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Abstract. We describe an approach to verifying bit-level pipelined machine models using a
combination of deductive reasoning and decision procedures. While theorem proving systems
such as ACL2 have been used to verify bit-level designs, theytypically require extensive
expert user support. Decision procedures such as those implemented in UCLID can be used to
automatically and efficiently verifyterm-levelpipelined machine models, but these models use
numerous abstractions, implement a subset of the instruction set, and are far from executable.
We show that by integrating UCLID with the ACL2 theorem proving system, we can use ACL2
to reduce the proof that an executable, bit-level machine refines its instruction set architecture
to a proof that a term-level abstraction of the bit-level machine refines the instruction set
architecture, which is then handled automatically by UCLID. We demonstrate the efficiency
of our approach by applying it to verify a complex seven stagebit-level interface pipelined
machine model that implements 593 instructions and has features such as branch prediction,
exceptions, and predicated instruction execution. Such a proof is not possible using UCLID
and would require prohibitively more effort using just ACL2.
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1. Introduction

The ever-increasing complexity of microprocessor designsand the poten-
tially devastating economic consequences of shipping defective products has
made functional verification a bottleneck in the microprocessor design cy-
cle, requiring a large amount of time, human effort, and resources (Bentley,
2001; Semiconductor Industry Association, 2004). For example, the 1994
Pentium FDIV bug cost Intel $475 million and it is estimated that a similar
bug in the current generation Intel Pentium processor wouldcost Intel $12
billion (Bentley, 2005).

One of the key optimizations used in these designs is pipelining. Simula-
tion and property-based verification are the main approaches to validating
such designs in industry (Bentley, 2001). The problem with simulation is
that it is not exhaustive. This is also a problem with property-based veri-
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fication, because the very large number of complex properties required to
specify the behavior of pipelined machines makes it easy to have incomplete
specifications.

Pipelined machine verification has also received a fair amount of interest
from the research community. The two main approaches studied are based on
the use of deductive reasoning and decision procedures. Approaches that use
theorem provers such as ACL2 (Kaufmann et al., 2000b; Kaufmann et al.,
2000a) can be used to verify bit-level pipelined machine models but require
significant human effort from an expert user. Approaches based on decision
procedures such as UCLID (Bryant et al., 2002; Lahiri and Seshia, 2004)
are highly automated but their application is restricted tothe verification of
term-levelmodels, models that abstract away the datapath, implement asmall
subset of the instruction set, require the use of numerous abstractions, and are
far from executable.

The restriction to term-level models has severely limited the applicability
of approaches based on decision procedures because to be industrially appli-
cable, we need a firm connection to the RTL level, something that abstract
term-level models do not provide. Our main contribution is to show how to
attain a high degree of automation when verifying pipelinedmachines defined
at the RTL level. We do this by combining deductive reasoningwith decision
procedures. Deductive reasoning, using the ACL2 theorem proving system, is
used to reduce the correctness theorem for an executable, bit-level pipelined
machine to a theorem about a term-level model, which can thenbe automat-
ically discharged using decision procedures. We demonstrate our approach
by integrating the UCLID decision procedure with the ACL2 theorem prov-
ing system and using the combined system to verify a complex seven-stage
pipelined machine model defined mostly at the bit-level. Thework presented
in this paper extends a previous conference version (Manolios and Srinivasan,
2005c) by including a more detailed, thorough, and completedescription of
the techniques developed and their application.

Verification entails proving that the pipelined machine refines its instruc-
tion set architecture. The notion of refinement we use is WellFounded Equiv-
alence Bisimulation (WEB), a compositional notion that preserves both safety
and liveness properties. We take advantage of the compositionality of WEB-
refinement to decompose the proof that the bit-level pipelined machine model
refines its instruction set architecture into several refinement steps. The re-
finement steps that relate the bit-level models with the term-level models
are handled by ACL2, and the step relating the term-level pipelined machine
model with its instruction set architecture is handled by UCLID.

We use the ACL2 theorem-proving system because it has been success-
fully applied to RTL-level hardware verification efforts inindustry. For ex-
ample, ACL2 has been used to verify the floating point units ofAMD-K5
processor (Russinoff, 1999), AMD-K7 processor (Russinoff, 1998), and IBM
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Power4TM processor (Sawada, 2002). ACL2 has also been used as part of
the verification effort of an IBM secure co-processor (Smithet al., 1999)
and an intrinsic partitioning mechanism in the AAMP7 avionics micropro-
cessor (Greve et al., 2004).

When verifying term-level models, we found that the UCLID decision
procedure is orders of magnitude faster than ACL2. For example, the veri-
fication of a simple five-stage DLX pipelined machine defined at the term-
level took three seconds with UCLID, but took fifteen and a half dayswith
ACL2 (Manolios and Srinivasan, 2004b).

Unfortunately, UCLID has several limitations of its own that led us to
build a system integrating UCLID with ACL2. UCLID specifications are
restricted to term-level models and are therefore not executable. We define
systems using the ACL2 programming language, which not onlyresults in
executable models, but even allows us to simulate the modelsat close to C
speeds (Greve et al., 2000). A related point is that since term-level models
tend to contain only one instruction per instruction class,they do not capture
the semantics of the instruction set architecture, which makes it impossible
to reason about software. None of these restrictions apply to ACL2, so we
can reason about machine code running on the pipelined machine, as we
discuss later in this paper. Another difference between ACL2 and UCLID
is that ACL2 is far more expressive. For example, we cannot fully state the
refinement theorem in UCLID; instead we state the “core” of the refinement
theorem. Even this requires that we drastically modify the UCLID models
by adding external inputs, state, and combinational logic.For our models,
these modifications can involve on the order of one thousand lines of code,
making it difficult to guarantee that the correctness proofsinvolving these
“polluted models” imply the correctness of the original, unpolluted models.
In our system, by using the expressive power of ACL2, these problems are
avoided.

The rest of the paper is organized as follows. In Section 2, wedescribe
the seven-stage pipelined machine model, most of which is defined at the bit-
level. In Section 3, we provide an overview of the refinement-based notion of
correctness we use to verify the seven-stage model. In Section 4, we give a
high level description of our integration of UCLID with ACL2so as to allow
the reader to better understand the various issues that arise in the refinement
proof. A more detailed description will appear elsewhere. Section 5 describes
in detail every major step in the refinement proof. Section 6 gives the veri-
fication statistics of the proof in terms of the running time and expert user
effort required. The ACL2 and UCLID proof scripts required to reproduce
our results are available upon request. In Section 7, we showhow to re-
duce reasoning about software running on the pipelined machine to reasoning
about software running on the instruction set architectureby appealing to the
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Figure 1. High-level organization of bit-level interface processormodel

refinement and composition theorems. We describe related work in Section 8
and conclude in Section 9.

2. Processor Model

We demonstrate our verification approach using a complex executable seven-
stage pipelined machine model, most of which is defined at thebit-level. The
high-level organization of the pipeline is inspired by the Intel XScale archi-
tecture (Clark et al., 2001) and is shown in Figure 1. The model has seven
pipeline stages including a 2-cycle fetch, a decode, an execute, a 2-cycle
memory access, and a write back. The model has various features such as
branch prediction, precise exceptions, and predicated instruction execution.

The model is described at the bit-level except for the instruction and data
memories, the register file, and combinational circuit blocks such as the ALU;
these blocks have bit-level interfacesi.e., their inputs and outputs are bit-
vectors, but they are not necessarily defined at the bit-level internally. For
example, the ALU in our machine takes bit-vector inputs, converts the in-
puts to integers, performs the appropriate ALU operation onthese integers,
and converts the result to a bit-vector, which is the output of the ALU unit.
Therefore, we use the term “bit-level interface” to describe the model. In the
bit-level interface model the instruction decoder, control logic, and data path
logic operate on bit-vectors. The model is described using the ACL2 program-
ming language, and unlike term-level models it is executable. In Section 7, we
show an example program (a dynamic programming solution to the Knapsack
problem) that executes on the model. Instructions are 32 bits in length and the
model has 16 registers. The size of the data path is a parameter that can be
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set to any integer value greater than one, and the verification times of our
correctness proofs do not vary with the size of the data path.

The model implements 16 types of ALU instructions, a return from excep-
tion instruction, and various branch, jump, load, and storeinstructions. Our
model has both register-register and register-immediate addressing modes
and our model supports predicated instruction execution,i.e., some instruc-
tions have an associated condition that depends on the processor status flags.
The instructions are allowed to complete and update the programmer visible
components such as the program counter, the data memory, andthe register
file only if the condition associated with the instruction istrue. Each of the
ALU, branch, load, and store instructions can be executed using 16 different
conditions. ALU, load, and store instructions can also use immediate values.
In all, the model implements 593 instructions.

3. Refinement

In this section, we review the required background on the theory of refinement
used in this paper; for a full account see (Manolios, 2001; Manolios, 2003).
Pipelined machine verification is an instance of the refinement problem: given
an abstract specification,S, and a concrete specification,I , show thatI refines
(implements)S. In the context of pipelined machine verification, the idea is to
show that MA, a machine modeled at the microarchitecture level, a low level
description that includes the pipeline, refines ISA, a machine modeled at the
instruction set architecture level. A refinement proof is relative to arefinement
map, r, a function from MA states to ISA states. The refinement map shows
one how to view an MA state as an ISA state,e.g., the refinement map has
to hide the MA components (such as the pipeline) that do not appear in the
ISA. Refinement for us means that the two systems arestuttering bisimilar:
for every pair of statesw, s such thatw is an MA state ands= r.w, one has
that for every infinite pathσ starting ats, there is a “matching” infinite pathδ
starting atw, and conversely. Thatσ andδ “match” implies that applyingr to
the states inδ results in a sequence that is equivalent toσ up to finite stuttering
(repetition of states). Stuttering is a common phenomenon when comparing
systems at different levels of abstraction,e.g., if the pipeline is empty, MA
will require several steps to complete an instruction, whereas ISA completes
an instruction during every step.

The ISA and MA machines are arbitrary transition systems (TS). A TS,
M , is a triple〈S,99K,L〉, consisting of a set of states,S, a left-total transition
relation,99K⊆S2, and a labeling functionL whose domain isSand whereL.s
(we sometimes use an infix dot to denote function application) corresponds
to what is “visible” at states.
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In more detail, our notion of refinement is based on the following defi-
nition of stuttering bisimulation (Browne et al., 1988), where byfp(σ,s) we
mean thatσ is a fullpath (infinite path) starting ats, and bymatch(B,σ,δ) we
mean that the fullpathsσ andδ are equivalent sequences up to finite stuttering
(repetition of states).

DEFINITION 1. B ⊆ S×S is a stuttering bisimulation (STB) on TSM =
〈S,99K,L〉 iff B is an equivalence relation and for all s,w such that sBw:

(Stb1) L.s= L.w

(Stb2) 〈∀σ : fp(σ,s) : 〈∃δ : fp(δ,w) : match(B,σ,δ)〉〉

The formal definition of match follows.

DEFINITION 2. (match) Let i range overN. Let INC be the set of strictly
increasing sequences of natural numbers starting at0. The ith segment of an
infinite sequenceσ with respect toπ ∈ INC, πσi, is given by the sequence
〈σ(π.i), . . . ,σ(π(i + 1)− 1)〉. We define match(B,σ,δ) ≡ 〈∃π,ξ ∈ INC ::
corr(B,σ,π,δ,ξ)〉, where corr(B,σ,π,δ,ξ)≡ 〈∀i ∈N::〈∀s,w : s∈ πσi ∧ w∈
ξδ j : sBw〉〉.

Browne, Clarke, and Grumberg have shown that states that arestuttering
bisimilar satisfy the same next-time-free temporal logic formulas (Browne
et al., 1988).

LEMMA 1. Let B be an STB onM and let sBw. For anyCTL∗ \X formula
f , M ,w |= f iff M ,s |= f .

We note that stuttering bisimulation differs from weak bisimulation (Mil-
ner, 1990) in that weak bisimulation allows infinite stuttering. Distinguish-
ing between infinite and finite stuttering is important, because (among other
things) we want to distinguish deadlock from stutter.

When we say that MA refines ISA, we mean that in the disjoint union (⊎)
of the two systems, there is an STB that relates every pair of statesw, s such
thatw is an MA state andr.w = s.

DEFINITION 3. (STB Refinement) LetM = 〈S,99K,L〉, M ′ = 〈S′,99K′,L′〉,
and r : S→ S′. We say thatM is a STB refinement ofM ′ with respect to
refinement map r, writtenM ≈r M ′, if there exists a relation, B, such that
〈∀s∈ S :: sBr.s〉 and B is an STB on the TS〈S⊎S′,99K ⊎ 99K

′,L〉, where
L .s= L′.s for s an S′ state andL .s= L′(r.s) otherwise.

STB refinement is a generally applicable notion. However, since it is based
on bisimulation, it is often too strong a notion and in this case refinement
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based on stutteringsimulationshould be used (see (Manolios, 2001; Mano-
lios, 2003)). The reader may be surprised that STB refinementtheorems can
be proved in the context of pipelined machine verification; after all, features
such as branch prediction can lead to non-deterministic pipelined machines,
whereas the ISA is deterministic. While this is true, the pipelined machine is
related to the ISA via a refinement map that hides the pipeline; when viewed
in this way, the nondeterminism is masked and we can prove that the two
systems are stuttering bisimilar (with respect to the ISA visible components).

A major shortcoming of the above formulation of refinement isthat it
requires reasoning about infinite paths, something that is difficult to auto-
mate (Namjoshi, 1997). In (Manolios, 2001), WEB-refinement, an equivalent
formulation is given that requires only local reasoning, involving only MA
states, the ISA states they map to under the refinement map, and their succes-
sor states. In (Manolios and Srinivasan, 2004a), it is shownhow to automate
the refinement proofs in the context of pipelined machine verification. The
idea is to strengthen, thereby simplifying, the refinement proof obligation;
the result is the following CLU-expressible formula, whererank is a function
that maps states of MA into the natural numbers.

THEOREM 1. MA ≈r ISA if:

〈∀w,v∈ MA, s,u∈ ISA ::

s= r.w ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r.v

=⇒ s= r.v ∧ rank.v < rank.w〉

In the formula aboves and u are ISA states, andw and v are MA states;
ISA-step is a function corresponding to stepping the ISA machine once
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andMA-step is a function corresponding to stepping the MA machine once.
The proof obligation relatings andv can be thought of as the safety com-
ponent, and the proof obligation thatrank.v < rank.w can be thought of as
the liveness component. The formula is represented pictorially in Figure 2.
Notice that we can state the above theorem without using the variabless, u,
andv, as their values are uniquely determined by the value ofw.

Note that the notion of WEB-refinement is parameterized by the refine-
ment map used. In this paper, we use the commitment refinementmap (Mano-
lios, 2000), where MA states are mapped to ISA states by invalidating all
partially executed instructions in the pipeline, undoing any effect they had
on the programmer-visible components, and projecting out the programmer-
visible components. In previous work, we have explored the use of and impact
of refinement maps on pipelined machine verification,e.g., in (Manolios and
Srinivasan, 2005b), we present a new class of refinement mapsthat can pro-
vide several orders of magnitude improvements in verification times over the
standard flushing-based refinement maps for term-level models.

WEB-refinement iscompositionaland a complete compositional reason-
ing framework based on our notion of refinement is given in (Manolios and
Srinivasan, 2005a). For example, one can prove the following theorem, where
r;q denotes functional composition,i.e., (r;q)(s) = q(r.s).

THEOREM 2. (Composition)
If M ≈r M ′ andM ′ ≈q M ′′ thenM ≈r ;q M ′′.

Another useful compositional theorem is the following.

THEOREM 3. (Composition)
MA≈r · · · ≈q ISA
ISA ‖ P ⊢ ϕ

MA ‖ P ⊢ ϕ

The above theorem states that to prove MA‖ P ⊢ ϕ (think of this as
saying that MA, a pipelined machine, executing programP satisfies property
ϕ, a CTL∗ \X property over the ISA visible components), it suffices to prove
MA ≈ ISA and ISA‖P ⊢ ϕ: that MA refines ISA and that ISA, executingP,
satisfiesϕ. This is a powerful rule as it allows us to reduce correctnessproofs
about programs executing on the MA to proofs about programs executing on
the ISA.
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4. Integrating UCLID with ACL2

Our integration of the UCLID decision procedure with the ACL2 theorem
proving system is coarse-grained, meaning that the user hasto invoke the
decision procedure explicitly. This allows us to avoid the well-known difficul-
ties associated with the fine-grained integration of decision procedures into
heuristic theorem provers (Boyer and Moore, 1988). In this section, we will
give a high-level description of our shallow embedding of the CLU logic and
the UCLID specification language in ACL2. A description of the embedding
is useful in understanding the various issues that arise in the refinement proof.
However, this paper is about an application of the integration of UCLID with
ACL2 to verify a complex pipelined machine. The full detailsof the inte-
gration and the embedding of CLU and the UCLID specification language in
ACL2 are rather technical and will be presented elsewhere.

The CLU syntax and semantics and the UCLID specification language are
described in (Bryant et al., 2002), and (Seshia et al., 2003a), respectively.
The UCLID specification language is based on CLU, but extendsit with
features such as macros and convenient commands for expressing symbolic
simulation. UCLID specifications are therefore more high-level than the cor-
responding CLU specifications, which means that UCLID specifications are
semantically closer to ACL2 expressions, which is why we chose to inter-
face ACL2 with UCLID instead of just CLU. We can then use the UCLID
symbolic simulation engine (implemented in the UCLID tool)to generate the
CLU formulas corresponding to the UCLID specification.

We first give an overview of how we embed CLU into ACL2. The CLU
logic contains the boolean connectives, uninterpreted functions and predi-
cates, equality, counter arithmetic, ordering, and restricted lambda expres-
sions. Booleans, integers, equality, ordering, successor, and predecessor func-
tions in CLU are mapped to the corresponding entities in ACL2.1 CLU’s un-
interpreted functions (UFs) and uninterpreted predicates(UPs) are modeled
in ACL2 using constrained functions. ACL2 has anencapsulationmechanism
that allows one to safely introduce functions about which only a set of con-
straints is known. To model UFs, we use constrained functions which have
the property that if their inputs are integers, then their outputs are integers
also. Similarly, UPs are modeled as functions that given integer inputs re-
turn booleans. The embedding of UFs and UPs highlights one ofthe issues
with embedding CLU into ACL2, which is that the CLU logic obeys a stati-
cally monomorphic type discipline, while ACL2 is untyped. Another issue is
the embedding of lambda expressions, which is not straightforward because

1 In fact, models of the CLU logic are only required to satisfy asmall set of axioms over
equality,<, and the successor and predecessor functions. Therefore, CLU could be used to
reason about other domains, say strings. Our system allows users to do this by explicitly
providing the intended domain.
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ACL2 is first-order. We use fresh, lambda-lifted top level ACL2 functions to
translate CLU lambda expressions.

We now consider the full UCLID specification language. UCLIDmod-
els contain a set of state elements, whose behavior is specified with initial
and next state functions. The initial and next state functions are defined us-
ing CLU expressions extended with syntactic sugar and can also refer to
state variables. Notice that the value of a UCLID state variable can be given
by a CLU lambda expression. To map UCLID specifications into ACL2,
we use the CLU to ACL2 embedding. The resulting ACL2 models have
state elements corresponding to the UCLID state elements and for each state
element, we define a pair of initial-state and next-state functions. A ma-
jor problem with the translation is how to handle state elements that are
themselves functions or predicates. As ACL2 is a first-orderlanguage, the
value of a variable cannot be a function. Therefore, we cannot directly trans-
late UCLID lambda expressions to ACL2 functions. The way we handle
this is first to closure-convert (Landin, 1964) and lambda-lift (Jouannaud,
1985) the relevant lambda expressions,i.e., we extract the free state vari-
ables of each lambda term, and alter the term to take an additional argument,
which is an “environment” that packages up their current values. The result-
ing lambda term that takes an “environment” as input along with its other
input arguments is called a closure. Secondly, we perform a defunctionali-
sation step (Reynolds, 1998) on the resulting closures. That is, we statically
know the call sites for each (functional) state variable. Such a call must be
to the lambda expression produced by either the state variable’s initial-state
function, or its next-state function: there are only two choices. Thus, we ex-
press the “code” part of the state-element’s closure with a closure-converted
ACL2 function that can query its extra “environment” argument (which cap-
tures the values of the preceding state) to determine if the state is the initial
state or a non-initial state. If the former, the code executes the body of the
initial-state closure; if the latter, the body of the next-state closure. The result
is anevaluator function when applied to the arguments of the lambda and
the “environment” evaluates to an expression corresponding to the original
lambda expression.

4.1. TRANSLATION EXAMPLES

In this section, we show two examples of translations from the UCLID speci-
fication language to ACL2. The first example is a part of a module that defines
a simple instruction set architecture (ISA). The second example is a part of a
UCLID specification.

Part of a model of a simple ISA machine is shown in Figure 3. Themodel
consists of aDEFINE section that defines macros and anASSIGN section that
describes the initial and next values of state elements. Themacros can be
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MODULE spec
...
DEFINE
inst := imem0(sPC);
scond := GetCond(inst);
is condition true :=

Condit(scond , sNZCV Flags);
...
val := case

MemToReg : ReadData;
default : Result;

esac;
ASSIGN
init[sPC] := pc0;
next[sPC] :=

case
initi : pc0;
project impl : project pc;
(isa & is ReturnFromException) : sEPC;
(isa & is alu exception) : ALU Exception Handler;
(isa & is taken branch) : TargetPC;
isa : pcadd(sPC);
default : sPC;

esac;
...

Figure 3. Example of a module defined in the UCLID specification language

thought of as wires in the context of hardware systems. One state element
corresponding to a program counter (sPC) is shown in the figure. For the state
element, aninit function and anext function are defined, which describe
the initial and the next value of the state element, respectively. Figure 4 shows
the ACL2 specification obtained by translating from the UCLID model.

The UCLID module shown in Figure 3 is translated to two functions
spec-initialize-u (not shown in the figure due to space limitations)
and spec-simulate-u (shown in the figure), which are used to com-
pute the initial and next values of state elements in the module, respectively.
The macro definitions are sequential, meaning that the definition of a macro
can depend on previously defined macros. Therefore the UCLIDmacros are
translated to nested let bindings (let*). Theinit andnext functions of
state elementsPC are translated to the ACL2 functionsinitspc-u and
nextspc-u, respectively.

The second example (Figure 5) shows the control section of the UCLID
specification that describes a formula to be checked for validity. At the begin-
ning of theEXEC section all the state elements in the UCLID specification
are initialized to values defined by theinit functions using an implicit ini-
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(defun initspc-u (pc0) pc0)
(defun nextspc-u

(initi pc0 project impl project pc isa
is returnfromexception sepc is alu exception
alu exception handler is taken branch targetpc spc)

(cond
(initi pc0)
(project impl project pc)
((and isa is returnfromexception) sepc)
((and isa is alu exception) alu exception handler)
((and isa is taken branch) targetpc)
(isa (pcadd spc))
(t spc)))

...
(defun spec-simulate-u

(spec st initi pc0 project impl project pc isa
alu exception handler nzcv flags0 project nzcv
epc0 isexception0)

(let* ((spc (g ’spc spec))
...)

(let* ((inst (imem0 spc))
(scond (getcond inst))
(is condition true (condit scond snzcv flags))
...
(val (cond (memtoreg readdata) (t result))))

(spec-state
(nextspc-u

initi pc0 project impl project pc
isa is returnfromexception sepc
is alu exception alu exception handler
is taken branch targetpc spc)

...)

Figure 4. Translation to ACL2 of the UCLID module shown in Figure 3.

tialize command. The first command is a symbolic simulation that assigns all
state elements to the values described by theirnext functions. After some
computation, theGood MA V and theRank W variables are assigned CLU
expressions. Finally, the formula to be checked for validity is given in the
decide command.

The translation of the UCLID control section to ACL2 is shownin Fig-
ure 6. The whole control section is translated to adefthm construct, the
construct used to state theorems in ACL2. The implicit UCLIDinitialize
command at the beginning of theEXEC is translated to theinitialize-u
function. The UCLID simulate command is translated to thesimulate-u
function. The resulting states of the model obtained after initialization and
simulation are stored usinglet* bindings and are used for further simulation
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CONTROL
...
EXEC
simulate(1);
...
Good MA V := ( Equiv MA 0 | Equiv MA 1 | Equiv MA 2 | ...);
...
Rank W := Rank;
...
decide(

Good MA V &
((∼((S pc0 = I pc0 ) &

(S rf0 (a1) = I rf0 (a1)) &
(S dmem0(a1) = I dmem0(a1))

...);

Figure 5. Example of a control section in UCLID.

steps. TheGood MA V and theRank W variables are assigned values in the
let* bindings. Finally, the formula to be checked is given.

5. Refinement Proof

In this section, we describe in detail the proof that the seven-stage bit-level
interface pipelined machine model (MB) refines its executable instruction set
architecture (IE). Both models MB and IE are described usingthe ACL2 pro-
gramming language. We use the combined system obtained fromintegrating
UCLID with ACL2 for the proof. We first give an outline of the proof.

5.1. PROOFOVERVIEW

An outline of the proof that MB refines IE, both of which are defined in
ACL2, is shown in Figure 7. We make essential use of the compositionality
of WEB-refinement to reduce the proof to a sequence of simplerrefinement
proofs.

In the ACL2 models IE and MB, memory is modeled using association
lists mapping addresses to data values. In the other models,memory is mod-
eled using evaluator functions, because as described in Section 4, this allows
us to relate ACL2 models with UCLID models, where memory is modeled
using restricted lambda expressions.

The first refinement proof shows that MB refines MM, a bit-levelinterface
pipelined machine model that is similar to MB except that MM’s memories
are modeled using evaluator functions. The second refinement proof is used
to move from bit-vectors to integers. We do this by proving (with ACL2) that
MM refines ME, an executable pipelined machine that is similar to MM, but
which operates on integers, not bit-vectors.
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(defthm web_core-u
(implies
(and (integerp pc0) (integerp epc0) ...)

(let*
((st0 (initialize-u nil nil nil nil nil pc0 ...))
(st1 (simulate-u st0 bpstate0 nil nil nil pc0 ...))
...
(good_ma_v

(or ... (or equiv_ma_0 equiv_ma_1)
equiv_ma_2 ...)

...
(rank_w

(rank-u (g ’mwwrt (g ’impl st21))
zero
(g ’mmwrt (g ’impl st21))
(g ’emwrt (g ’impl st21))
(g ’dewrt (g ’impl st21))
(g ’fdwrt (g ’impl st21))
(g ’ffwrt (g ’impl st21))))

...)
(and good_ma_v

(or ...
(and (equal s_pc0 i_pc0)

(equal (read-srf-u a1 s_st0)
(read-prf-u a1 i_st0)))

(equal (read-sdmem-u a1 s_st0)
(read-pdmemhist_2-u a1 i_st0)))

...)

Figure 6. Translation of the UCLID control section shown in Figure 5 toACL2.

Recall that our goal is to move towards refinement steps that can be han-
dled by UCLID, and, as mentioned previously, this requires that we “pollute”
the models by adding extra inputs and logic in order to state the “core” re-
finement theorems. The refinement step from ME to MEP, a polluted version
of ME, does exactly this.

The pipeline is dealt with next, when MEP is shown to refine IEP, a pol-
luted version of IE. As we will see shortly, both ACL2 and UCLID are used
for this refinement proof.

What remains is to show that IEP refines IM, which can be thought of as a
purification step that removes the pollution introduced earlier, and that IM re-
fines IE, which transforms the memory models based on lambda expressions
in IM to the association lists based memory models in IE.

The proof that MEP refines IEP cannot be directly handled withUCLID,
e.g., the models use arithmetic operations on integers that are not expressible
in the CLU logic or the UCLID specification language. Therefore, several
abstractions are employed, resulting in machines MA and IA which abstract
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MA IA

IUMU

IEP

Pollute

ME MEP

PurifyPipeline
MMMB

Memory Memory 

IM IE
Bit−levelMemory 

IUAMUA

UCLID to ACL2

Term level

A

A

: Translation from UCLID to ACL2

B     : A refines B (proof by UCLID)    

: Functional Instantiation

B       : A refines B (proof by ACL2)    

Figure 7. Proof outline that uses ACL2 and UCLID to show that MB refines IE.

MEP and IEP, respectively. MA and IA are term-level models and we prove
that MA refines IA by translating this proof obligation to a UCLID theorem
stating that MU refines IU. MU and IU are the UCLID analogs of MAand IA,
respectively. MUA and IUA are obtained by translating MU andIU to ACL2
using our trusted translator. The UCLID theorem that MU refines IU is also
translated to ACL2 using our trusted translator resulting in an ACL2 theorem
stating that MUA refines IUA, which is then used to prove that MA refines
IA. Several of the ACL2 refinement proofs use functional instantiation, an
ACL2 proof technique that allows one to lift theorems involving constrained
functions to theorems involving functions satisfying the constraints. This is
how we use UCLID proofs, which contain UFs and UPs, to prove theorems
about defined functions and predicates.

We now describe in detail aspects of the refinement proof. Note that the
various models are very large (for example, the MA model is about 2,500
lines of ACL2 code) and given the limited space, it is not possible to fully
describe these models.
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5.2. MEMORY MODELS

In this section, we describe the parts of the refinement proofthat relate the
machine models MB and IE with machine models MM and IM, respectively.
MB and IE use association lists to model memory whereas MM andIM use
the evaluator function to model memory.

Typically, memories are thought of as arrays of data values.In ACL2, we
use association lists (lists of key/value pairs that are also referred to as alists)
to model memories usingsetto write into a memory location andget to read
the value of a memory location. The data memory, the instruction memory,
and the register file in machine models MB and IE are modeled using alists.

In UCLID, memories are modeled using restricted lambda expressions,
which are essentially functions that map addresses to data values. The lambda
expressions are restricted so that they only take integers as arguments and
there is no way to express recursive definitions. A read from memory is an
application of the lambda expression corresponding to the memory to the ad-
dress, and a memory update results in a new lambda expressioncorresponding
to the new memory.

Lambda expressions in UCLID are mapped in ACL2 to evaluator func-
tions and an “environment” variable as follows. Memory is modeled as a list
st of elements containing an address, data, and a number of other fields that
we call the condition fields. The condition fields together are used to define
the memory update condition and memory is updated only if thememory
update condition holds. During every step of the machine, the list st is up-
dated with the address, the data value, and the condition fields. The evaluator
function is used to read memory. It takes an address and the list st as input
and returns the data corresponding to the address, which is defined to be the
first write to the address where the update condition holds. If no such write
exists, the initial value is returned.

In order to illustrate how the evaluator function can be usedto model mem-
ories, we give a simple example. Consider a register file,rf, in a machine
that is updated every time the signalrfupdate is true. First, we define the
“environment” as the listst, whose every element is a list that has the fields
addr, data, andrfupdate corresponding with the register file address,
the data to be written to the register file, and the signalrfupdate, respec-
tively. The listst is updated every time the machine model is stepped. The
evaluator function for the register filerf is defined as shown in Figure 8.

In Figure 8,car andcdr return the first element of a list, and the rest of a
list, respectively. The functionsaddr-st, data-st, andrfupdate-st
are functions that return the fieldsaddr, data, andrfupdate of an ele-
ment ofst, respectively. Theevalrf function returns the data field of the
first element inst, whose addr field is equal toaddr and whoserfupdate
field is true. If no such element is found,evalrf returns the initial value
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(defun evalrf (addr st)
(if (endp st)

(rf0 addr)
(if (and (rfupdate-st (car st))

(equal (addr-st (car st)) addr))
(data-st (car st))

(evalrf addr (cdr st)))))

Figure 8. ACL2 code of the evaluator function for the register file example.

given by an Uninterpreted Function (rf0). Notice thatst is like the regis-
ter file, except that every element has an additional fieldrfupdate; also,
evalrf is the read function for the register file.

For the proof that IM refines IE, the refinement map maps all thestates in
IM that are not memories to corresponding states in IE. Sincememories in
IM are modeled using evaluators, the refinement map maps memories in IM
to alists in IE by starting with an empty alist and updating itusing the address
and data fields of every element in the IM memory with atrue memory
update condition. IM and IE are very similar in structure anddo not stutter
with respect to each other. Therefore, we actually prove that IM and IE are
bisimilar.

To prove that MB refines MM we prove that MB and MM are bisimilarby
defining a refinement map from MM to MB that is similar to the refinement
map from IM to IE.

5.3. REASONING ABOUT BIT-LEVEL INTERFACE DESIGNS

In this section we describe the part of the refinement proof that relates the bit-
level pipelined machine model MM to ME, a pipelined machine operating on
integers. This proof is carried out exclusively using ACL2 and is parameter-
ized with respect to the word size,i.e., our proof remains the same regardless
of the word size of the machines involved. Since MM and ME do not stutter
with respect to each other, we prove that the two systems are bisimilar.

The refinement map from MM to ME converts unsigned and signed bit-
vectors in MM to naturals and integers, respectively. For the proof, we devel-
oped a bit-vector library in ACL2. For example, we defined anddeveloped
a theory of rules for functions to convert bit-vectors to numbers and vice-
versa. The functions includen-ubv (which converts naturals to unsigned bit-
vectors),ubv-n (which converts unsigned bit-vectors to naturals),i-sbv(which
converts integers to signed bit-vectors), andsbv-i (which converts signed bit-
vectors to integers). The library required about four days for an expert ACL2
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user to develop. For the refinement proof, we required theorems such as the
following.

1. natp(a)∧natp(n)∧ len(n-ubv(a)) ≤ n

⇒ ubv-n(extend-n(n-ubv(a),n)) = a

2. integerp(a)∧natp(n)∧ len(i-sbv(a)) ≤ n

⇒ sbv-i(sign-extend-n(i-sbv(a),n)) = a

3. bvp(x)∧natp(a)∧ (a < len(x)) ⇒ bitp(nth(a,x))

4. bvp(a)∧bvp(b)∧ (len(a) = len(b))

⇒ (ubv-n(a) = ubv-n(b)) ⇔ (a = b)

5. bvp(a)∧bvp(b)∧ (len(a) = len(b))

⇒ (sbv-i(a) = sbv-i(b)) ⇔ (a = b)

In the above theorems,len(x) is the length of the bit-vectorx, natp(a)
denotes thata is a natural number,integerp(a) denotes thata is an integer,
bvp(a) denotes thata is a bit-vector,bitp(a) denotes thata is a bit,nth(n,x)
corresponds to thenth element of listx, extend-n(b,n) extends the unsigned
bit-vectorb to a length ofn, andsign-extend-n(b,n) sign extends the signed
bit-vector b to a length ofn. Theorems 1, 2, 4, and 5 are used to reason
about the refinement map and Theorem 3 is useful for reasoningabout the
instruction decoder, which generates control signals fromthe bit-vector corre-
sponding to instructions. The theorems described above were essential for our
proof, but our proofs required many other theorems all of which are included
in our bit-vector library. Also, the bit-vector library wasdeveloped based on
what was required for the refinement proof, and can be easily extended with
more bit-vector operations and rules.

5.4. POLLUTION AND PURIFICATION OF MODELS

Due to the limited expressiveness of the UCLID specificationlanguage, to
define refinement maps, we have to modify (pollute) the machine models by
adding external inputs, logic, and history variables (variables that record pre-
vious values of state elements). That theorems about polluted models imply
something about the original models requires proof.

Refinement maps are used to map implementation states to specification
states. We use the commitment refinement map for this purpose(Manolios,
2000; Manolios and Srinivasan, 2004a), where a pipelined machine state is
related to an instruction set architecture state by invalidating all the partially
executed instructions in the pipeline and rolling back the programmer-visible
components so that they correspond with the last committed instruction. To
define the refinement map, two functions are required. One is the commit-
ment function that commits the pipelined machine state and the other is the

main.tex; 23/08/2006; 17:43; p.18



19

projection function that projects the programmer visible components of the
pipelined machine state to the ISA state.

The pipelined machine model can essentially be thought of asa function
that describes the operational semantics of the pipelined machine. Both the
pipelined machine model and the commitment function are twodifferent
functions that modify the state of the pipelined machine. Using the UCLID
specification language, it is not possible to define two different functions,
both of which modify the same state elements. Therefore, to implement the
commitment function, we modify the pipelined machine modelby adding
an external inputcommit impl, history variables—variables that record the
history of some of the state elements—and some extra logic resulting in what
we call the polluted pipelined machine model. When the inputcommit impl
is false, the polluted pipelined machine model corresponds to the opera-
tional semantics of the pipelined machine, and whencommit impl is true, the
polluted pipelined machine model corresponds to the commitment function.
Similarly, we modify the ISA model by adding an inputproject impl and
some control logic to implement the projection function.

It is not clear that proving the polluted pipelined machine model is correct
implies that the original pipelined machine model is correct. It is possible
that an external input or a history variable modifies the normal operation of
the pipelined machine and hides a bug that exists in the original machine.
For example, consider a buggy variant of the seven-stage model that does not
stall the program counter when the pipeline is stalled. To define the commit-
ment refinement map for the seven-stage pipelined machine model, we use
a history variablestallp that records the value of the stall signal from the
previous step of the machine. We abstract and pollute the pipelined machine
model so that we can define the commitment refinement map. In the process
of pollution, we stall the program counter if the next value of stallp is true.
Now, we can prove using UCLID that the polluted pipelined machine model
refines the ISA model. But, in fact, this does not tell us anything about the
original pipelined machine model because the polluted model uses thestallp
history variable in the program counter logic, whereas the original model has
no history variables.

Therefore, we check in ACL2 that if the external inputs in a polluted
pipelined machine model are set to values corresponding to the operational
semantics of the pipelined machine, then the unpolluted executable model
(ME) refines the polluted executable model (MEP). Similarly, for the purifi-
cation step, we check that the polluted executable ISA model(IEP) refines
the purified ISA model (IE). ME and MEP do not stutter with respect to each
other and neither do IE and IEP. Therefore, we can prove a bisimulation result.
The bug in the program counter logic of the buggy variant of the seven-stage
model will be caught using our method when we try to prove thatthe original
pipelined machine model refines the polluted model.
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5.5. RELATING EXECUTABLE MODELS AND TERM-LEVEL MODELS

In this section, we give an overview of the proof that MEP refines IEP. This
refinement step deals with the pipeline and uses UCLID. However, in order to
use UCLID, we have to show a relationship between executablemachines and
term-level machines. The difficulty is in mechanically verifying the various
abstractions employed, which are used to deal with memories, branch predic-
tion, instruction classes, etc. Below we describe two abstraction techniques
that are very hard to mechanically verify. Both these abstraction techniques–
one for memories and the other for branch predictors– are widely used in
term-level modeling.

Memories in UCLID can be modeled using lambda expressions and such
memories can be matched with ACL2 memories as described in Section 5.2.
However, in cases where reads and writes are in order—e.g., this is the case
for the data memory of our machine—memory can be modeled as aninteger
variable using two UFs, one to read and one to write. This modeling style
leads to faster verification times than the approach using lambdas (Lahiri
et al., 2002). However, it is much more difficult to use if the abstraction
has to be mechanically verified. To mechanically verify thisabstraction, we
have to encode the memory state as an integer and define the read and write
operations for this encoding of the memory, in order to obtain our executable
model. This is possible using Gödel encoding scheme, as shown below.

((a1 . d1) (a2 . d2) ... (an . dn)) →

p
p

a1+1
3 p

a2+1
4 ...pan+1

n+2
1 p

p
d1+1
3 p

d2+1
4 ...pdn+1

n+2
2

In the above equation, the data memory is an alist whose address elements
area1, a2, . . . ,an and whose data elements ared1, d2, . . . ,dn. The ith prime
is denotedpi . Any finite memory can now be represented as a single inte-
ger, but there are several problems with the above approach.For example,
the theorem proving effort required to show that this schemeworks is non-
trivial, e.g., it requires that we prove the prime decomposition theorem.In
addition, the above encoding scheme cannot be used for infinite memories,
as there is no bijection between the set of infinite memories and the natural
numbers. Therefore, we find that the time savings attained byabstracting the
data memory with an integer are not worth the added theorem proving effort
required to justify this abstraction.

Branch predictors in UCLID can also be modeled using an integer variable
that represents the state of the branch predictor and three UFs that take the
branch predictor state as input and return the next state of the branch pre-
dictor, a prediction for the branch direction, and a prediction for the branch
target (Lahiri et al., 2002). To show that the above correctly abstracts an
executable implementation, for example a Branch Target Buffer (BTB), we
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are required to model the environment of the BTB using an integer. However,
since the next state of the BTB depends on the entire processor state, we
have to encode the state of the processor with one integer. Wecan do this
using Gödel encoding schemes, as described above, provided the memories
are finite, but the effort required would be considerable. Therefore, we use an
alternate abstraction, where we simply model the branch predictor choices
using non-determinism. Justifying this abstraction is straightforward, thus
the ACL2 verification effort is drastically simplified. In addition, the UCLID
verification times are comparable to the verification times required by the
standard approach.

A final abstraction that we briefly mention concerns the instruction set.
The UCLID models only have one instruction per instruction class, whereas
the executable models have the full instruction set. This turned out to be
surprisingly easy to deal with because the UCLID models abstract the instruc-
tions by using uninterpreted functions (UFs) that take the opcode as argument
and collapse the instructions corresponding to various values of the opcode
to one instruction. When we instantiate the UCLID model, we replace the
uninterpreted functions that take the opcode as input with functions that check
the value of the opcode and perform the appropriate operation. For example,
the UCLID model only has one ALU operation, but the executable model
first checks the opcode to determine whether it is an add or a subtract etc.,
and then performs the appropriate operation.

Executable models have other advantages. We can use them to debug
designs more easily. For example, using UCLID counterexamples one can
determine the sequence of instructions that leads to a bug, but it might be
more difficult to determine what the actual bug is. Using our executable mod-
els, we can use test inputs that simulate the same sequence ofinstructions to
track the bug in the design. Note that counterexamples generated by UCLID
correspond to counterexamples for the refinement relation between ACL2
models MUA and IUA, and for the refinement relation between ACL2 models
MA and IA.

Executable models also allow proofs of properties that might not be the-
orems in the abstract models. In addition, while the refinement proof estab-
lished that the pipelined machine model (MB) behaves like the instruction set
architecture model (IE), how do we know that the instructionset architecture
model (IE) is correct? Executable models allows us to run test programs.
In our case, while executing a simple program, we found threebugs in the
instruction set architecture model (IE), which are described below.

− Instructions are 32 bits with the least significant bit and the most signif-
icant bit corresponding to the 0th bit and the 31st bit of the instruction,
respectively. The bug was in the functions that implement the instruction
decoder, which were reading the 32-bit instruction in the reverse order.
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For example, if a decoder function was supposed to read the 5th bit, it
was instead reading the 26th bit (31 - 5) of the instruction.

− The register file is updated by both ALU and load instructions. A de-
coder function that takes the instruction as input is used todetermine if
that instruction updates the register file. The function wasbuggy in that
it did not signal that the register file should be updated if the input was a
load instruction.

− The processor has 4 flags that are used to store various properties of
the result obtained from the previous instruction. For example, if the
previous instruction was an ALU instruction whose result was zero, then
the Z flag is set. Theupdatenzcvfunction that takes the result and the
previous value of the flags is used to update the processor flags. The
updatenzcvwas buggy in that the two input arguments to the function
were swapped.

Since the decoder functions and theupdatenzcvfunction are abstracted
using uninterpreted functions (UFs) in the term-level models, none of the
above bugs could have been caught during the verification of the term-level
models using UCLID.

The bugs described above bring up an important aspect of automatic term-
level verification using decision procedures such as UCLID.Recall that in
order to use such methods, one must abstract away the ALU, thedecoding
logic, etc. using UFs shared by both the MA and ISA. While these abstrac-
tions drastically reduce the complexity of the verificationproblem, they also
lead to ISA models that are structurally similar to MA models. MA models
tend to have next state relations for each of the components of the MA ma-
chine and this way of specifying the MA model makes sense because they
are inherently parallel machines whose every component is continuously up-
dated. ISA models defined in UCLID tend to have the same structure as their
corresponding MA models. This is what allows them to share the same UFs as
their MA models, but it also is what makes it easy to mask the kinds of errors
reported above. Notice, however, that ISA models are inherently sequential
and, conceptually, the simplest way to define them is to just have a big case
statement that checks the type of the next instruction and executes code cor-
responding to the semantics of this instruction. If we defineISA models in
this way, we have a much better chance of catching errors, as the semantic
gap between the MA and ISA models is now larger. Using our approach, we
can in fact define such an ISA machine and can prove that it is refined by IE.
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5.6. ABSTRACT MODELS

MA and IA are term-level models, and we are finally at the pointwhere
we can invoke UCLID, which is optimized to automatically andefficiently
reason about such models. MA, IA, and the refinement theorem that relates
these models are translated to the UCLID specification language. The result-
ing UCLID models are MU and IU. UCLID proves the refinement theorem
and our (trusted) translator returns an equivalent ACL2 theorem, now about
the models generated by our translator, IUA and MUA. Using functional
instantiation, as outlined previously, ACL2 is able to complete the proof
automatically.

6. Verification Statistics

The verification times for the proofs and the expert user effort required in
terms of man-weeks for each intermediate step in the refinement proof is
shown in Table I. In the “Proof Step” column in the table, A→ B means
that system A refines system B. For all the proof steps, exceptMU → IU,
we used the ACL2 theorem proving system (version 2.9). For MU→ IU, we
used the UCLID decision procedure (version 1.0) coupled with the siege SAT
solver (Ryan, 2004) (variant 4). All the experiments were run on a 3.06 GHz
Intel Xeon machine, with a cache size of 512 KB. The user effort required
for the proof steps is an estimate of the effort that would be required for an
expert user of both the UCLID tool and the ACL2 theorem proving system to
apply this verification approach to verify another pipelined machine design
of similar complexity. The times reported above do not include the time re-
quired to learn UCLID and ACL2 and do not include the time required for
the integration, which took several months.

7. Reasoning about Programs

An advantage of executable models over abstract models is that we are able
to reason about programs running on pipelined machines and even about
compilers that generate code for pipelined machines. We describe a simple
example in ACL2 that demonstrates our ability to use the executability of
our pipelined machine model and the refinement theorem that relates the
pipelined machine to its instruction set architecture to efficiently reason about
programs running on the pipelined machine model, somethingthat signifi-
cantly extends the kind of analysis one can perform when restricted to using
term-level models.

The program that we consider is one that solves the Knapsack problem, a
commonly arising optimization problem. We have a knapsack with capacity
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Table I. Verification times and expert user ef-
fort required for the refinement proofs.

Proof Step Proof Time User Effort

(secs) (man-weeks)

MU → IU 84 3

MA → IA 3 2

MEP→ IEP 5 2

IEP→ IM 4 1

IM → IE 90 1

ME → MEP 2 2

MM → ME 233 3

MB → MM 12 1

K(0) := 0
for c = 1 to T

max := 0
for j = 1 to n
if C(j) ≤ c
x := K(c-C(j)) + V(j)
if x > max
max := x

K(c) := max
return K(T)

Figure 9. Pseudo code for solving the Knapsack problem.

T and a set ofn items, each of which has a cost,C(·), and a value,V(·),
associated with it. The value of the knapsack is the sum of thevalues of the
items in it, where we allow multiple instances of the same item. Similarly,
the cost of the knapsack is the sum of the costs of the items in it. What is the
maximum value our knapsack can attain without exceeding itscapacity? A
dynamic programming solution to the knapsack problem, in pseudo-code, is
shown in Figure 9.

The assembly-level program and the machine code program of the Knap-
sack problem for the bit-level interface pipelined machinemodel MB is shown
in Table II. To show that the program works correctly, we are required to
prove the property thatK(T) is the maximum value achievable with a knap-
sack of capacityT.

Using ACL2, we can prove that the machine code for MB satisfiesthe cor-
rectness property of the Knapsack solution. As we have seen,MB is a com-
plex bit-level pipelined machine with branch prediction, forwarding logic,

main.tex; 23/08/2006; 17:43; p.24



25

Table II. Assembly-level program and machine code for the Knapsack problem.

Assembly Code Machine Code Assembly Code (Cont.) Machine Code (Cont.)

storei r1 0 3886092288 add r11 r11 r13 3768299533

movi r6 0 3815792640 movi r0 20 3815768084

addi r6 r6 1 3800457217 sub r9 r11 r7 3780874247

movi r10 0 3815809024 bn r0 1249902592

movi r7 0 3815796736 mov r7 r11 3787157515

add r14 r3 r10 3767787530 movi r0 5 3815768069

add r15 r4 r10 3767857162 sub r11 r5 r10 3780489226

addi r10 r10 1 3800735745 bnz r0 444596224

load r12 r14 3854483470 add r11 r1 r6 3767644166

load r13 r15 3854553103 store r11 r7 3853234183

movi r0 20 3815768084 movi r0 2 3815768066

sub r11 r6 r12 3780554764 sub r11 r2 r6 3780292614

bn r0 1249902592 bnz r0 444596224

add r11 r11 r1 3768299521 add r11 r1 r2 3767644162

load r11 r11 3854282763 load r9 r11 3854274571

stalls etc. This makes it difficult to reason about even simple programs execut-
ing on MB. It is much simpler to show the correctness of programs running on
IE, the high-level non-pipelined model. Our theory of refinement allows us to
do exactly this, but notice that the preservation of liveness plays a crucial role,
e.g., were we to use a notion of refinement that did not preserve liveness, then
a proof that the program runs correctly on IE does not rule outthe possibility
of livelock on MB.

Having reduced the problem of reasoning about code running on MB to
code running on IE, the final concern is how to reason about code running
on IE. To prove partial correctness, at the very least we are required to define
a sufficient collection of program invariants. In fact, a method that requires
only this is due to Moore (Moore, 2003), who shows how to use ACL2 to
automatically generate the verification conditions required to show that the
program invariants imply partial correctness. There are also extensions that
allows us to prove total correctness results (Matthews and Vroon, 2004).

8. Related Work

Previous work on pipelined machine verification can be roughly classified
into automatic approaches based on decision procedures andapproaches that
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use deductive reasoning. An early work on the use of automatic decision pro-
cedures was by Burch and Dill who showed how to automaticallycompute
the abstraction function using flushing (Burch and Dill, 1994) and gave a
decision procedure for the logic of uninterpreted functions with equality and
boolean connectives. Another, more efficient decision procedure was given
in (Bryant et al., 1999) that exploits positive equality. The work was further
extended in (Bryant et al., 2002), where a decision procedure for the CLU
logic that exploits optimized encoding schemes (Seshia et al., 2003b) is given.
The decision procedure is implemented in UCLID, which has been used to
verify out-of-order microprocessors (Lahiri et al., 2002)and which we use
to verify the models presented in this paper. Recently, there is interest in
abstracting bit-level designs to UCLID specifications, butthese methods only
work on very simple examples and have some severe limitations, e.g., they
do not handle memories (Andraus and Sakallah, 2004). We alsoexpect that
recent advances in decision procedures (Ganzinger et al., 2004; de Moura,
2005) will drastically reduce the verification times of term-level pipelined
machine models.

An early, pioneering body of work on the use of theorem proving for the
verification of microprocessors is the CLI stack work (Hunt,1989; Hunt,
1994; Bevier et al., 1989). Another notable use of theorem proving in the
context of hardware verification used ACL2 to reason about Motorola’s CAP
digital signal processor (Brock and Hunt, 1997). Sawada andHunt have used
the ACL2 theorem proving system to verify the FM9801 Microarchitecture.
Their work is based on computing an intermediate abstraction of the pipelined
machine state called MAETT that keeps track of completed andin-flight
instructions. Using the MAETT abstraction, they check thateach of the in-
structions in the pipeline executes correctly. Hosabettu et al., (Hosabettu et al.,
1998; Hosabettu et al., 1999) use the PVS theorem prover to verify pipelined
processors. Their work is based on the use of completion functions that speci-
fies the effect of completing an instruction in the pipeline on the programmer
visible components. The abstraction function is computed by using a com-
position of completion functions, one for every partially executed instruction
in the pipeline. Arons and Pnueli (Arons and Pnueli, 2000) have also used
the PVS theorem prover to verify a machine with speculative instruction
execution. In (Kroning, 2001), data consistency and liveness of pipelined
machine models is verified using the PVS theorem prover. The models are
synthesizable and are described very close to the gate-level.

The notion of correctness for pipelined machines that we usewas first
proposed in (Manolios, 2000), and is based on WEB-refinement(Manolios,
2001). The first proofs of correctness for pipelined machines based on WEB-
refinement were carried out using the ACL2 theorem proving system (Kauf-
mann et al., 2000b; Kaufmann and Moore, 2004). The advantageof using
a theory of refinement over using the Burch and Dill notion of correctness,

main.tex; 23/08/2006; 17:43; p.26



27

even if augmented by a “liveness” criterion, is that deadlock may avoid de-
tection with the Burch and Dill approach (Manolios, 2000), whereas it fol-
lows directly from the WEB-refinement approach that deadlock (or any other
liveness problem) is ruled out. In (Manolios and Srinivasan, 2004a), it is
shown how to automatically verify safetyand livenessproperties of pipelined
machines using WEB-refinement.

9. Conclusions and Future Work

We have shown how to verify executable pipelined machine models with bit-
level interfaces using our integration of the UCLID decision procedure with
the ACL2 theorem proving system. This has allowed us to overcome the ma-
jor limitation of approaches based on decision procedures,namely that they
only work for abstract term-level models and do not provide afirm connection
with RTL models. Theorem proving approaches can reason about RTL-level
designs, but tend to require heroic human effort. With our approach, the proof
required only minutes of CPU time and the human theorem proving effort
required was modest. Our proofs are based on WEB-refinement,a theory
of refinement that is compositional and preserves both safety and liveness
properties. We also demonstrated that we can decompose the proof that code
running on the pipelined machine is correct by first showing that the pipelined
machine refines the instruction set architecture and then showing that the soft-
ware running on the instruction set architecture is correct. For future work,
we plan to apply this approach to a wider class of pipelined machines and to
determine what other domains can benefit from our work.
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