called DCDS (Derivation of Clause D-
Sequents). Development of DCDS is another contribution of
this paper. DCDS can be viewed as an adaptation of DDS to
clause D-sequents. However, this adaptation is far from being
trivial because clause D-sequents have new features that D-
sequents based on variable redundancy do not. Using clause D-
sequents is beneficial for at least two reasons. First, DCDS has
much more flexibility than DDS in proving redundancy of X-
clauses. Proving that a variable v ∈ X is redundant in ∃X[F ]



in subspace q by DDS requires proving redundancy of all
clauses of F with variable v at the same time. DCDS has
no such restriction. Some clauses with variable v may be
proved redundant much later than the others. Second, the size
of clause D-sequents is in general smaller than that of D-
sequents based on variable redundancy. (The size of D-sequent
(∃X[F ], q) → R is the number of variables assigned in q.)
The reason is that proving redundancy of a clause is easier than
that of a variable. This facilitates pruning the search space like
derivation of shorter clauses does in SAT-solving.

This paper is structured as follows. In Section II, we
give basic definitions. Simple cases of clause redundancy are
discussed in Section III. Clause D-sequents are introduced in
Section IV. Section V describes a new QE algorithm called
DCDS. In Section VI, we explain DCDS by a simple example.
Experimental results are given in Section VII. Background is
discussed in Section VIII, and conclusions are presented in
Section IX.

II. BASIC DEFINITIONS

Definition 1: An ∃CNF formula is a quantified CNF
formula of the form ∃X[F ] where F is a CNF formula, and
X is a set of Boolean variables. If we do not explicitly specify
whether we are referring to CNF or ∃CNF formulas, when we
write “formula” we mean either a CNF or ∃CNF formula. Let
q be an assignment, F be a CNF formula, and C be a clause.
Vars(q) denotes the variables assigned in q; Vars(F ) denotes
the set of variables of F ; Vars(C) denotes the variables of C;
and Vars(∃X[F ]) = Vars(F ) \X .

We consider true and false as a special kind of clauses. A
non-empty clause C becomes true when it is satisfied by an
assignment q i.e. when a literal of C is set to true by q. A
clause C becomes false when it is falsified by q i.e. when all
the literals of C are set to false by q.

Definition 2: Let C be a clause, H be a formula, and q be
an assignment such that Vars(q) ⊆ Vars(H). Denote by Cq

the clause equal to true if C is satisfied by q; otherwise Cq is
the clause obtained from C by removing all literals falsified
by q. Hq denotes the formula obtained from H by replacing
every clause C of H with Cq . In the context of this paper, it
is convenient to assume that clause Cq equal to true remains
in Hq rather than being removed from Hq . We treat such a
clause as redundant in Hq (see Proposition 1).

Definition 3: Let G,H be formulas. We say that G,H are
equivalent, written G ≡ H , if for all assignments, y, such that
Vars(y) ⊇ (Vars(G)∪Vars(H)), we have Gy = Hy (notice
that Gy and Hy have no free variables, so by Gy = Hy

we mean semantic equivalence). Observe that if Vars(q) ⊆
Vars(∃X[F ]), then (∃X[F ])q ≡ ∃X[Fq].

Definition 4: The Quantifier Elimination (QE) problem
for ∃CNF formula ∃X[F ] consists of finding a CNF formula
G such that G ≡ ∃X[F ].

Definition 5: Let Z be a set of variables. A clause C of
F is called a Z-clause if Vars(C) ∩ Z 6= ∅. We denote by
FZ the set of all Z-clauses of F .

Definition 6: Let X be a set of Boolean variables, F be
a CNF formula and R be a subset of X-clauses of F . The

clauses of R are redundant in CNF formula F if F ≡ (F \R).
The clauses of R are redundant in ∃CNF formula ∃X[F ]
if ∃X[F ] ≡ ∃X[F \ R]. Note that F ≡ (F \ R) implies
∃X[F ] ≡ ∃X[F \R] but the opposite is not true.

III. SIMPLE CASES OF CLAUSE REDUNDANCY

In this section, we describe three situations where clause
redundancy can be trivially proved (Propositions 1, 2, 3).

Proposition 1: Let ∃X[F ] be an ∃CNF formula and q be
an assignment to Vars(F ) satisfying an X-clause C of F .
Then Cq is redundant in ∃X[Fq].

Due to lack of space we omit proofs. Note that proofs
of non-trivial propositions of this paper are similar to those
of [10] given for D-sequents based on variable redundancy.

Proposition 2: Let ∃X[F ] be an ∃CNF formula and q be
an assignment to Vars(F ). Let C,C ′ be two clauses of F .
Let C be falsified by q and C ′ be an X-clause. Then C ′q is
redundant in ∃X[Fq].

To formulate Proposition 3 below, we need to introduce a
few definitions.

Definition 7: Let C ′ and C ′′ be clauses having opposite
literals of exactly one variable v ∈ Vars(C ′) ∩ Vars(C ′′).
The clause C consisting of all literals of C ′ and C ′′ but those
of v is called the resolvent of C ′,C ′′ on v. Clause C is said
to be obtained by resolution on v. Clauses C ′,C ′′ are called
resolvable on v.

Definition 8: A clause C of a CNF formula F is called
blocked at variable v, if no clause of F is resolvable with C
on v. The notion of blocked clauses was introduced in [15].

Proposition 3: Let ∃X[F ] be an ∃CNF formula and q be
an assignment to Vars(F ). Let C be an X-clause of F not
satisfied by q and v ∈ X be a variable of C such that v 6∈
Vars(q). Let clause Cq be blocked at v in Fq . Then Cq is
redundant in ∃X[Fq].

IV. DEPENDENCY SEQUENTS BASED ON CLAUSE
REDUNDANCY

In this section, we define a new kind of dependency
sequents (D-sequents) called clause D-sequents. In contrast to
D-sequents of [9], clause D-sequents are based on the notion
of clause redundancy. We describe operation join producing
a new clause D-sequent from existing ones and introduce the
notion of composable clause D-sequents.

A. Definition of D-sequents

Definition 9: Let ∃X[F ] be an ∃CNF formula. Let q be
an assignment to Vars(F ) and R be a subset of X-clauses of
F . A clause dependency sequent (clause D-sequent) has the
form (∃X[F ], q) → R. It states that the clauses of Rq are
redundant in ∃X[Fq].

From now on we will refer to clause D-sequents as just
D-sequents unless we want to contrast clause D-sequents with
those based on variable redundancy.

Example 1: Consider an ∃CNF formula ∃X[F ] where
F = C1∧C2, C1 = x∨y1 and C2 = x∨y2 and X = {x}. Let



q={(y1 = 1)}. Then clause C1 is satisfied by q and according
to Proposition 1, the D-sequent (∃x[F ], q) → {C1} holds.
Since Fq={true, C2}, clause C2 is blocked at variable x. So
according to Proposition 3, the D-sequent (∃x[F ], q) → {C2}
holds.

According to Definition 9, a D-sequent holds with respect
to a particular ∃CNF formula ∃X[F ]. Proposition 4 below
shows that this D-sequent also holds after adding to F any set
of resolvent clauses.

Proposition 4: Let ∃X[F ] be an ∃CNF formula. Let
q be an assignment to Vars(F ). Let G be a CNF for-
mula such that F ⇒ G. Then if (∃X[F ], q) → R holds,
(∃X[F ∧G], q) → R does too.

B. Join Operation for D-sequents

In this subsection, we introduce the operation of joining
D-sequents (Definition 11).

Definition 10: Let q′ and q′′ be assignments in which
exactly one variable v ∈ Vars(q′) ∩ Vars(q′′) is assigned
different values. The assignment q consisting of all the as-
signments of q′ and q′′ but those to v is called the resolvent
of q′,q′′ on v. Assignments q′,q′′ are called resolvable on v.

Proposition 5: Let ∃X[F ] be an ∃CNF formula. Let D-
sequents (∃X[F ], q′) → R and (∃X[F ], q′′) → R hold. Let
q′, q′′ be resolvable on v ∈ Vars(F ) and q be the resolvent
of q′ and q′′. Then, D-sequent (∃X[F ], q) → R holds too.

Definition 11: We will say that the D-sequent
(∃X[F ], q) → R of Proposition 5 is produced by joining
D-sequents (∃X[F ], q′) → R and (∃X[F ], q′′) → R at v.

C. Composable D-sequents

In general, the fact that D-sequents (∃X[F ], q) → R′

and (∃X[F ], q) → R′′ hold does not imply that
(∃X[F ], q) → R′ ∪R′′ holds. The reason is that redundancy
of R′ may be true only when clauses of R′′ are in F and
vice versa. So, derivation of (∃X[F ], q) → R′ ∪R′′ requires
recursive reasoning. Proposition 6 below shows how to avoid
recursive reasoning.

Let q and s be assignments to a set of variables Z. Since q
and s are sets of value assignments to individual variables of
Z, one can apply set operations to them. For instance, s ⊆ q
means that q contains the value assignments of s. Assignment
q ∪ s consists of the value assignments that are in q or s.

Proposition 6: Let s and q be assignments to variables
of F where s ⊆ q. Let D-sequents (∃X[F ], s) → R′

and (∃X[F \R′], q) → R′′ hold. Then D-sequent
(∃X[F ], q) → R′ ∪R′′ holds.

Definition 12: Let q′ and q′′ be assignments to a set of
variables Z. We will say that q′ and q′′ are compatible if
every variable of Vars(q′) ∩ Vars(q′′) is assigned the same
value in q′ and q′′.

Definition 13: Let D-sequent S′ be equal to
(∃X[F ], q′) → R′ and S′′ be equal to (∃X[F ], q′′) → R′′

where q′ and q′′ are compatible assignments to
Vars(F ). We will call S′ and S′′ composable if
D-sequent S equal to (∃X[F ], q′ ∪ q′′) → R′ ∪R′′

// q is an assignment to Vars(F )
// Ω denotes a set of active D-sequents
// Φ denotes ∃X[F ]
// If DCDS returns clause nil (respectively a non-nil clause),
// Fq is satisfiable (respectively unsatisfiable)

DCDS (Φ,q,Ω){
1 if (∃ clause C ∈ F falsif. by q) {
2 Ω := atomic Dseqs1 (Ω, q, C);
3 return(Φ,Ω, C);}
4 Ω := atomic Dseqs2 (Φ, q,Ω);
5 if (all X clauses redund(Φ,Ω)) return(Φ,Ω,nil );

- - - - - - - - - - - -
6 v := pick variable(F, q,Ω);
7 (Φ,Ω, C0) :=DCDS (Φ,q ∪ (v = 0),Ω);
8 if (C0 6= nil) Ω := add atomic Dseqs(Ω, q, C0);
9 Ωasym := Dseqs to be inactive(F,Ω, v);
10 if (Ωasym = ∅) return(Φ,Ω, C0);
11 Ω := Ω \ Ωasym ;
12 (Φ,Ω, C1) :=DCDS (Φ,q ∪ (v = 1),Ω);

- - - - - - - - - - - - -
13 if ((C0 6= nil ) and (C1 6= nil )){
14 C := resolve clauses(C0, C1, v);
15 F := F ∧ C;
16 Ω := atomic Dseqs1 (Ω, q, C);
17 return(Φ,Ω, C);}
18 Ω := merge(Φ, q, v,Ωasym ,Ω, C0, C1);
19 return(Φ,Ω,nil );}

Fig. 1. DCDS procedure

holds. From Proposition 6 it follows that S′, S′′ are
composable if D-sequent (∃X[F \R′], q′ ∪ q′′) → R′′ or
(∃X[F \R′′], q′ ∪ q′′) → R′ hold.

Although the QE algorithm of [9] derives composable D-
sequents we did not explicitly use the notion of composability
of D-sequents there. In this paper, we make this important
notion more conspicuous.

V. ALGORITHM DESCRIPTION

In this section, we describe a QE algorithm called DCDS
(Derivation of Clause D-Sequents). DCDS derives D-sequents
(∃X[F ], q) → {C} stating the redundancy of X-clause Cq

of Fq . From now on, we will use a short notation of D-
sequents writing s → {C} instead of (∃X[F ], s) → {C}. We
will assume that the parameter ∃X[F ] missing in s → {C} is
the current ∃CNF formula (with all resolvents added to F ).

One can omit ∃X[F ] from D-sequents because from Propo-
sition 4 it follows that (∃X[F ], s) → {C} holds no matter
how many resolvent clauses are added to F . We will call D-
sequent s → {C} active in subspace q if s ⊆ q. If s → {C}
is active in subspace q, clause Cq is redundant in ∃X[Fq].

A description of DCDS is given in Figure 1.
DCDS accepts an ∃CNF formula ∃X[F ] (denoted as Φ), an
assignment q to Vars(F ) and a set Ω of D-sequents active in
subspace q stating redundancy of some X-clauses in ∃X[Fq].
To simplify description of DCDS, by X-clauses of Fq we also
mean the X-clauses of F satisfied by q. On the contrary, an
X-clause of F falsified by q is not considered as an X-clause
of Fq . DCDS returns a formula ∃X[F ] modified by resolvent
clauses added to F (if any), a set Ω of D-sequents active in
subspace q that state redundancy of all X-clauses in ∃X[Fq]



and a clause C. If Fq is unsatisfiable then C is a clause of F
falsified by q. Otherwise, C is equal to nil meaning that no
clause implied by F is falsified by q.

The active D-sequents derived by DCDS are com-
posable. That is if s1 → {C1}, . . . , sk → {Ck} are the
active D-sequents of subspace q, then the D-sequent
s∗ → {C1, . . . , Ck} holds where s∗ = s1 ∪ . . . ∪ sk and
s∗ ⊆ q. DCDS achieves composability of D-sequents as
follows. As soon as an X-clause Cq is proved redundant,
it is marked and ignored by DCDS , which is equivalent to
removing Cq from Fq . So DCDS guarantees that for every
path of the search tree leading to a leaf, X-clauses are proved
redundant in a particular order. (This order may be different
for different paths.) This allows to avoid recursive reasoning
where a clause C ′q is used to prove redundancy of clause C ′′q
and vice versa. In turn, avoiding recursive reasoning guarantees
composability of D-sequents.

A solution to the QE problem in subspace q is obtained by
discarding all X-clauses from the CNF formula Fq of ∃X[Fq]
returned by DCDS . To build a quantifier-free CNF formula
equivalent to Φ, one needs to call DCDS with q = ∅, Ω = ∅.

A. The Big Picture

DCDS consists of three parts separated in Figure 1 by
dotted lines. In the first part (lines 1-5), DCDS builds atomic
D-sequents i.e. D-sequents for X-clauses whose redundancy
can be trivially proved. If all X-clauses are proved redundant
in ∃X[Fq], DCDS terminates.

If some X-clauses are not proved redundant yet,
DCDS enters the second part of the code (lines 6-12). First,
DCDS picks a branching variable v (line 6). Then it extends
q by assignment to variable v and recursively calls itself (line
7) starting the left branch of v. For the sake of clarity, we
assume that DCDS first explores assignment v = 0. Once
the left branch is finished, DCDS extends q by (v = 1) and
explores the right branch (line 12).

In the third part, DCDS merges the left and right branches
(lines 13-19). The result of this merging is proving every X-
clause redundant in ∃X[Fq]. For every X-clause Cq proved
redundant in ∃X[Fq], the set Ω contains precisely one ac-
tive D-sequent s → {C} where s ⊆ q. As soon as Cq is
proved redundant, it is marked and ignored until DCDS enters
a subspace q′ where s 6⊆ q′ i.e. a subspace where D-
sequent s → {C} becomes inactive. Clause Cq′ is unmarked
in Fq′ signaling that DCDS needs to derive a new D-sequent
s′ → {C} where s′ ⊆ q′ stating the redundancy of Cq′ .

B. Building Atomic D-sequents

Procedures atomic Dseqs1 and atomic Dseqs2 are called
by DCDS to compute D-sequents for trivial cases of clause
redundancy listed in Section III. We refer to such D-sequents
as atomic. Procedure atomic Dseqs1 is called when formula
Fq contains an empty clause Cq which means that clause C
of F is falsified by q. For every X-clause C ′q of Fq that has
no active D-sequent yet, atomic Dseq1 generates a D-sequent
s → {C ′}. Here s is the shortest assignment falsifying C.

atomic Dseqs2 (Φ, q,Ω){
1 Ω := Ω ∪Dseqs(new satisf clauses(Φ, q,Ω));
2 Ω := Ω ∪Dseqs(new blocked clauses(Φ, q,Ω));
3 return(Ω);

Fig. 2. atomic Dseqs2 procedure

If Fq does not have an empty clause, procedure
atomic Dseqs2 shown in Figure 2 is called. It builds D-
sequents for X-clauses that became satisfied or blocked in Fq .
Let C be a clause satisfied by q. Then D-sequent s → {C}
is generated where s = (v = b), b ∈ {0, 1} is the assignment
to a variable v satisfying C.

Let Cq be blocked in Fq at variable v ∈ X that is not
assigned yet. A D-sequent s → {C} stating redundancy of C
is built as follows. The fact that Cq is blocked at v means that
every clause C ′ of F resolvable with C on v is either satisfied
by q or C ′q is proved redundant in Fq . The assignment s is
a subset of assignments of q guaranteeing that C ′ remains
satisfied by s or C ′s remains redundant in ∃X[Fs] and so Cs

is blocked at v in Fs. If C ′ is satisfied by q, then s contains
an assignment (v = b), b ∈ {0, 1} of q satisfying C ′. If C ′

is not satisfied but C ′q is proved redundant in ∃X[Fq], then s
contains all assignments of s′ where s′ ⊆ q and s′ → {C ′}
is the D-sequent of Ω stating redundancy of C ′q .

C. Selection of a Branching Variable

Let q be the assignment DCDS is called with. We will
say that a variable x of X is redundant in ∃X[Fq] if x is
not assigned in q and every {x}-clause is proved redundant
in ∃X[Fq]. Denote by Xred the variables proved redundant in
∃X[Fq]. Let Y = Vars(F )\X . DCDS branches on free (i.e.,
unassigned) variables of X and Y . Importantly, a free variable
x ∈ X \Vars(q) is picked for branching only if x 6∈ Xred i.e.
DCDS does not branch on variables proved redundant.

Although Boolean Constraint Propagation (BCP) is not
shown explicitly in Figure 1, it is included into the
pick variable procedure as follows: a) preference is given to
branching on variables of unit clauses of Fq (if any); b) if
v is a variable of a unit clause Cq of Fq and v is picked
for branching, then the value falsifying Cq is assigned first to
cause immediate termination of this branch.

To simplify merging results of the left and right branches,
DCDS first assigns values to variables of Y (more details
are given in Subsection V-E). This means that pick variable
never selects a variable x ∈ X for branching, if there is a free
variable of Y . In particular, BCP does not assign values to
variables of X if a variable of Y is still unassigned.

D. Switching from Left to Right Branch

DCDS prunes big chunks of the search space by not
branching on redundant variables of X . One more powerful
pruning technique of DCDS discussed in this subsection is
reducing the size of right branches.

Let s → {C} be a D-sequent of the set Ω computed by
DCDS in the left branch v = 0 (line 7 of Figure 1). We will
call this D-sequent symmetric in v, if v is not assigned in s.
Otherwise, this D-sequent is called asymmetric in v. Notice
that if s is symmetric in v, the D-sequent s → {C} is active
in the right branch and so Cq1 is redundant in ∃X[Fq1 ] where



merge(Φ, q, v,Ωasym ,Ω, C0, C1){
1 Ω := join Dseqs of old clauses(v,Ωasym ,Ω);
2 Ω := update Dseqs of new clauses(v,Ω);
3 if (v 6∈ X) return(Ω);
4 if (C0 6= nil) Ω := Ω ∪ {Dseq(C0)};
5 if (C1 6= nil) Ω := Ω ∪ {Dseq(C1)};
6 return(Ω);}
Fig. 3. merge procedure

q1 = q ∪ {(v = 1)}. Denote by Ωasym the subset of active
D-sequents that are asymmetric in v. It is computed in line 9.
Before exploring the right branch (line 12), the X-clauses of F
whose redundancy is stated by D-sequents of Ωasym become
non-redundant again. So the set of X-clauses to be considered
in the right branch reduces to only those with D-sequents from
Ωasym . This allows to prune big parts of the search space. In
particular, if Ωasym is empty there is no need to explore the
right branch. In this case, DCDS just returns the results of the
left branch (line 10). Pruning the right branch when Ωasym is
empty is similar to non-chronological backtracking well known
in SAT-solving [16].

E. Branch Merging

Let q0 = q ∪ {(v = 0)} and q1 = q ∪ {(v = 1)}. The
goal of branch merging is to use solutions of the QE problem
in subspaces q0 and q1 to produce a solution to the QE
problem in subspace q. If both Fq0 and Fq1 are unsatisfiable,
this is done as described in lines 14-17 of Figure 1. In this
case, the empty clauses (C0)q0 and (C1)q1 where C0, C1 are
clauses returned in the left and right branches respectively
are solutions to the QE in subspaces q0 and q1. The empty
clause Cq where C is the resolvent of C0 and C1 added to
F (line 15) is a solution to the QE problem in subspace q.
If, say, v 6∈ Vars(C1) and so C1 cannot be resolved on v,
resolve clauses (line 14) returns C1 itself since C1 is falsified
by q. In this case, no new clause is added to F . After C is
added, atomic Dseqs1 completes Ω by generation of atomic
D-sequents built due to presence of a clause falsified by q.

Suppose that at least one of formulas Fq0 and Fq1 is
satisfiable. In this case, to finish solving the QE problem
in subspace q, one needs to make sure that every X-clause
is proved redundant in Fq . This means that every X-clause
should have a D-sequent active in subspace q and hence
symmetric in the branching variable v. This work is done by
procedure merge shown in Figure 3 that consists of three steps.
In the first step, merge takes care of D-sequents of “old” X-
clauses that is the clauses that were present in F at the time
the value of v was flipped from 0 to 1. For every such X-
clause, a D-sequent was derived in the left branch v = 0. In
the second step, merge processes new X-clauses that is X-
clauses generated in the right branch v = 1. No D-sequents
were derived for such clauses in the branch v = 0. In the third
step, if, say, clause C0 mentioned above is not equal to nil, a
D-sequent is generated for C0 if it is an X-clause.

In the first step, merge needs to update only D-sequents
of X-clauses that became non-redundant in the right branch
because their D-sequents got inactive there (such D-sequents
form set Ωasym , see Subsection V-D). Let us denote this
set of clauses as G. If a D-sequent of an X-clause C
from G returned in the right branch is asymmetric in v,
then join Dseqs of old clauses (line 1) replaces it with a
D-sequent symmetric in v as follows. Let S0 and S1 be

the D-sequents derived in the left and right branches re-
spectively that state the redundancy of Cq0 and Cq1 . Then
join Dseqs of old clauses joins S0 and S1 at v producing a
new D-sequent S. The latter states the redundancy of Cq and
is symmetric in v. D-sequent S1 is replaced in Ω with S.

Let S1 be symmetric in v. If Fq0 was unsatisfiable, then
S1 remains untouched. Otherwise, join Dseqs of old clauses
does the following. Let S1 be equal to s → {C}. First, the
right branch assignment v = 1 is added to s, which makes S1

asymmetric in v. Then S1 is joined with S0 at v to produce
a new D-sequent S that is symmetric in v. S replaces S1 in
Ω. The reason one cannot simply keep S1 in Ω untouched is
as follows. As we mentioned above, the composability of D-
sequents built by DCDS is based on the assumption that for
every path of the search tree, X-clauses are proved redundant
in a particular order. It can be shown that using D-sequent S1

in subspace q may violate this assumption and so break the
composability of D-sequents.

Let S be a D-sequent s → {C} derived in the right branch
v = 1 where C was generated in this branch i.e. C is a
new clause. Such D-sequents are processed in the second step
of merge by procedure update dseqs of new clauses (line 2).
If S is symmetric in v, it simply remains in Ω untouched.
Otherwise, S is updated by removing the assignment to v from
s. One can do this because the clause C is implied by F and
has never been used in the left branch. So it can be considered
as proved redundant in the left branch.

Finally, merge performs the third step (lines 3-5). Notice
that if v is not in X , then C0 or C1 is not an X-clause. This is
because DCDS assigns non-quantified variables before those
of X (see Subsection V-C). So the last variable assigned in an
X-clause is always a variable of X . Let us assume that v ∈ X
and C0 6= nil . (In the case C1 6= nil , merge works similarly.)
Clause (C0)q is equal to the unit clause v. Notice that Fq does
not contain a clause with literal v because this would mean
that both Fq0 and Fq1 were unsatisfiable. So, (C0)q is blocked
in Fq at variable v. Then an atomic D-sequent is built for C0

as described in Subsection V-B.

F. Correctness of DCDS

Let DCDS be called on formula Φ = ∃X[F ] with
q = ∅ and Ω = ∅. Here is an informal explanation of why
DCDS produces the correct result. First, new clauses of F are
produced by resolution and so are correct in the sense they are
implied by F . In particular, if F is unsatisfiable, DCDS returns
an empty clause that is a correct solution to the QE problem.
Second, the atomic D-sequents built by DCDS are correct.
Third, new D-sequents produced by operation join are correct.
Fourth, the D-sequents of individual clauses are composable.
So when DCDS returns to the root node of the search tree, it
derives the correct D-sequent (∃X[F ], ∅) → FX . Hence, by
removing X-clauses from F , one obtains a CNF formula that
is a correct solution to the QE problem.

Proposition 7: DCDS is sound and complete.

VI. A RUN OF DCDS ON A SIMPLE FORMULA

Let ∃X[F ] be an ∃CNF formula where F = C1 ∧ C2,
C1 = y1∨x, C2 = y2∨x and X = {x}. To identify a particular



DCDS call we will use the corresponding assignment q.
For example, DCDS (y1=1,y2=0) means that the assignments
y1 = 1 and y2 = 0 were made at recursion depths 0 and 1
respectively. Originally, assignment q is empty, so the initial
call is DCDS (∅). Figures 4, 5 show the work of DCDS . We
use them to explain the algorithm of DCDS . For the sake of
simplicity, in this example, we say that clause Ci, i = 1, 2 is
blocked/redundant in Fq meaning that it is clause (Ci)q that
is blocked/redundant in Fq .

Fig. 4. Search tree built by
DCDS

Branching variables.
Figure 4 shows the search
tree built by DCDS . Recall that
DCDS branches on variables of
Vars(F ) \ X = {y1, y2} before
those of X (see Subsection V-C).

Leaves. The search tree of Fig-
ure 4 has four leaf nodes shown
in dotted ovals. In each leaf node,
either the X-clauses C1, C2 are
proved redundant or one of them
is falsified. For example, C1 is
satisfied and C2 is blocked, and

hence C1, C2 are redundant, in leaf (y1 = 0) and clause C1 is
falsified in leaf (y1 = 1, y2 = 0, x = 1).

Generation of new clauses. DCDS (y1=1,y2=0) generates
a new clause after branching on x. DCDS (y1=1,y2=0,x=1)

returns C1 since it is falsified in F(y1=1,y2=0,x=1). Simi-
larly, DCDS (y1=1,y2=0,x=0) returns C2 since it is falsified in
F(y1=1,y2=0,x=0). As described in Subsection V-E, in this case,
DCDS resolves clauses C1 and C2 on the branching variable
x. The resolvent C3 = y1 ∨ y2 is added to F .

Fig. 5. Derivation of D-sequents

Generation of atomic D-
sequents. Figure 5 describes
derivation of D-sequents. The
atomic D-sequents are shown
in dotted ovals. (Dotted boxes
show D-sequents obtained by
operation join.) For instance,
C1 is satisfied by assign-
ment (y1 = 0) and C2 is
blocked in F(y1=0). So pro-
cedure atomic Dseqs2 called
by DCDS (y1=0) generates
atomic D-sequents S1 and S2

equal to (y1 = 0) → {C1}
and (y1 =0)→ {C2} respec-
tively. The atomic D-sequents
S3, S4 are derived by pro-

cedure atomic Dseqs1 called by DCDS (y1=1,y2=0). As we
mentioned above, DCDS (y1=1,y2=0) adds clause C3 = y1∨y2
to F . This clause is empty in F(y1=1,y2=0) and so D-sequents
S3, S4 equal to s → {C1}, s → {C2} respectively are gen-
erated. Here s = (y1 =1, y2 =0) is the shortest assignment
falsifying C3.

Switching from left to right branch. Let us consider switch-
ing between branches by DCDS (∅) where y1 is picked for
branching. The left branch of Ω(∅) returns D-sequents S1, S2

equal to (y1 =0)→ {C1} and (y1 =0)→ {C2} respectively.

Before starting the right branch y1 = 1, DCDS (∅) com-

putes the set Ωasym
(∅) of D-sequents asymmetric in y1. Since

S1 and S2 contain an assignment to y1, Ωasym
(∅) =Ω(∅) and

DCDS (∅) removes S1, S2 from Ω. So, before DCDS (y1=1)

is called, both C1 and C2 become non-redundant again.

Branch merging. Consider how branch merging is per-
formed by DCDS (y1=1). In the left branch y2=0, D-sequents
S3, S4 are derived that are asymmetric in y2. In the right
branch y2=1, D-sequents S5, S6, also asymmetric in y2, are
produced. By joining S3 and S6 at y2, D-sequent S7 equal
to (y1=1)→ {C1} is derived. By joining S4 and S5 at y2,
D-sequent S8 equal to (y1=1)→{C2} is derived. D-sequents
S7, S8 state redundancy of C1, C2 in ∃X[F(y1=1)].

Termination. When DCDS (∅) terminates, F = C1∧C2∧C3

where C3 = y1 ∨ y2 and composable D-sequents ∅ → {C1}
and ∅ → {C2} are derived. By dropping the X-clauses C1, C2

one obtains C3 ≡ ∃X[C1 ∧ C2].

Concluding remarks. Due to small size of F , some features
of DCDS are not exposed. For instance, the clause C3 gen-
erated by DCDS is not an X-clause. In general, DCDS may
produce new X-clauses whose redundancy one needs to prove
along with the original X-clauses. Another consequence of
using a small example is that D-sequents derived in every node
has the form s′ → {C1} and s′′ → {C2} where s′ = s′′. For
larger formulas, assignments s of active D-sequents s → {C}
may be vastly different for different clauses C.

VII. EXPERIMENTAL RESULTS

The objective of experiments was to compare the perfor-
mance of DDS and DCDS on realistic examples and to give
some comparison of D-sequent and BDD based algorithms.
(A comparison of DDS with SAT-based QE algorithms is
given in [9].) Importantly, in the current implementations of
DDS and DCDS , D-sequents are not re-used. A D-sequent is
discarded as soon as it is employed in a join operation.

We believe that reusing D-sequents will drastically boost
the performance of both DDS and DCDS like conflict clause
re-using speeds up SAT-algorithms. Re-using learned clauses
in SAT-solving is beneficial because their involvement in BCP
leads to new forced assignments. Re-using D-sequents gives
the power of making “asymmetric” decision assignments. If,
say, assignment v = 0 makes a lot of learned D-sequents
active, then this branch may be much easier to finish than
branch v = 1. Note that a forced assignment can be viewed as
a special case of an asymmetric decision assignment where
one of the two branches terminates immediately. Making
asymmetric decision assignments leads to smaller search trees
and so re-using D-sequents provides new exciting possibilities.
However, tapping this power needs extra research. For that
reason, we report experimental results for the algorithms
without D-sequent re-using.

TABLE I. Results on examples solved by MC-DDS or MC-DCDS . The
time limit is 2,000s

model checker MC-BDD MC-DDS MC-DCDS
#solved 193 247 258
#timeouts 66 12 1
time for solved by all three (s.) 9,080 11,293 1,698

We applied DDS and DCDS to backward model check-
ing. Our implementation was straightforward: DDS and



DCDS were used to compute backward images until an initial
state or a fixed point were reached. We will refer to these model
checkers as MC-DDS and MC-DCDS. In experiments, we also
used the BDD-based model checker incorporated into the latest
version of a tool called PdTrav [22] (courtesy of Gianpiero
Cabodi). We ran PdTrav in the backward model checking mode
with ternary simulation turned off (as a non-BDD optimiza-
tion). The other non-BDD optimizations, e.g. computation of
the cone of influence, remained active because there was no
way to switch them off. Since DDS and DCDS maintain
a single search tree, we also forced PdTrav to represent the
transition relation by a monolithic BDD. (A D-sequent based
QE algorithm does not have to build a single search tree e.g.
it can employ restarts. However, using restarts requires storing
and re-using D-sequents.) We will refer to PdTrav with the
options above as MC-BDD.

In the experiments, we ran MC-DDS , MC-DCDS and MC-
BDD on 758 benchmarks of the HWMCC-10 competition [23]
with the time limit of 2,000 seconds. MC-BDD solved 374
benchmarks while MC-DDS and MC-DCDS solved 247 and
258 benchmarks respectively. This is not surprising taking
into account the maturity of current BDD algorithms and
their re-using of learned information via subgraph hashing.
An important fact however is that MC-DCDS and even MC-
DDS solved many problems that MC-BDD could not. So,
in a sense, MC-DDS with MC-DCDS and MC-BDD favored
different subsets of benchmarks.

Fig. 6. Performance of model checkers on
259 examples solved by MC-DDS or MC-
DCDS

Table I shows the
results of the three
model checkers on
the 259 benchmarks
solved by MC-DDS or
MC-DCDS (i.e.
favored by the two
QE algorithms based
on D-sequents). The
second line of this
table gives the number
of benchmarks solved
under 2,000s. The
third line shows how
many examples out of
259 were not solved

in the time limit. The last line gives the total time in seconds
for the benchmarks solved by all three model checkers.
Table I shows that MC-DCDS significantly outperformed
MC-DDS. Besides, a large number of problems solved by
MC-DCDS were hard for MC-BDD . Figure 6 gives the
performance of the three model checkers on the benchmarks
solved by MC-DDS or MC-DCDS in terms of the number of
problems finished in a given amount of time. MC-DCDS (the
right line) consistently outperforms MC-DDS (the center
line). Besides, on this set of benchmarks, both MC-DDS and
MC-DCDS outperform MC-BDD (the left line).

Results of all three model checkers on some concrete
benchmarks from the 259 benchmark set are given in Table II.
Symbol ’∗’ marks benchmarks that were not solved in 2,000 s.
The column iterations show the number of backward images
computed by the algorithms before finding a bug or reaching
a fixed point.

TABLE II. Some concrete examples. The time limit is 2,000s.

benchmark #lat- #gates #ite- bug MC- MC- MC-

ches rati- BDD DDS DCDS

ons (s.) (s.) (s.)
bj08amba4g5 36 13,637 4 no ∗ 113 16
pdtvisbakery3 48 7,514 2 yes 1.3 12 5.1
texasifetch1p5 57 663 21 yes 1.5 368 96
visprodcellp01 78 2,885 5 no 19 7.9 2.3
texasparsesysp1 312 12,173 10 yes 0.7 231 41
bobmiterbm1or 381 3,720 1 yes 0.7 0.1 0.1
pj2003 1175 15,384 3 no ∗ ∗ 252
bobsynthand 3015 15,397 2 no 1.2 0.6 0.6
mentorbm1and 4344 31,684 2 no ∗ 1.8 1.4

Table III sheds light on why DCDS performs better
than DDS. It shows results of applying both QE-algorithms
to computing all bad states for some benchmarks (the first
step of backward model checking). For either algorithm, we
give the average size of atomic D-sequents and runtime. By
the size of a D-sequent s → {C} we mean the number
of variables assigned in s. To make a fair comparison we
excluded the atomic D-sequents of length 1 generated when X-
clauses got satisfied. Such D-sequents are not built by DDS .

TABLE III. Relation between average size
of atomic D-sequents and runtime

benchmark DDS DCDS
D-seq
size

time
(s.)

D-seq
size

time
(s.)

bc57sensorsp1 19 6.3 13 0.7
boblivea 19 44 10 0.7
bobsmi2c 7.4 96 2.0 9.4
cmugigamax 20 3.6 9.4 3.2
csmacdp2 53 8.1 28 1.5
eijks344 6.0 7.5 2.5 1.6
pdtvissoap2 8.4 82 3.9 3.9
pj2006 7.3 47 1.1 0.4

The results
indicate that the
size of atomic D-
sequents derived
by DCDS was
smaller. The
reason is as
follows. When
an X-clause is
blocked at a
variable v ∈ X ,
DCDS generates

a D-sequent s → {C} where s depends only on clauses that
can be resolved with C on a variable v. On the contrary, when
a variable v ∈ X is blocked, DDS generates a D-sequent
s → {v} where s depends on all clauses that can be resolved
on variable v. Such a D-sequent is, in general, much longer
than s → {C}.

VIII. BACKGROUND

The first practical QE algorithms were based on BDDs
[3], [4]. Since we focus on SAT-based QE methods we do not
discuss these algorithms here. The rest of QE algorithms can
be roughly partitioned into two categories. The members of the
first category employ various techniques to eliminate quantified
variables of the formula one by one in some order [21], [1],
[14], [7]. All these solvers face the same problem: there may
not exist a good single order for variable elimination. This
may lead to exponential growth of the size of intermediate
formulas.

The solvers of the second category are based on enumera-
tion of satisfying assignments [18], [12], [20], [13]. Since such
assignments are, in general, “global” objects, it is hard for
such solvers to follow the fine structure of the formula, e.g.,
such solvers are not compositional [9]. That is they cannot
make use of the fact that formula ∃X1, X2[F1 ∧ F2] where
Vars(F1) ∩ Vars(F2) = ∅ and Xi ⊆ Vars(Fi), i = 1, 2 is
equivalent to ∃X1[F1] ∧ ∃X2[F2].

In [9], we presented a QE algorithm called DDS that
employs the machinery of D-sequents based on redundancy



of variables. In a sense, DDS tries to take the best of both
worlds. It branches and so can use different variable orders
in different branches as the solvers of the second category.
At the same time, in every branch, DDS eliminates quantified
variables individually as the solvers of the first category, which
makes it easier to follow the formula structure. In particular,
DDS is compositional (as is DCDS ).

Identification and removal of redundant clauses is used
in preprocessing procedures of QBF-algorithms and SAT-
solvers [6], [2]. Redundant clauses are also identified in the in-
ner loop of SAT-solving (inprocessing) [19]. These procedures
identify unconditional clause redundancies by recognizing the
situations where such redundancies can be easily proved.

Notice that any X-clause C of a CNF formula F can be
made redundant in ∃X[F ] as follows. Let v ∈ Vars(C) ∩X .
Then ∃X[F ] ≡ ∃X[F \ {C} ∪G] where G is the set of all
clauses obtained by resolving C with clauses of F on v.
In the context of SAT-solving, this fact has been established
in [11], [19]. So to make C redundant in ∃X[F ], one needs
to add all the resolvents of C with clauses of F on a variable
of Vars(C) ∩ X . Hence, one can potentially solve QE by
gradually eliminating X-clauses (including the new X-clauses
produced by resolution) in some order. Unfortunately, this
approach has two fundamental problems. The first problem
is similar to that of variable elimination. There may not
exist a single good order for elimination of X-clauses. The
second problem is that global elimination of X-clauses one
by one may lead to looping even for small formulas. That
is after elimination of a number of clauses one can return
to a formula seen earlier e.g. to the original formula. This is
because elimination of a clause is accompanied by adding new
clauses and so removed clauses may reappear again.

DCDS does not have the problems above. It is not limited
by one global order because in different branches of the
search tree redundancy of clauses is proved in different orders.
DCDS does not have the problem of looping because the
branches of a search tree are ordered and the algorithm cannot
visit the same state twice.

IX. CONCLUSIONS

We continue to develop a calculus for solving propositional
formulas with quantifiers based on the notion of dependency
sequents (D-sequents). Previously, we introduced D-sequents
recording redundancy of quantified variables. In this paper, we
present a new type of D-sequents expressing redundancy of
clauses containing quantified variables. The clause D-sequents
are much more powerful that D-sequents based on variable
redundancy. We use clause D-sequents to formulate a new
algorithm of quantifier elimination called Derivation of Clause
Dependency Sequents (DCDS ).

We experimentally compared DCDS with a QE algorithm
employing D-sequents based on variable redundancy in the
context of model checking. The experiments showed that
DCDS significantly outperformed its counterpart. We also
compared a model checker based on DCDS with a BDD-
based model checker. We found that there was a noticeable
number of benchmarks where DCDS outperformed its BDD-
based counterpart. These results are very promising taking into

account that the current version of DCDS can be drastically
improved e.g. by implementing D-sequent re-using.

ACKNOWLEDGMENT

This work was funded in part by NSF grant CCF-1117184.
It was also supported in part by C-FAR, one of six centers
of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

REFERENCES

[1] P. Abdulla, P. Bjesse, and N. Een. Symbolic reachability analysis based
on sat-solvers. TACAS-00, pages 411–425, 2000.

[2] A.Biere, F.Lonsing, and M.Seidl. Blocked clause elimination for qbf.
CADE-11, pages 101–115, 2011.

[3] R. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[4] P. Chauhan, E. M. Clarke, S. Jha, J.H. Kukula, H. Veith, and D. Wang.
Using combinatorial optimization methods for quantification schedul-
ing. CHARME-01, pages 293–309, 2001.

[5] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999.

[6] N. Eén and A. Biere. Effective preprocessing in sat through variable
and clause elimination. In SAT, pages 61–75, 2005.

[7] E.Goldberg and P. Manolios. Sat-solving based on boundary point
elimination. HVC-10, pages 93–111, 2010.

[8] E.Goldberg and P.Manolios. Checking satisfifiability by dependency
sequents. Technical Report arXiv:1207.5014 [cs.LO], 2012.

[9] E.Goldberg and P.Manolios. Quantifier elimination by dependency
sequents. In FMCAD-12, pages 34–44, 2012.

[10] E.Goldberg and P.Manolios. Quantifier elimination by dependency
sequents. Technical Report arXiv:1201.5653 [cs.LO], 2012.

[11] A. V. Gelder. Propositional search with k-clause introduction can be
polynomially simulated by resolution. In (Electronic) Proc. 5th Int’l
Symposium on Artificial Intelligence and Mathematics, 1998.

[12] H.Jin and F.Somenzi. Prime clauses for fast enumeration of satisfying
assignments to boolean circuits. DAC-05, pages 750–753, 2005.

[13] J.Brauer, A.King, and J.Kriener. Existential quantification as incremen-
tal sat. CAV-11, pages 191–207, 2011.

[14] J.R.Jiang. Quantifier elimination via functional composition. In
Proceedings of the 21st International Conference on Computer Aided
Verification, CAV-09, pages 383–397, 2009.

[15] O. Kullmann. New methods for 3-sat decision and worst-case analysis.
Theor. Comput. Sci., 223(1-2):1–72, 1999.

[16] J. Marques-Silva and K. Sakallah. Grasp – a new search algorithm for
satisfiability. In ICCAD-96, pages 220–227, 1996.

[17] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[18] K. McMillan. Applying sat methods in unbounded symbolic model
checking. In Proc. of CAV-02, pages 250–264. Springer-Verlag, 2002.

[19] M.Järvisalo, M.Heule, and A.Biere. Inprocessing rules. IJCAR-12,
pages 355–370, 2012.

[20] M.K.Ganai, A.Gupta, and P.Ashar. Efficient sat-based unbounded
symbolic model checking using circuit cofactoring. ICCAD-04, pages
510–517, 2004.

[21] P. Williams, A. Biere, E. Clarke, and A. Gupta. Combining decision
diagrams and sat procedures for efficient symbolic model checking.
CAV-00, pages 124–138, 2000.

[22] http://fmgroup.polito.it/index.php/download/.
[23] HWMCC-2010 benchmarks, http://fmv.jku.at/hwmcc10/benchmarks.html.


