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1 Introduction

In this chapter, we show how to use the Bit-level Analysis Tool (BAT) [21, 22, 20, 4]

for hardware verification. The BAT system has been used in the analysis of systems

ranging from cryptographic hash functions to machine code to biological systems

to large component-based software systems [24, 13, 19], but here we focus on one

application: verification of pipelined hardware systems. This chapter brings together

results from previous work in a self-contained way, and is intended as a starting

point for someone who is interested in using automatic formal verification tools to

prove the correctness of hardware or low-level software. The structure and examples

in this chapter are based on previous work by the authors that showed how to use

the ACL2 theorem proving system [8] to model and verify pipelined machines [12].

Hardware systems are ubiquitous and are an integral part of safety-critical and

security-critical systems. Ensuring the correct functioning of hardware is therefore

of paramount importance as failure of deployed systems can lead to loss of life

and treasure. A well known example is the bug that was found in the floating point

division (FDIV) unit of the Intel Pentium processor and that led to a 475 million
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dollar write-off by Intel. Estimates show that a similar bug in the current generation

of Intel processors would cost the processor company about 12 billion dollars [1].

One of the key optimizations used in hardware systems is pipelining. Pipelining

is used extensively in hardware designs, including both mainstream and embedded

microprocessor designs, multi-core systems, cache coherence protocols, memory

interfaces, etc. Therefore, the verification of pipelines is an important, ubiquitous

problem in hardware verification and has received a lot of attention from the research

community.

Pipelines are essentially assembly lines. Just like it is much more efficient to

build cars using an assembly line, it is also much more efficient to break up the

execution of processor instructions into well-defined stages, e.g., fetch, decode, and

execute. In this way, at any point in time there can be multiple instructions being ex-

ecuted simultaneously, in parallel and in various stages of completion. Furthermore,

in order to extract maximum performance from pipelines, synchronization between

the various instructions being executed in parallel is required. This synchronization

between instructions, memories, and register files is provided by complex pipeline

controllers. This added complexity makes the design and verification of pipelines a

challenging problem.

We use the BAT system [22] for pipelined machine verification for several rea-

sons. The BAT specification language [21] is designed as a synthesizable HDL with

formal semantics and can therefore be used to construct bit-level pipelined machine

models amenable to formal analysis. The decision procedure incorporated in BAT

includes a memory abstraction algorithm and memory rewriting techniques and can

therefore deal with verification problems that involve large memories [20]. Also, the

BAT decision procedure uses an efficient circuit to CNF compiler, which drastically

improves efficiency [23, 4].

The notion of correctness that we use for pipelined machines is based on Well-

Founded Equivalence Bisimulation (WEB) refinement [10, 11]. There are several

attractive properties of refinement. The instruction set architecture (ISA) is used as

the specification. Both safety and liveness are accounted for. The refinement map (a

function used to relate states of the pipelined machine with states of its ISA) is a

parameter of the framework and can therefore be studied and optimized to improve

efficiency [14, 17, 16, 7]. Refinement is a compositional notion, a property that can

be exploited to deal with scalability issues [15].

The rest of the chapter is organized as follows. Section 2 describes the BAT sys-

tem, including the BAT specification language and the BAT decision procedure. Sec-

tion 3 describes a 3-stage pipelined machine example and its ISA, and also shows

how to model these machines using BAT. In section 4, we provide an overview of

the notion of correctness we use, which is based on refinement. Section 5 shows how

to verify pipelines with the BAT system, using the example of the 3-stage pipeline.

Section 6 provides an overview of techniques to cope with the efficiency and scala-

bility issues that arise when reasoning about more complex pipelined systems. Con-

clusions are given in Section 7.
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2 Bit-Level Analysis Tool

The Bit-level Analysis Tool (BAT) is a system for solving verification problems aris-

ing from hardware, software, and security. BAT is designed to be used as a bounded

model checker and k-induction engine for Register Transfer Level (RTL) models. At

the core of the system is a decision procedure for quantifier-free formulas over the

extensional theory of fixed-size bit-vectors and fixed-size bit-vector arrays (mem-

ories). BAT also incorporates a specification language that can be used to model

hardware designs at the word-level and to express linear temporal logic (LTL) prop-

erties. In this section, we describe the BAT specification language and provide a

brief overview of the BAT decision procedure.

2.1 BAT Specification Language

The BAT specification language is strongly typed and includes a type inference

algorithm. BAT takes as input a machine description and LTL specification, and tries

to either find a counterexample requiring no more steps than a user provided upper

bound, or tries to prove no such counterexample exists. While BAT accepts various

file formats, a commonly used format for the machine specification requires the

following four sections: :vars, :init, :trans, and :spec. These correspond

to the declaration of the variables making up the machine state, a Boolean formula

describing valid initial states, a Boolean formula describing the transition relation,

and an LTL formula giving the desired formula, respectively. In this section, we

describe the main features of the language. For a complete description, see the BAT

Web page [21].

2.1.1 Data Types

The BAT language is strongly typed. Variables are either bit-vectors or memories.

The :vars section is a list of variable declarations that specify the types of each

variable. Each variable declaration is either: (1) A symbol corresponding to the vari-

able name, in which case the variable is a bit-vector of one bit (e.g., x). (2) A list

with 2 elements, a variable name and a positive integer, in which case the variable

is a bit-vector of the given number of bits (e.g., (x 4) is a bit-vector of 4 bits). (3)

A list with 3 elements, a variable name and two positive integers, specifying that

the variable is a memory with the given word size and number of words (e.g., (x 8

4) is a memory with 8 4-bit words).

A :vars section then looks like this: (:vars (x 2) y (z 8 16)). In

addition to variables, there are bit-vector and integer constants. Bit-vectors can be

given in binary, hex, or octal. For example, numbers in binary start with 0b and are

followed by an arbitrary sequence of 0s and 1s.



4 Panagiotis Manolios and Sudarshan K. Srinivasan

Integers are represented by signed bit-vectors. The size of the bit-vector is deter-

mined by BAT’s type-inferencing mechanism. The appropriate size is determined

by the context in which the integer is used. For example, if x is a 4-bit bit-vector,

then if we bitwise-and it with 3, it is written as (and x 3). Then in this context,

3 is represented by the bit-vector 0b0011, since bit-vectors that are bitwise-anded

together must be of the same type. The only restriction in this case is that the integer

must be representable in signed binary notation (2’s compliment) in the number of

bits dictated by the context.

2.1.2 Primitives

BAT supports primitives for Boolean, arithmetic, and memory operations. All the

basic bitwise Boolean functions are provided. The functions and, or, and xor

all take an arbitrary number of arguments and perform the appropriate operations.

In addition, -> (implication), and <-> (iff) take exactly two arguments. The not

function takes exactly one argument. All of these functions take bit-vectors of the

same size, and return a bit-vector of that size.

Arithmetic operations include =, <, >, <= (less than or equal to), >= (greater than

or equal to), add, sub, inc, and dec. BAT contains bit-vector related functions

as well. These include different kind of shift and rotate operations, concatenation,

and (signed) extension. For example, the cat function concatenates bit-vectors,

returning a bit-vector with size equal to the sum of the inputs to the cat function.

The most significant bits are to the left so the earlier arguments to the cat formula

are more significant than the later arguments.

Memories have to be treated with care because the obvious translation that con-

verts formulas involving memories to propositional logic leads to an exponential

blow-up. The BAT system introduced a decision procedure for memories that leads

to greatly reduced SAT problems [20]. The memory-specific BAT functions are get

and set. The get function takes a memory and a bit-vector and returns the word

of the memory addressed by the bit-vector. The set function takes a memory and

two bit-vectors. It returns a memory equivalent to the original memory except that

the word addressed by the first bit-vector is set to the value of the second bit-vector.

In both cases the size of the addresses must be equal to the ceiling of the log of

the number of words in the memory, and in the case of the set the size of the last

argument must be equal to the words size of the memory. Memories can be directly

compared for equality using = (type checking makes sure that they have the same

type, i.e., that they have the same word size and the same number of elements). In a

similar way, they type of an if can be a memory (type checking again checks that

the then and else cases have the same type).
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2.1.3 Expressions

BAT supports several constructs to build bit-vector and bit-vector memory expres-

sions. Conditional statements include if and cond. The if statement takes three

arguments: the first is the test and must be a 1-bit bit-vector. The second and third

arguments are the then and else clauses respectively and must be the same type.

Cond statements are convenient for expressing a series of if statements. For ex-

ample, a cond statement that returns -1 if x < y, 1 if x > y and 0 otherwise is

shown below:

(cond ((< x y) -1)

((> x y) 1)

(0b1 0))

BAT provides a way to return multiple values from an expression (this becomes

helpful in conjunction with user-defined functions). This is done simply by wrap-

ping a sequence of values in an mv form:

(mv (+ a b) (set m x y))

This returns both the sum and the result of the set form.

The most complex construct of the BAT language is local. In its simplest form,

it operates like a let* in Lisp. The following implementation of an ALU slice

demonstrates one of the more complex abilities of the local.

(local ((nb (xor bnegate b))

(res0 (and a nb))

(res1 (or a nb))

(((cout 1) (res2 1)) (fa a nb cin)))

(cat cout (mux-4 res0 res1 res2 1u op))))

Here, the last binding binds variables cout and res2 simultaneously. It declares

each to be 1 bit, and binds them to the 2-bit output of the fa function (a user-

defined function). This splits up the output of the fa function between cout and

res2 according to their sizes. Another feature of the local is illustrated by the

following.

(local ((c 2))

(((t0 (c 0))

(alu-slice (a 0) (b 0) bnegate bnegate op))

((t1 (c 1))

(alu-slice (a 1) (b 1) t0 bnegate op))

(zero (= c 0)))

(cat t1 c zero))

Here an extra argument appears at the beginning of the local. This is a list of

bit-vector variable declarations. The idea is that these variables can be bound by bits
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and pieces through the bindings. The first binding binds several values, as in the last

example. However, in this example the second value being bound is not a variable,

but a bit of the variable, c, declared in the first argument to the local. Likewise,

the other bit of c is set in the second binding. It is also possible to set a sequence of

bits in a similar way by giving 2 integers: ((c 0 1) (and a b)).

Finally, it is possible to set multiple values to the result of an mv form:

(local ((aa mm) (mv (inc a) (set m a b)))

(set mm c aa))

Here the types of the variables being bound are inferred from the type of the mv

form.

2.1.4 User Defined Functions

In addition to the :vars, :init, :trans, and :spec sections of a specification,

the user can define his or her own functions in the :functions section. Consider

the following example.

(:functions

(alu-output

(32)

((op 4) (val1 32) (val2 32))

(cond ((= op 0) (bits (+ val1 val2) 0 31))

((= op 1) (bits (- val1 val2) 0 31))

(1b1 (bits (and val1 val2) 0 31)))))

The functions section takes a list of function definitions. In this example, we de-

fine one function. A function definition starts with the function name. Our function

is called alu-output. The second element in the definition is the type. This is a

list containing 1 positive integer for a bit-vector function (alu-output, for ex-

ample returns a 32-bit bit-vector), 2 positive integers if the return type is a memory,

and a list of 1 integer lists and 2 integer lists if multiple values are returned. For

example ((1) (8 4)) would specify that the function returns a 1-bit bit-vector

and a memory with 8 4-bit words. The third part of a function definition is a list

of its arguments. This is just a list of variable definitions just like the ones in the

:vars section. In the case of alu-output, the inputs are op (a 4-bit bit-vector),

val1 (a 32-bit bit-vector), and val2 (another 32-bit bit-vector). The final element

of a function definition is the function body. Its return type must be compatible with

that of the function.
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2.1.5 Specification Formats

BAT takes specifications in one of three formats. The first is a machine description

for bounded model checking. A file in this format contains three items. The first is

the keyword “:machine” (without the quotes). The second is the machine description

(described below). The third is a natural number which represents the number of

steps you want BAT to check the property for.

The other two formats are very similar. They are used to check if a formula holds

for some values of the variables (existential), or if a formula holds for all values

of the variables (universal). These files contain 4 items. The first is either “:exists”

or “:forall” (without the quotes). The next is a list of variable declarations for the

formula. The third is a list of function definitions for use in the formula (this can be

() if there are no functions). The final argument is the formula itself, which is over

the variables and functions declared earlier in the file.

For examples of all these formats, see the BAT Web page [21].

2.1.6 Other Language Features

Since the BAT language is an s-expression based language implemented in Lisp, it

is easy to develop parametrized models. We routinely use Lisp functions that take

in a set of input parameters and generate BAT models.

BAT also has support for defining constants, LTL temporal operators, and a num-

ber of other primitive operators not discussed here. We point the reader to the BAT

Web page for detailed documentation on the BAT specification language [21].

2.2 BAT Decision Procedure

As we saw in the earlier section, a BAT specification includes a model and a property

about the model that BAT attempts to verify. The BAT decision procedure translates

the input specification to a Boolean formula in Conjunctive Normal Form (CNF).

The CNF formula is then checked using a SAT solver. In the common case, where

we are checking validity, if the CNF formula is found to be unsatisfiable, then this

corresponds to a formal proof that the user-provided property is valid. If the CNF

formula is satisfiable, then the satisfying assignment is used to construct a coun-

terexample for the input property.

The translation from the input specification to CNF is performed using four high-

level compilation steps and is based on a novel data structure for representing cir-

cuits known as the NICE dag, because it is a dag that contains Negations, Ites (If-

Then-Else operators), Conjunctions, and Equivalences [4]. In the first step, functions

are inlined, constants are propagated, and a range of other simplifications are per-

formed. The output of the first step is a NICE dag that also includes next operators,

memory variables, and memory operators. In the second step, the transition relation
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is unrolled for as many steps as specified by the specification. This eliminates the

next operators, resulting in a NICE dag with memory variables and memory op-

erators. In the third step, BAT uses its own decision procedure for the extensional

theory of arrays to reduce memories [20], which are then eliminated by replacing

memory variables and memory operators with Boolean circuits, resulting in a NICE

dag. In the fourth step, the NICE dag is translated to a SAT problem in CNF format.

2.2.1 Memory Abstraction

BAT incorporates an automatic, sound, and complete memory abstraction algo-

rithm [20]. The algorithm allows BAT to handle verification problems that involve

models with large memories, but with correctness properties that include only a

small number of memory references. The verification of pipelined microprocessor

models is an example of such verification problems.

The key idea of the abstraction algorithm is to reduce the size of a memory to a

size that is comparable to the number of unique accesses (both read and write) to

that memory. The insight here is that if in a correctness property, there are only 10

unique accesses to a memory with say 232 words, it is enough to reason about a re-

duced version of the memory whose resulting size is just larger than 10, to check the

property. Therefore, the original memory size can be drastically reduced. Note how-

ever that care has to taken when performing the reduction because a memory access

could be a symbolic reference, i.e., an access that could reference any one of a large

number of words in the memory. Another complication is that we allow memories to

be directly compared in any context, i.e., we have to support an extensional theory

of arrays.

The efficiency of memory abstraction depends on the size of the reduced mem-

ories, which in turn depends on the number of unique memory access. However,

because of nested memory operations, it is often hard to determine if two different

memory references correspond to the same symbolic reference. To improve the ef-

ficiency of the abstraction, BAT incorporates automated term-rewriting techniques

employing a number of rewrite rules that are used to simplify expressions with mem-

ory operators. The simplifications performed by rewriting help to identify equivalent

memory references thereby improving the efficiency of memory abstraction.

2.2.2 Efficient Translation To CNF

CNF generation can significantly affect SAT solving times. BAT introduced a new

linear-time CNF generation algorithm, and extensive experiments, have show that

our algorithm leads to faster SAT solving times and smaller CNF than existing ap-

proaches. Our CNF generation algorithm is based on NICE dags, which subsume

And-Inverter Graphs (AIGs) and are designed to provide better normal forms at lin-

ear complexity. The details are beyond the scope of this chapter, but are described

in detail elsewhere [4].
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3 ISA and Pipelined Machine Models

In this section, we show how to model a simple instruction set architecture and a

3-stage pipelined implementation of this instruction set architecture using the BAT

specification language. We start by defining ISA, a sequential machine that directly

implements the instruction set architecture. We then define MA, a 3-stage pipelined

implementation (the microarchitecture machine). As stated previously, the models

are based on our previous work on using ACL2 for hardware verification [12]. Those

models in turn are based on Sawada’s simple machine [27] and our subsequent re-

lated machines [9].

The instructions in the ISA have 4 components, including an opcode, a desti-

nation register, and two source registers. The pipelined MA machine is shown in

Figure 1. The functionality of the ISA is split into 3 stages so that each of the

stages can operate in parallel on different instructions. Registers, known as pipeline

latches, are used to separate the stages. The pipeline latches hold the intermediate

results generated in a stage. The MA machine has two pipeline latches, latch 1 and

latch 2 as shown in the figure. The three stages of our MA machine are fetch, set-up,

and write. In the fetch stage, an instruction is fetched from memory using the pro-

gram counter as the address, and is stored in latch 1. In the set-up stage, the source

operands are retrieved from the register file and stored in latch 2, along with the rest

of the instruction. In the write stage, the appropriate operation is performed by the

ALU (arithmetic and logic unit), and the result of the ALU operation is stored in the

destination register specified by the destination address of the instruction.

21
Memory LatchLatch

Register 
File 

A
L

U

PC

Fig. 1 Our simple 3-stage pipelined machine.

Consider a simple example, where the contents of the memory is as follows.

0

1

rb

ra

add

add rb

ra ra

ra

Inst
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The following traces are obtained when the two-line code segment is executed

on the ISA and MA machines. Note that we only show the values of the program

counter and the contents of registers ra and rb.

0

1

2

3

4

(0, (1,1))

(1, (1,2))

(2, (3,2))

5

(0, (1,1))

(1, (1,1))

(2, (1,1))

(2, (1,2))

(−, (1,2))

(−, (3,2))

Fetch

Set−up

Write

Fetch

Stall

Set−up

Write

Clock ISA MA Inst 0 Inst 1

The rows correspond to steps of the machines, e.g., row Clock 0 corresponds

to the initial state, Clock 1 to the next state, and so on. The ISA and MA columns

contain the relevant parts of the state of the machines: a pair consisting of the PC and

the register file (itself a pair consisting of registers ra and rb). The final two columns

indicate what stage the instructions are in (only applicable to the MA machine).

The PC in the initial state (in row Clock 0) of the ISA machine is 0. The values

of the registers ra and rb are 1. The next state of the ISA machine (row Clock 1) is

obtained after executing instruction “Inst 0”. In this state, the PC is incremented to

1, and the sum of the values stored in registers ra and rb (2) is computed and stored

in rb. In the second clock cycle, instruction “Inst 1” is executed. The PC is again

incremented to 2. The sum of the values stored in registers ra and rb (3) is computed

and stored in ra.

In the initial state of the MA machine, the PC is 0. We assume that the two latches

are initially empty. In the first clock cycle, “Inst 0” is fetched and the PC is incre-

mented. In the second clock cycle, “Inst 1” is fetched, the PC is incremented again,

and “Inst 0” proceeds to the set-up stage. In the third clock cycle, “Inst 0” com-

pletes and updates register rb with the correct value (as can be seen from the MA

column). However, during this cycle, “Inst 1” cannot proceed, as it requires the rb

value computed by “Inst 0”, and therefore is stalled and remains in the fetch stage.

In the next clock cycle, “Inst 1” moves to set-up, as it can obtain the the rb value it

requires from the register file, which has now been updated by “Inst 0”. In the fifth

clock cycle, “Inst 1” completes and updates register ra.

3.1 ISA Definition

We now consider how to define the ISA and MA machines using BAT. The first

machine we define is a 32-bit ISA i.e., the data path is 32 bits. The main function

is isa-step, a function that steps the ISA machine, i.e., it takes an ISA state and

returns the next ISA state. The definition of isa-step follows.
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(isa-step

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(local

((inst (get imem pc))

(op (opcode inst))

(rc (dest-c inst))

(ra (src-a inst))

(rb (src-b inst)))

(cond ((= op 0) (isa-add rc ra rb pc regs imem dmem))

;; REGS[rc] := REGS[ra] + REGS[rb]

((= op 1) (isa-sub rc ra rb pc regs imem dmem))

;; REGS[rc] := REGS[ra] - REGS[rb]

((= op 2) (isa-and rc ra rb pc regs imem dmem))

;; REGS[rc] := REGS[ra] and REGS[rb]

((= op 3) (isa-load rc ra pc regs imem dmem))

;; REGS[rc] := MEM[ra]

((= op 4) (isa-loadi rc ra pc regs imem dmem))

;; REGS[rc] := MEM[REGS[ra]]

((= op 5) (isa-store ra rb pc regs imem dmem))

;; MEM[REGS[ra]] := REGS[rb]

((= op 6) (isa-bez ra rb pc regs imem dmem))

;; REGS[ra]=0 -> pc:=pc+REGS[rb]

((= op 7) (isa-jump ra pc regs imem dmem))

;; pc:=REGS[ra]

(1b1 (isa-default pc regs imem dmem)))))

In the above function regs refers to the register file, imem is the instruc-

tion memory, and dmem is the data memory. The function fetches the instruction

from the instruction memory, which is a bit-vector. Then it uses decode func-

tions opcode, dest-c, src-a, and src-b to decode the instruction. The op-

code is then used to figure out what action to take. For example, in the case of an

add instruction, the next ISA state is (isa-add rc ra rb pc regs imem

dmem), where isa-add provides the semantics of add instructions. The definition

of isa-add is given below.

(isa-add

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((rc 32) (ra 32) (rb 32) (pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bits (+ pc 1) 0 31)

(add-rc ra rb rc regs)
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imem

dmem))

(add-rc (4294967296 32)

((ra 32) (rb 32) (rc 32) (regs 4294967296 32))

(set regs

rc

(bits (+ (get regs ra) (get regs rb)) 0 31)))

Notice that the program counter is incremented and the register file is updated by

setting the value of register rc to the sum of the values in registers ra and rb. This

happens in function add-rc.

The other ALU instructions are similarly defined. We now show how to define

the semantics of the rest of the instructions. The semantics of the load instructions

are shown next.

(isa-loadi

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((rc 32) (ra 32) (pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bits (+ pc 1) 0 31)

(load-rc (get regs ra) rc regs dmem)

imem

dmem))

(load-rc

(4294967296 32)

((ad 32) (rc 32) (regs 4294967296 32)

(dmem 4294967296 32))

(set regs rc (get dmem ad)))

(isa-load

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((rc 32) (ad 32) (pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bits (+ pc 1) 0 31)

(load-rc ad rc regs dmem)

imem

dmem))

The semantics of the store instruction is given by isa-store.
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(isa-store

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((ra 32) (rb 32) (pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bits (+ pc 1) 0 31)

regs

imem

(store ra rb regs dmem)))

(store

(4294967296 32)

((ra 32) (rb 32) (regs 4294967296 32)

(dmem 4294967296 32))

(set dmem (get regs ra) (get regs rb)))

Jump and branch instructions follow.

(isa-jump

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((ra 32) (pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bits (get regs ra) 0 31)

regs

imem

dmem))

(isa-bez ((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((ra 32) (rb 32) (pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bez ra rb regs pc)

regs

imem

dmem))

(bez

(32)

((ra 32) (rb 32) (regs 4294967296 32) (pc 32))

(cond ((= (get regs ra) 0)

(bits (+ pc (bits (get regs rb) 0 31)) 0 31))

(1b1 (bits (+ pc 1) 0 31))))
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No-ops are handled by isa-default.

(isa-default

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((pc 32) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv (bits (+ pc 1) 0 31)

regs

imem

dmem))

3.2 MA Definition

The MA machine is a pipelined machine with three stages that implements the in-

struction set architecture of the ISA machine. Therefore, the ISA machine can be

thought of as a specification of the MA machine. The MA machine contains a PC, a

register file, a memory, and two pipeline latches. The latches are used to implement

pipelining and stores intermediate results generated in each stage. The first latch

contains a flag which indicates if the latch is valid, an opcode, the target register, and

two source registers. The second latch contains a flag as before, an opcode, the tar-

get register, and the values of the two source registers. The definition of ma-step

follows.

(ma-step

((298) (4294967296 32)

(4294967296 100) (4294967296 32))

((ma 298) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(mv

(cat

(step-latch2 ma regs)

(step-latch1 ma imem)

(step-pc ma regs imem))

(step-regs ma regs dmem)

imem

(step-dmem ma dmem)))

The ma-step function works by calling functions that given one of the MA

components return the next state value of that component. Note that this is very
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different from isa-step, which calls functions, based on the type of the next

instruction, that return the complete next isa state.

Below, we show how the register file is updated. If latch2 is valid, then if we have

an ALU instruction, the output of the ALU is used to update register rc. Otherwise,

if we have a load instruction, then we update register rc with the appropriate word

from memory.

(step-regs

(4294967296 32)

((ma 298) (regs 4294967296 32) (dmem 4294967296 32))

(local

((validp (getvalidp2 ma))

(op (getop2 ma))

(rc (getrc2 ma))

(ra-val (getra-val2 ma))

(rb-val (getrb-val2 ma)))

(cond ((and validp (alu-opp op))

(set regs rc (alu-output op ra-val rb-val)))

((and validp (load-opp op))

(set regs rc (get dmem ra-val)))

(1b1 regs))))

(alu-opp

(1)

((op 4))

(or (= op 0) (= op 1) (= op 2)))

(load-opp

(1)

((op 4))

(or (= op 3) (= op 4)))

(alu-output

(32)

((op 4) (val1 32) (val2 32))

(cond ((= op 0) (bits (+ val1 val2) 0 31))

((= op 1) (bits (- val1 val2) 0 31))

(1b1 (bits (and val1 val2) 0 31))))

Next, we describe how latch 2 is updated. Latch 2 is invalidated if latch 1 will be

stalled or if latch 1 is not valid. Otherwise, we copy the opcode and rc fields from

latch1 and read the contents of registers rb and ra, except for load instructions. We

use a history variable pch2 to record the value of the PC value corresponding to the
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instruction in latch 2. A similar history variable, pch1, is used in latch 1 to record

the PC value corresponding to the instruction in latch 1. Note that history variables

do not affect the computation of the machine. They are used primarily to aid the

proof process.

(step-latch2

(133)

((ma 298) (regs 4294967296 32))

(local ((l1op (getop1 ma)))

(cond ((= (or (not (getvalidp1 ma))

(stall-l1p ma)) 1b1)

(cat (getpch2 ma)

(getrb-val2 ma)

(getra-val2 ma)

(getrc2 ma)

(getop2 ma)

1b0))

(1b1

(cat (getpch1 ma)

(get regs (getrb1 ma))

(cond ((= l1op 3) (getra1 ma))

(1b1 (get regs (getra1 ma))))

(getrc1 ma)

l1op

1b1)))))

Latch 1 is updated as follows. If it is stalled, it retains its previous contents. If

it is invalidated, its flag is set to false. Otherwise, the next instruction is fetched

from memory and stored in latch 1. The PC of the instruction is stored in pch1.

Latch 1 is stalled when the instruction in latch 1 requires a value computed by the

instruction in latch 2. Latch 1 is invalidated if it contains any branch instruction

(because the jump address cannot be determined yet) or if latch 2 contains a bez

instruction (again, the jump address cannot be determined for bez instructions until

the instruction has made its way through the pipeline, whereas the jump address for

jump instructions can be computed during the second stage of the machine).

(step-latch1 (133) ((ma 298) (imem 4294967296 100))

(local

((latch1 (getlatch1 ma))

(inst (get imem (getppc ma))))

(cond ((= (stall-l1p ma) 1b1) latch1)

((= (invalidate-l1p ma) 1b1)

(cat (getpch1 ma)

(getrb1 ma)

(getra1 ma)

(getrc1 ma)



Verifying Pipelines with BAT 17

(getop1 ma)

1b0))

(1b1

(cat (getppc ma)

(src-b inst)

(src-a inst)

(dest-c inst)

(opcode inst)

1b1)))))

The function stall-l1p determines when to stall latch 1.

(stall-l1p (1) ((ma 298))

(local

((l1validp (getvalidp1 ma))

(l1op (getop1 ma))

(l2op (getop2 ma))

(l2validp (getvalidp2 ma))

(l2rc (getrc2 ma))

(l1ra (getra1 ma))

(l1rb (getrb1 ma)))

(and l2validp l1validp (rc-activep l2op)

(or (= l1ra l2rc)

(and (uses-rbp l1op) (= l1rb l2rc))))))

(rc-activep (1) ((op 4))

(or (alu-opp op) (load-opp op)))

(uses-rbp (1) ((op 4))

(or (alu-opp op) (= op 5) (= op 6)))

The function invalidate-l1p determines when latch 1 should be invali-

dated.

(invalidate-l1p (1) ((ma 298))

(local

((l1validp (getvalidp1 ma))

(l1op (getop1 ma))

(l2op (getop2 ma))

(l2validp (getvalidp2 ma)))

(or (and l1validp (or (= l1op 6) (= l1op 7)))

(and l2validp (= l2op 6)))))
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Memory is updated only when we have a store instruction, in which case we

update the memory appropriately.

(step-dmem

(4294967296 32)

((ma 298) (dmem 4294967296 32))

(local

((l2validp (getvalidp2 ma))

(l2op (getop2 ma))

(l2ra-val (getra-val2 ma))

(l2rb-val (getrb-val2 ma)))

(cond ((= (and l2validp (= l2op 5)) 1b1)

(set dmem l2ra-val l2rb-val))

(1b1 dmem))))

Finally, the PC is updated as follows. If latch 1 stalls, then the PC is not modified.

Otherwise, if latch 1 is invalidated, then if this is due to a bez instruction in latch2,

the jump address can be now be determined, so the program counter is updated as

per the semantics of the bez instruction. Otherwise, if the invalidation is due to a

jump instruction in latch 1, the jump address can be computed and the program

counter is set to this address. The only other possibility is that the invalidation is

due to a bez instruction in latch 1; in this case the jump address has not yet been

determined, so the pc is not modified. Note, this simple machine does not have

a branch predictor. If the invalidate signal does not hold, then we increment the

program counter unless we are fetching a branch instruction.

(step-pc (32)

((ma 298) (regs 4294967296 32) (imem 4294967296 100))

(local

((pc (getppc ma))

(inst (get imem pc))

(op (opcode inst))

(l1op (getop1 ma))

(l2op (getop2 ma))

(l2validp (getvalidp2 ma))

(l2ra-val (getra-val2 ma))

(l2rb-val (getrb-val2 ma)))

(cond ((stall-l1p ma) pc)

((invalidate-l1p ma)

(cond

((and l2validp (= l2op 6))

(cond

((= l2ra-val 0)

(bits (alu-output 0 pc l2rb-val) 0 31))

(1b1 (bits (+ pc 1) 0 31))))

((= l1op 7)
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(bits (get regs (getra1 ma)) 0 31))

(1b1 pc)))

((or (= op 6) (= op 7)) pc)

(1b1 (bits (+ pc 1) 0 31)))))

4 Refinement

In the previous section, we saw how one can model a pipelined machine and its

instruction set architecture in BAT. We now discuss how to verify such machines.

Consider the partial traces of the ISA and MA machines on the simple two-line code

fragment from the previous section (add rb ra ra followed by add ra rb ra). We are

only showing the value of the program counter and the contents of registers ra and

rb.

(0, (1,1))

(1, (1,2))

(2, (3,2))

(0, (1,1))

(1, (1,1))

(2, (1,1))

(2, (1,2))

(−, (1,2))

(−, (3,2))

Commit

PC

(0, (1,1))

(0, (1,1))

(0, (1,1))

(1, (1,2))

(2, (3,2))

(1, (1,2))

Remove

Stutter

(0, (1,1))

(1, (1,2))

(2, (3,2))

ISA MA MA MA

Notice that the PC differs in the two traces and this occurs because the pipeline,

initially empty, is being filled and the PC points to the next instruction to fetch. If

the PC were to point to the next instruction to commit (i.e., the next instruction to

complete), then we would get the trace shown in column 3. Notice that in column

3, the PC does not change from 0 to 1 until Inst 0 is committed in which case the

next instruction to commit is Inst 1. We now have a trace that is the same as the ISA

trace except for stuttering; after removing the stuttering we have, in column 4, the

ISA trace.

We now formalize the above and start with the notion of a refinement map, a

function that maps MA states to ISA states. In the above example we mapped MA

states to ISA states by transforming the PC. Proving correctness amounts to relating

MA states with the ISA states they map to under the refinement map and proving a

WEB (Well-founded Equivalence Bisimulation). Proving a WEB guarantees that MA

states and related ISA states have related computations up to finite stuttering. This is

a strong notion of equivalence, e.g., a consequence is that the two machines satisfy

the same CTL∗ \X
2. This includes the class of next-time free safety and liveness

2 CTL∗is a branching-time temporal logic; CTL∗ \X is CTL∗ without the next-time operator X .
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(including fairness) properties, e.g., one such property is that the MAmachine cannot

deadlock (because the ISA machine cannot deadlock).

Why “up to finite stuttering”? Because we are comparing machines at differ-

ent levels of abstraction: the pipelined machine is a low-level implementation of

the high-level ISA specification. When comparing systems at different levels of ab-

straction, it is often the case that the low-level system requires several steps to match

a single step of the high-level system.

Why use a refinement map? Because there may be components in one system that

do not appear in the other, e.g., the MA machine has latches but the ISA machine

does not. In addition, data can be represented in different ways, e.g., a pipelined

machine might use binary numbers whereas its instruction set architecture might

use a decimal representation. Yet another reason is that components present in both

systems may have different behaviors, as is the case with the PC above. Notice that

the refinement map affects how MA and ISA states are related, not the behavior of

the MA machine. The theory of refinement we present is based on transition systems

(TSs). A TS, M , is a triple 〈S,99K,L〉, consisting of a set of states, S, a left-total

transition relation, 99K⊆ S2, and a labeling function L whose domain is S and where

L.s (we sometimes use an infix dot to denote function application) corresponds to

what is “visible” at state s. Clearly, the ISA and MA machines can be thought of as

transition systems (TS).

Our notion of refinement is based on the following definition of stuttering bisim-

ulation [2], where by fp(σ ,s) we mean that σ is a fullpath (infinite path) starting at s,

and by match(B,σ ,δ ) we mean that the fullpaths σ and δ are equivalent sequences

up to finite stuttering (repetition of states).

Definition 1. B ⊆ S× S is a stuttering bisimulation (STB) on TS M = 〈S,99K,L〉
iff B is an equivalence relation and for all s,w such that sBw:

(Stb1) L.s = L.w

(Stb2) 〈∀σ : fp(σ ,s) : 〈∃δ : fp(δ ,w) : match(B,σ ,δ )〉〉

Browne, Clarke, and Grumberg have shown that states that are stuttering bisimi-

lar satisfy the same next-time-free temporal logic formulas [2].

Lemma 1. Let B be an STB on M and let sBw. For any CTL∗ \ X formula f ,

M ,w |= f iff M ,s |= f .

We note that stuttering bisimulation differs from weak bisimulation [25] in that

weak bisimulation allows infinite stuttering. Stuttering is a common phenomenon

when comparing systems at different levels of abstraction, e.g., if the pipeline is

empty, MA will require several steps to complete an instruction, whereas ISA com-

pletes an instruction during every step. Distinguishing between infinite and finite

stuttering is important, because (among other things) we want to distinguish dead-

lock from stutter.

When we say that MA refines ISA, we mean that in the disjoint union (⊎) of the

two systems, there is an STB that relates every pair of states w, s such that w is an

MA state and r(w) = s.
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Definition 2. (STB Refinement) Let M = 〈S,99K,L〉, M ′ = 〈S′,99K
′,L′〉, and r :

S → S′. We say that M is a STB refinement of M ′ with respect to refinement map

r, written M ≈r M ′, if there exists a relation, B, such that 〈∀s ∈ S :: sBr.s〉 and B

is an STB on the TS 〈S⊎S′,99K ⊎ 99K
′,L 〉, where L .s = L′.s for s an S′ state and

L .s = L′(r.s) otherwise.

STB refinement is a generally applicable notion. However, since it is based

on bisimulation, it is often too strong a notion and in this case refinement based

on stuttering simulation should be used (see [10, 11]). The reader may be sur-

prised that STB refinement theorems can be proved in the context of pipelined

machine verification; after all, features such as branch prediction can lead to non-

deterministic pipelined machines, whereas the ISA is deterministic. While this is

true, the pipelined machine is related to the ISA via a refinement map that hides

the pipeline; when viewed in this way, the nondeterminism is masked and we can

prove that the two systems are stuttering bisimilar (with respect to the ISA visible

components).

A major shortcoming of the above formulation of refinement is that it requires

reasoning about infinite paths, something that is difficult to automate [26]. In [10],

WEB-refinement, an equivalent formulation is given that requires only local reason-

ing, involving only MA states, the ISA states they map to under the refinement map,

and their successor states.

Definition 3. B ⊆ S×S is a WEB on TS M = 〈S,99K,L〉 iff:
(1) B is an equivalence relation on S; and

(2) 〈∀s,w ∈ S :: sBw ⇒ L(s) = L(w)〉; and

(3) There exist functions erankl : S×S → N,erankt : S →W,

such that 〈W,⋖〉 is well-founded, and

〈∀s,u,w ∈ S :: sBw ∧ s 99K u ⇒

(a) 〈∃v :: w 99K v ∧ uBv〉 ∨

(b) (uBw ∧ erankt(u)⋖ erankt(s)) ∨

(c) 〈∃v :: w 99K v ∧ sBv ∧ erankl(v,u) < erankl(w,u)〉〉

We call a pair 〈rank,〈W,⋖〉〉 satisfying condition 3 in the above definition, a

well-founded witness. The third WEB condition guarantees that related states have

the same computations up to stuttering. If states s and w are in the same class and s

can transit to u, then one of the following holds.

1. The transition can be matched with no stutter, in which case, u is matched by a

step from w.

2. The transition can be matched but there is stutter on the left (from s), in which

case, u and w are in the same class and the rank function decreases (to guarantee

that w is forced to take a step eventually).

3. The transition can be matched but there is stutter on the right (from w), in which

case, there is some successor v of w in the same class as s and the rank function

decreases (to guarantee that u is eventually matched).
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To prove a relation is a WEB, note that reasoning about single steps of 99K suf-

fices. In addition we can often get by with a rank function of one argument.

Note that the notion of WEB refinement is independent of the refinement map

used. For example, we can use the standard flushing refinement map [3], where MA

states are mapped to ISA states by executing all partially completed instructions

without fetching any new instructions, and then projecting out the ISA visible com-

ponents. In previous work, we have explored the use of other refinement maps, e.g.,

in [17, 16, 7], we present new classes of refinement maps that can provide several

orders of magnitude improvements in verification times over the standard flushing-

based refinement maps. In this paper, however, we use the commitment refinement

map, introduced in [9].

A very important property of WEB refinement is that it is compositional, some-

thing that we have exploited in several different contexts [15, 18].

Theorem 1. (Composition) If M ≈r M ′ and M ′ ≈q M ′′ then M ≈r;q M ′′.

Above, r;q denotes composition, i.e., (r;q)(s) = q(r.s).
From the above theorem we can derive several other composition results; for

example:

Theorem 2. (Composition)

MA≈r · · · ≈q ISA

ISA ‖ P ⊢ ϕ

MA ‖ P ⊢ ϕ

In this form, the above rule exactly matches the compositional proof rules in [5].

The above theorem states that to prove MA ‖ P ⊢ ϕ (that MA, the pipelined machine,

executing program P satisfies property ϕ , a property over the ISA visible state), it

suffices to prove MA ≈ ISA and ISA ‖ P ⊢ ϕ: that MA refines ISA (which can

be done using a sequence of refinement proofs) and that ISA, executing P, satisfies

ϕ . That is, we can prove that code running on the pipelined machine is correct, by

first proving that the pipelined machine refines the instruction set architecture and

then proving that the software running on the instruction set—not on the pipelined

machine—is correct.

5 Verification

This section describes how BAT is used to verify the 3-stage pipelined machine

given in Section 3. Note that the definition of WEBs given in Section 4 cannot be

directly expressed in the BAT specification language. Therefore, we first strengthen

the WEB refinement proof obligation such that we obtain a statement that is express-

ible as a quantifier-free formula over the extensional theory of fixed-size bit-vectors

and fixed-size bit-vector arrays (memories), the kind of formulas that BAT decides.

We first define the equivalence classes of B to consist of an ISA state and all the

MA states whose image under the refinement map r is the ISA state. As a result,
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condition 2 of the WEB refinement definition clearly holds. Since an ISA machine

never stutters with respect to the MA machine, the second disjunct of the third condi-

tion in the WEB definition can be ignored. Also, the ISA machine is deterministic,

and the MA machine if not deterministic, can be transformed to a deterministic ma-

chine using oracle variables [11]. Using these simplifications and after some sym-

bolic manipulation, Condition 3 of the WEB definition can be strengthened to the

following core refinement-based correctness formula, where rank is a function that

maps states of MA into the natural numbers.

〈∀w ∈ MA :: 〈∀s,u,v :: s = r(w) ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r(v)

=⇒ s = r(v) ∧ rank(v) < rank(w)〉〉

Compare states for equality

w

r
v r(v)

us
r

rank(v) < rank(w)

ISA−Step

MA−Step

Compare states for inequality

Refinement map

Fig. 2 Diagram shows the core theorem.

The correctness formula shown above is also depicted in Figure 2. In the formula

above, if MA is the set of all reachable MA states, MA-step is a step of the MA

machine, and ISA-step is a step of the ISA machine, then proving the above

formula guarantees that the MA machine refines the ISA machine. In the formula

above, w is an MA state and v (also an MA state) is a successor of w. s is an ISA

state obtained by applying the refinement map r to w and u (also an ISA state)

is a successor of s. The formula states that if applying the refinement map r to v

does not result in the ISA state u, then r(v) must be equal to s and the rank of v

should decrease w.r.t. the rank of w. Also, the proof obligation relating s and v can

be thought of as the safety component, and the proof obligation rank(v) < rank(w)
can be thought of as the liveness component.
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If the ISA and MA models are described at the bit-level, then the core refinement-

based correctness formula relating these models is in fact expressible in the logic

that BAT decides.

5.1 Refinement Map Definitions

To check the core refinement-based correctness formula using BAT, two witness

functions are required, a refinement map and a rank function. There are many dif-

ferent ways in which these witness functions can be defined. In this section, we

describe one approach.

The following function is a recognizer for “good” MA states.

(good-ma (1)

((ma 298) (regs 4294967296 32) (imem 4294967296 100)

(dmem 4294967296 32))

(local

(((nma nregs nimem ndmem)

(committed-ma ma regs imem dmem))

((nma1 nregs1 nimem1 ndmem1)

(ma-step nma nregs nimem ndmem))

((nma2 nregs2 nimem2 ndmem2)

(ma-step nma1 nregs1 nimem1 ndmem1)))

(cond ((getvalidp2 ma)

(equiv-ma nma2 nregs2 nimem2 ndmem2

ma regs imem dmem))

((getvalidp1 ma)

(equiv-ma nma1 nregs1 nimem1 ndmem1

ma regs imem dmem))

(1b1 1b1))))

The “good” MA states (also known as reachable states) are states that are reach-

able from the reset states (states in which the pipeline latches are empty). The reason

for using a recognizer for reachable states is that unreachable states can be inconsis-

tent and interfere with verification by raising spurious counterexamples. A state in

which a pipeline latch has an add instruction, when there are no add instructions in

memory is an example of an inconsistent unreachable state. We check for reachable

states by stepping the committed state, the state obtained by invalidating all partially

completed instructions and altering the program counter so that it points to the next

instruction to commit.

(committed-ma

((298) (4294967296 32)

(4294967296 100) (4294967296 32))

((ma 298) (regs 4294967296 32) (imem 4294967296 100)

(dmem 4294967296 32))
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(local ((inst (get imem (getppc ma))))

(mv

(cat

(getpch2 ma) (getrb-val2 ma)

(getra-val2 ma) (getrc2 ma)

(getop2 ma) 1b0

(getppc ma) (src-b inst)

(src-a inst) (dest-c inst)

(opcode inst) 1b0

(committed-pc ma))

regs imem dmem)))

The program counter (PC) of the committed state is the PC of the instruction

in the first valid latch. Each latch has a history variable that stores the PC value

corresponding to the instruction in that latch. Therefore, the PC of the committed

state can be obtained from the history variables.

(committed-pc (32) ((ma 298))

(cond ((getvalidp2 ma) (getpch2 ma))

((getvalidp1 ma) (getpch1 ma))

(1b1 (getppc ma))))

The equiv-MA function is used to check if two MA states are equal. Note how-

ever that if latch 1 in both states are invalid, then the contents of latch 1 in both

states are not compared for equality. Latch 2 is also compared similarly.

The committed-MA function invalidates partially executed instructions in the

pipeline and essentially rolls back the program counter to correspond with the next

instruction to be committed. The consistent states of MA are determined by checking

that they are reachable from the committed states within two steps. The refinement

map is defined as follows.

(ma-to-isa

((32) (4294967296 32)

(4294967296 100) (4294967296 32))

((ma 298) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(local (((nma nregs nimem ndmem)

(committed-ma ma regs imem dmem)))

(mv (getppc nma) nregs nimem ndmem)))

We also need a rank function to check for liveness, which is given by the

ma-rank function. Note that this rank function is designed to work with the re-

finement map we defined. If another refinement map is used, then another rank may

be required. ma-rank defines the rank of an MA state as the number of steps re-

quired to reach a state in which MA is ready to commit an instruction. If latch 2 is

valid, an instruction will be committed in the next step. If latch 2 is invalid and latch

1 is valid, MA will commit an in two steps. If both latches are invalid, then then MA

should commit an instruction in three steps.
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(ma-rank (3) ((ma 298))

(cond ((getvalidp2 ma) 0)

((getvalidp1 ma) 1)

(1b1 2)))

Now, we can state the core theorem for the 3-stage pipelined machine, which is

given by the function commitment-theorem.

(commitment-theorem (1)

((w-ma 298) (w-regs 4294967296 32)

(w-imem 4294967296 100) (w-dmem 4294967296 32))

(local

(((s-pc s-regs s-imem s-dmem)

(ma-to-isa w-ma w-regs w-imem w-dmem))

((v-ma v-regs v-imem v-dmem)

(ma-step w-ma w-regs w-imem w-dmem))

((u-pc u-regs u-imem u-dmem)

(isa-step s-pc s-regs s-imem s-dmem))

((rv-pc rv-regs rv-imem rv-dmem)

(ma-to-isa v-ma v-regs v-imem v-dmem)))

(-> (good-ma w-ma w-regs w-imem w-dmem)

(and (good-ma v-ma v-regs v-imem v-dmem)

(or (and (= rv-pc u-pc)

(= rv-regs u-regs)

(= rv-imem u-imem)

(= rv-dmem u-dmem))

(and (= rv-pc s-pc)

(= rv-regs s-regs)

(= rv-imem s-imem)

(= rv-dmem s-dmem)

(< (ma-rank v-ma)

(ma-rank w-ma)))))))))

The commitment theorem also includes an inductive proof for the “good” MA

invariant, i.e., we check that if we step MA from any good state, then the succes-

sor of that state will also be good. Next, the property that we ask BAT to check is

shown below. We declare a symbolic MA state in the (:vars) section. The sym-

bolic state essentially corresponds to the set of syntactically all possible MA states.

In the (:spec) section, we ask BAT to check if the commitment-theorem for

all the MA states, which corresponds to the core theorem applied to the “good” MA

states and an inductive invariance proof for the “good” MA invariant.

(:vars (mastate 298) (regs 4294967296 32)

(imem 4294967296 100) (dmem 4294967296 32))

(:spec (commitment-theorem mastate regs imem dmem)))

Table 1 shows the verification times and CNF statistics for the verification of five

3-stage processor models using BAT. The models are obtained by varying the size of
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the data path and the number of words in the register file and memories. Note that

the original 3-stage model was parametrized, and the models for the experiments

were generated by varying the parameters. The models are given the name “DLX3-

n”, where “n” indicates the size of the data path and the size of the program counter.

The instruction memory, the data memory, and the register file each have 2n words.

The experiments were conducted on a 1.8GHz Intel (R) Core(TM) Duo CPU, with

an L1 cache size of 2048KB. The SAT problems generated by BAT were checked

using version 1.14 of the MiniSat SAT solver [6].

Table 1 Verification times and CNF statistics

Verification CNF

Processor Times [sec] Statistics

Model MiniSat Total (BAT) Variables Clauses Literals

DLX3-2 0.10 0.32 363 1,862 9,914

DLX3-4 0.20 0.49 790 3,972 23,743

DLX3-8 0.47 1.01 1,486 7,536 46,599

DLX3-16 2.04 3.20 2,878 14,664 93,559

DLX3-32 6.03 8.63 5,662 28,920 192,471

6 Scaling to More Complex Designs

The formal proof of correctness for the 3-stage pipelined machine required stating

the refinement correctness formula in the BAT specification language. BAT was then

able to automatically prove the refinement theorem relating the 3-stage pipelined

machine and its ISA. However, a big challenge in verifying pipelined machines

using decision procedures is that as the complexity of the machine increases, the

verification times are known to increase exponentially [19]. An alternate approach

to verifying pipelined machines is based on using general purpose theorem provers.

More complex designs can be handled using theorem provers, but a heroic effort is

typically required on the part of the expert user effort to carry out refinement-based

correctness proofs for pipelined machines [18]. In this section, we discuss some

techniques for handling the scalability issues when using decision procedures for

pipelined machine verification.

6.1 Efficient Refinement Maps

One of the advantages of using the WEB refinement framework is that the refine-

ment map is factored out and can be studied independently. In Section 5, the com-

mitment refinement map was described. There are other approaches to define the

refinement map as well. Another well known approach to define the refinement map
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based on flushing, the idea being that partially executed instructions in the pipeline

latches of a pipelined machine state are forced to complete without fetching any

new instructions. Projecting out the programmer-visible components in the result-

ing state gives the ISA state.

There are several more approaches to define the refinement map that have been

found to be computationally more efficient. One approach is the Greatest Fixpoint

invariant based commitment [16]. The idea here is to define the invariant that charac-

terizes the set of reachable states in a computationally more efficient way. A second

approach is collapsed flushing, which is an optimization of the flushing refinement

map [7]. A third approach is intermediate refinement maps, that combine both flush-

ing and commitment by choosing a point midway in the pipeline and committing all

the latches before that point and flushing all the latches after that point [17]. This

approach is also known to improve scalability and efficiency.

6.2 Compositional Reasoning

Refinement is a compositional notion as described in Section 4. The idea with com-

positional reasoning is to decompose the refinement correctness proof into smaller

manageable pieces that can be efficiently handled using a decision procedure such

as BAT. Another advantage with compositional reasoning is that the counter exam-

ples generated are smaller and more localized, making it easier to debug the design.

A method for decomposing refinement proofs for pipelined machines has been de-

veloped in [15]. Proof rules are also provided to combine the smaller decomposed

proofs to construct the refinement proof for the pipelined machine being verified.

6.3 Combining Theorem proving and Decision Procedures

The BAT decision procedures directly handles the verification problem at the RTL.

One approach to handle scalability issues to to abstract and verify the pipelined

machine at the term-level. The drawback however is that the final correctness result

is only about the abstract model and the formal connection with the RTL model is

lost. Hybrid approaches that exploit the refinement framework and use both theorem

proving and decision procedures have been developed to address this problem [18].

The idea is to use the theorem prover to formally reduce the verification problem at

the RTL to an abstract verification problem, which can then be handled by a decision

procedure. The approach scales better for some complex machines, but is much less

automatic than using a decision procedure like BAT.
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6.4 Parametrization

An advantage of using BAT is that the models can be easily parametrized. This pro-

vides an effective debugging mechanism. The idea is based on the fact that models

with smaller data path widths lead to computationally more tractable verification

problems. For example, the verification of a 32-bit pipelined machine with many

pipeline stages may not be tractable, but BAT could probably verify a 2-bit or 4-bit

version of the model. While verifying a 4-bit version of the model does not guaran-

tee correctness, a majority of the bugs (example control bugs that do not depend on

the width of the data path) will be exposed. Generating a 4-bit version of a 32-bit

model is easy to accomplish if the model is parametrized.

7 Conclusions

In this chapter, we described how to use the BAT system to verify that pipelined

machines refine their instruction set architectures. The notion of correctness that

we used is based on WEB refinement. We showed how to strengthen the WEB

refinement condition to obtain a statement in the BAT specification language, for

which BAT includes a decision procedure. This allows us to automatically check

that the pipelined machine satisfies the same safety and liveness properties as its

specification, the instruction set architecture. If there is a bug, then BAT will provide

a counterexample. We also discussed various techniques to deal with more complex

designs.

While much of the focus of pipelined machine verification has been in verifying

microprocessor pipelines, these techniques can also be used to reason about other

domains in which pipelines occur. Examples include cache coherence protocols and

memory interfaces that use load and store buffers.

BAT is not limited to proving properties of pipelines. Any system that can be

modeled using BAT’s synthesizable hardware description language can be analyzed

using BAT. This includes verification problems arising in both hardware and soft-

ware, embedded systems, cryptographic hash functions, biological systems, and the

assembly of large component-based software systems.
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