
A posteriori soundness for
non-deterministic abstract interpretations?

Matthew Might1 and Panagiotis Manolios2

1 University of Utah, Salt Lake City, Utah, USA, might@cs.utah.edu
2 Northeastern University, Boston, Massachusetts, USA, pete@ccs.neu.edu

Abstract. An abstract interpretation’s resource-allocation policy (e.g.,
one heap summary node per allocation site) largely determines both
its speed and precision. Historically, context has driven allocation poli-
cies, and as a result, these policies are said to determine the “context-
sensitivity” of the analysis. This work gives analysis designers newfound
freedom to manipulate speed and precision by severing the link between
allocation policy and context-sensitivity: abstract allocation policies may
be unhinged not only from context, but also from even a predefined cor-
respondence with a concrete allocation policy. We do so by proving that
abstract allocation policies can be made non-deterministic without sac-
rificing correctness; this non-determinism permits precision-guided allo-
cation policies previously assumed to be unsafe. To prove correctness, we
introduce the notion of a posteriori soundness for an analysis. A proof of
a posteriori soundness differs from a standard proof of soundness in that
the abstraction maps used in an a posteriori proof cannot be constructed
until after an analysis has been run. Delaying construction allows them
to be built so as to justify the decisions made by non-determinism. The
crux of the a posteriori soundness theorem is to demonstrate that a
justifying abstraction map can always be constructed.

1 Introduction

When engineering a static analysis, better speed and higher precision are prin-
cipal goals. In abstract interpretation, speed and precision are a function of the
abstract allocation policy. By abstract allocation policy, we mean the procedure
by which an abstract interpretation chooses a resource from a pool of abstract
resources during the transition from one abstract state to another. To ground
this discussion with some specifics, examples of an abstract resource include
abstract environment bindings (for environment analyses [17–19, 21]), abstract
heap addresses (for alias and shape analyses [2, 4, 22]), abstract contours (for
flow analyses [1, 15, 16, 19, 23–25]), and abstract time-stamps (for frame-string
analyses [11, 17, 18, 20]).

The abstract allocation policy determines how the abstract state-space parti-
tions the concrete state-space; likewise, a given partitioning uniquely determines
? This research was funded in part by NASA Cooperative Agreement NNX08AE37A

and NSF grants CCF-0429924, IIS-0417413, and CCF-0438871.

2

an abstract allocation strategy. (More directly, this policy determines the rela-
tionship between the concrete and abstract instances of objects like stores, heaps
and environments.) A fast, precise analysis needs an allocation policy which sum-
marizes concrete resources that behave alike to the same abstract resource, but
which summarizes concrete resources that behave differently to separate abstract
resources.

The original motivation for this work came from frustration with context-
sensitive policies: for the best result, one must choose the context-sensitive policy
whose heuristic is geared toward the behavior of the program under consider-
ation. We wanted to know whether abstract allocation policies could be made
sensitive to precision rather than context—whether it is sound to make allo-
cations based purely on precision, or not. Thus, this work begins by asking a
general question: what are the fundamental, necessary constraints which all ab-
stract allocation policies must obey. Specifically, we want to know whether an
abstract allocation policy must directly simulate the concrete allocation policy
in order to prove soundness.

Our pursuit of the constraints on abstract allocation policies ends with an
unanticipated result: there are no such constraints. To demonstrate complete-
ness, we prove that even the allocation policy which is fully non-deterministic
is safe. Central to this result is the criterion of and a proof technique for “a
posteriori soundness.”

1.1 A priori soundness and context-sensitivity

Frequently, abstract resources are selected as a function of the context of the
current state, e.g., the current program counter [3], the last k call sites [24], the
let-polymorphism of the current function [25], the Cartesian product of argu-
ment types [1]. Context has been popular in designing allocation policies because
context serves as a reasonably good heuristic for data usage: data structures al-
located in the same context (e.g., the same call site, the same stack frame)
tend to have similar usage patterns. Context-sensitive policies bleed precision
and speed to the extent that they tend to split like resources across several ab-
stract resources, e.g., 1CFA [24], or tend to associate unlike resources as a single
abstract resource, e.g., CPA [1].

In an attempt at better performance, one might ask whether allocation poli-
cies can be hybridized and proven sound, so that the strengths of the two policies
can be combined. For simplistic hybrids, such as the natural “Cartesian product”
of two policies, the answer is yes; however, such a hybridization also combines
their weaknesses—the splitting tendencies of the two policies multiply: precision
goes up, but so does analysis time. If an analysis designer were to compensate for
this splitting by making the allocation policy adaptive, then proving soundness
is suddenly murkier, and the answer seems to be no. By adaptive, we mean that
the allocation policy is allowed to directly consider the ramifications upon the
precision or speed of the analysis when selecting an abstract resource to allo-
cate during a transfer function; adaptive behavior is in contrast to the standard
behavior of choosing an abstract resource based on context.

3

The reason that adaptive behavior seems unsafe is that, under the standard
correctness regime, abstract allocation policies have to be a simulation of a con-
crete allocation policy. Thus, if an abstract allocation policy is informed by the
precision of the analysis, that information must be available to the concrete al-
location policy, so that the two may remain in sync. In general, of course, this
is not possible; the concrete execution has perfect precision, and abstractions of
it can have myriad degrees of coarseness.

Example Consider a concrete store σ and two abstractions thereof, σ̂ and σ̂′:

σ(1) = 0 σ̂(ˆ̀1) = {0, 3} σ̂′(ˆ̀1) = {0, 3}
σ(2) = 3

σ(3) = 4 σ̂(ˆ̀2) = {4} σ̂′(ˆ̀2) = {4, 5, 7}

Suppose that, in an effort to improve precision, an abstract allocation policy
always chose the abstract address with the smallest set of abstract values (as
opposed to, for instance, picking the label of the current call site). Under this
policy, the next abstract address for allocation would be ˆ̀

2 if the simulation has
σ̂ as its current store, and ˆ̀

1 if the simulation has σ̂′ as its current store. It
is impossible to define a concrete policy that justifies this behavior, because it
cannot know whether to pick a concrete address that abstracts to ˆ̀

1 or to ˆ̀
2. 2

The inability of the abstract allocation policy to deviate from the concrete al-
location policy (or, vice versa) is embedded in the established process for proving
soundness in an abstract interpretation. It is an artifact of the standard process,
which is as old as the Cousots’ original framework [6, 7]. We can abbreviate this
soundness process as follows:

1. Define a concrete state-space, L.
2. Define a concrete semantics, f : L → L.
3. Define an abstract state-space, L̂.
4. Define an abstraction map, α : L → L̂.
5. Define an abstract semantics, f̂ : L̂ → L̂.
6. Prove abstract semantics f̂ simulates concrete semantics f under map α.

For the duration of this work, we term this process the a priori soundness pro-
cess, because the abstraction map α is constructed before the analysis is run.

1.2 A posteriori soundness and non-determinism

This work presents a more flexible soundness process—the a posteriori sound-
ness process—in which the abstraction map, and hence the soundness of the
analysis, is not constructed until after the analysis has been computed. We do
so in order to circumvent the excessive strictness that is the byproduct of the a
priori soundness process. With a posteriori soundness, one can hybridize alloca-
tion policies and make them adaptive. Most generally, we will be able to make
abstract allocation policies non-deterministic; the immediate consequence—that
there are no unsound abstract allocation policies—is an unexpected result.

The a posteriori soundness process can be summarized as follows:

4

1. Define a concrete state-space, L.
2. Define a concrete semantics, f : L → L.
3. Define an abstract state-space, L̂.
4. Define a non-deterministic abstract semantics, f̂ : L̂ → P(L̂).
5. Execute the abstract semantics to produce an abstract transition graph.
6. Construct an abstraction map, α : L → L̂, such that the abstract transition

graph simulates the concrete semantics f under the map α.

Proving a posteriori soundness then reduces to proving that no matter how
the abstract transition graph evolves from the abstract semantics, it is always
possible to construct a justifying abstraction map.

1.3 Contributions

This work makes the following contributions:

1. The concept of allocation-policy-factored semantics.
2. A framework for non-deterministic abstract interpretation.
3. The correctness proof technique of a posteriori soundness.
4. An instance of the framework for higher-order control flow analysis: ∃CFA.
5. A discussion of allocation policies outside the bounds of context-sensitivity.

2 Policy-factored concrete semantics

The goal in this work is to reason about the limits of allocation policies. The
first step, then, is to isolate and factor out allocation policies from semantics.
Given a concrete state-space Σ, a semantics can be defined by means of a small-
step transition relation (⇒) ⊆ Σ × Σ, or congruently, as a transfer function,
g : Σ ⇀ Σ. A policy-factored transfer function accepts a state and produces a
partial function that takes a concrete “locative” from a set L to the next state:
f : Σ → L ⇀ Σ. The set of locatives L denotes a pool of allocatable objects. We
use the term locative to generalize over entities such as environment bindings,
store locations, contours and time-stamps. Given a concrete semantics g and a
factored semantics f , the allocation policy is any function π : Σ → L constrained
so that:

g(ς) = f(ς)(π(ς)).

Example Consider the one-instruction (Turing-incomplete) language Malloc
described by the following grammar:

s ∈ Stmt ::= lab : var := malloc()

where lab ∈ Lab denotes labels on instructions and var ∈ Var denotes variables.
A state consists of a list of statements, an environment and a store:

ς ∈ Σ = Stmt∗ × Env × Store
η ∈ Env = Var ⇀ N
σ ∈ Store = N ⇀ {0, 1}.

5

And the state-to-state transfer function g : Σ ⇀ Σ just makes allocations:

g([[lab : var := malloc()]] : s, η, σ) = (s, η[var 7→ n′], σ[n′ 7→ 0]),

where the address n′ is the lowest unused value in the store: max(dom(σ)) + 1.
The policy-factored formulation of this semantics is the function f :

f([[lab : var := malloc()]] : s, η, σ)(`) =

{
(s, η[var 7→ `], σ[` 7→ 0]) ` 6∈ dom(σ)
undefined ` ∈ dom(σ).

Setting f(ς)(π(ς)) = g(ς) and solving, we find the set of locatives, L = N, and
the allocation policy function π : Σ → L:

π(s, η, σ) = max(dom(σ)) + 1.

2

A concrete semantics must also specify an initial state ς0. The output of an
unfactored semantics is a (possibly infinite) sequence of states ς = 〈ς0, ς1, . . .〉,
such that ςi+1 = g(ςi). The output of a factored semantics is a (possibly infinite)
sequence of states ς = 〈ς0, ς1, . . .〉 coupled with a sequence of locatives ` =
〈`0, `1, . . .〉, such that ςi+1 = f(ςi)(`i).

3 Policy-factored abstract semantics

Now that we have created a policy-factored concrete semantics, we can create
the machinery central to the subject of this work: the policy-factored abstract
semantics. Given an abstract state-space Σ̂, an abstract semantics can be defined
through a transition relation (;) ⊆ Σ̂ × Σ̂, or congruently, an abstract transfer
function ĝ : Σ̂ → P

(
Σ̂

)
. Generalizing the abstract transfer function, we can

create a policy-factored abstract transfer function, f̂ : Σ̂ → P
(
L̂ → Σ̂

)
. The

factored function takes an abstract state to a set of functions; each of these
functions takes an abstract locative to a subsequent abstract state.

The factored abstract f̂ semantics and the abstract allocation policy function
π̂ : Σ̂ → L̂ are constrained by the equation:

ĝ(ς̂) =
⋃

ĥ∈f̂(ς̂)

ĥ(π̂(ς̂)).

An abstract semantics, factored or otherwise, must also specify an initial abstract
state ς̂0 ∈ Σ̂.

Example Using the Malloc language from before, we can create an abstract se-
mantics. An abstract state is a sequence of statements, an abstract environment,
and an abstract store:

ς̂ ∈ Σ̂ = Stmt∗ × Ênv × Ŝtore

η̂ ∈ Ênv = Var ⇀ Lab

σ̂ ∈ Ŝtore = Lab → P ({0, 1}) .

6

A standard abstract-address-per-point, context-sensitive transfer function is the
function ĝ : Σ̂ → P

(
Σ̂

)
:

ĝ([[lab : var := malloc()]] : s, η̂, σ̂) = {(s, η̂[var 7→ lab], σ̂ t [lab 7→ {0}])}.

Policy-factoring this function yields f̂ : Σ̂ → P
(
L̂ → Σ̂

)
:

f̂([[lab : var := malloc()]] : s, η̂, σ̂) = {λˆ̀.(s, η̂[var 7→ ˆ̀], σ̂ t [ˆ̀ 7→ {0}])}.

(Both ĝ and f̂ return the empty set for empty statement sequences.) Solving for
the abstract allocation policy function π̂ : Σ̂ → L̂, we get:

π̂([[lab : var := malloc()]] : s, η̂, σ̂) = lab,

and for the set of abstract locatives, we have that L̂ = Lab. 2

4 Non-deterministic abstract interpretation

Factoring out allocation policies makes it possible to describe a framework for
abstract interpretation that encompasses all conceivable allocation policies—by
making the abstract allocation policy “function” non-deterministic. Of course,
the adaptive or precision-sensitive allocation policies we mentioned in the intro-
duction are included under the label all conceivable. More specifically, with each
application of the transfer function, this framework chooses the abstract locative
non-deterministically.

The result of a non-deterministic abstract interpretation is an abstract-
locative-labeled transition graph between abstract states:

Definition 1. An abstract transition graph is a labeled graph (Ŝ,) where:

– Ŝ ⊆ Σ̂ is a subset of states, and
– () ⊆ Ŝ × L̂× Ŝ is a set of edges labeled by abstract locatives.

In lieu of defining an algorithm for computing a non-deterministic abstract
interpretation, we define the result of such an abstract interpretation as a closed
abstract transition graph. A transition graph is closed if it accounts for all ab-
stract transitions from each state:

Definition 2. An abstract transition graph (Ŝ,) is closed under a policy-
factored transfer function f̂ : Σ̂ → P

(
L̂ → Σ̂

)
iff for each state ς̂ ∈ Ŝ, for each

state-generator ĥ ∈ f̂(ς̂), there exists a locative ˆ̀ such that:

ς̂
ˆ̀
 ĥ(ς̂)(ˆ̀).

7

A least closed graph, which contains no closed subgraphs, is preferred (but not
required) as the result of a static analysis.

With non-deterministic abstract interpretation defined, our new intermedi-
ate task is to define simple, liberal criteria that must hold between concrete and
abstract policy-factored transfer functions, so that when this condition holds,
any closed abstract transition graph represents a simulation of the concrete ex-
ecution. The next section reviews the standard criteria for the correctness of
context-sensitive policies, in preparation for this generalization.

5 The a priori simulation criterion

On the road to constructing criteria for policy-factored abstract transfer func-
tions that guarantee simulation, it is illustrative to review the inductive step of
an a priori proof of soundness. Proving the soundness of an ordinary abstract
interpretation reduces to showing that its abstract transfer function simulates
the concrete transfer function with respect to some abstraction map α : Σ → Σ̂.
More formally:

Definition 3 (Transfer function simulation). The abstract transfer func-
tion ĝ : Σ̂ → P

(
Σ̂

)
simulates the concrete transfer function g : Σ ⇀ Σ with

respect to the abstraction map α : Σ → Σ̂ iff

α(ς) v ς̂

implies
{α(g(ς))} v ĝ(ς̂).

For context-sensitive analyses, it is standard to have a lemma while proving
simulation that shows that the abstract allocation policy function is a simulation
of the concrete allocation policy function, or more formally:

Definition 4 (Policy simulation). The abstract policy function π̂ : ς̂ → L̂
simulates the concrete policy function π : Σ → L with respect to the abstraction
maps α : Σ → Σ̂ and αL : L → L̂ iff

α(ς) v ς̂

implies
αL(π(ς)) v π̂(ς̂).

In some frameworks, such as Shivers’s formulation of k-CFA [24], this policy
simulation lemma is an explicit requirement.

Example Considering the running Malloc example again reveals much about
how analysis designers tinker with the concrete semantics to “engineer” the cor-
rectness of their abstract allocation policies. With the semantics as formulated,
we would have to define a locative abstraction map αL : N → Lab that can

8

satisfy the policy function simulation requirement. At first glance, this seems
awkward—how can we map from a natural number, used as a concrete address,
to the label that was used during the abstract interpretation? There doesn’t
seem to be enough information within the natural number to do so. (Later, we’ll
show how this can be done with a posteriori soundness.) The long-time solution
for analysis designers has been to encode the requisite information inside con-
crete locatives. In this case, the concrete semantics would be modified to use the
Cartesian product of labels and naturals for the set of locatives: L = Lab × N,
yielding:

π([[lab : var := malloc()]] : s, η, σ) = (lab, 1 + max{n : (, n) ∈ dom(σ)}).

With this reformulation of the concrete semantics, a suitable locative-abstraction
map is easily defined:

αL(lab, n) = lab.

Now the a priori policy-simulation requirement is easy to prove.
A side benefit of proving a posteriori soundness is that the concrete semantics

do not require reformulation, thereby obviating the need for a proof of equiva-
lence between the original and the re-engineered concrete semantics. 2

6 Policy-factored abstraction map

We are closing on our intermediate task of defining a condition on policy-factored
semantics that guarantees simulation under non-determinism. Before we can
state this condition formally, we need to create a policy-factoring of abstraction
maps.

An ordinary proof of soundness for abstract interpretation requires a state-
wise abstraction map α : Σ → Σ̂ to express the relationship between the concrete
and abstract domains. In order to allow a non-deterministic abstract interpre-
tation, the proof delays the construction of this map until after the analysis has
run. Instead, non-deterministic abstract interpretation employs a policy-factored
abstraction map β : (L → L̂) → Σ → Σ̂; this function takes an abstraction map
over locatives to produce an abstraction map over states.

No further policy-factoring of the semantics is required at this point. Note
that the lattice relations and operations on states—(v), (t) and (u)—do not
require factoring since they operate purely in the abstract state-space.

Example Returning to the Malloc example once again, the factored abstraction
map on states is β : (L → L̂) → Σ → Σ̂:

β(αL)(s, η, σ) = (s, βEnv (αL)(η), βStore(αL)(σ))
βEnv (αL)(η) = λvar .αL(η(var))

βStore(αL)(σ) = λˆ̀.
⊔

αL(`)vˆ̀

{σ(`)}.

Dropping in the locative-abstraction map from the previous example yields the
expected unfactored abstraction map on states: α = β(αL) 2

9

7 The dependent simulation condition

We finally have the machinery required in order to describe a general, liberal
condition under which a non-deterministic abstract interpretation is correct: the
dependent simulation condition.

Definition 5. The policy-factored abstract transfer function f̂ : Σ̂ → P(L̂ →
Σ̂) is a dependent simulation of the policy-factored concrete transfer function
f : Σ → L ⇀ Σ under the factored abstraction map β : (L → L̂) → Σ → Σ̂ iff,
for all locative abstraction maps αL : L → L̂, if

β(αL)(ς) v ς̂,

then for any locative ` and any abstract locative ˆ̀, there exists a state-generator
ĥ ∈ f̂(ς̂) such that:

β(αL[` 7→ ˆ̀])(f(ς)(`)) v ĥ(ˆ̀).

8 The a posteriori soundness theorem

Having defined the dependent simulation condition, it is now possible to prove
that a non-deterministic abstract interpretation satisfying this condition is cor-
rect, thereby demonstrating that there is no such thing as an illegal abstract
allocation policy. A standard proof of soundness is not possible in this case:
the abstract allocation policy must simulate the concrete allocation policy, but
we cannot describe the abstraction map in advance when the abstract policy is
non-deterministic.

First, we must define the concept of a sound simulation for abstract transition
graphs over concrete executions.

Definition 6. An abstract transition graph (Ŝ,) is a sound simulation of
a sequence of states ς = 〈ς0, ς1, . . .〉 under the abstraction map α : Σ → Σ̂ iff

– for each i ≤ length(ς):
{α(ςi)} v Ŝ, and

– for each i < length(ς):

{(α(ςi), α(ςi+1))} v ().

In other words, each concrete state and each concrete transition is represented
in the abstract graph by an abstract state and an abstract edge.

Next, we prove the a posteriori soundness theorem. It states that, when the
dependent simulation condition is met, a locative-abstraction map that makes a
closed abstract transition graph a simulation of a concrete execution must exist.

Theorem 1 (A posteriori soundness). If:

– (ς, `) is a concrete execution for factored transfer function f , and

10

– f̂ is a dependent simulation of f under factored map β, and
– (Ŝ,) is a closed abstract transition graph for f̂ where ς̂0 ∈ Ŝ, and
– for all maps αL : L → L̂, β(αL)(ς0) v ς̂0,

then there exists a map αL : L → L̂ such that the graph (S,) is a sound
simulation of the sequence ς under the abstraction map β(αL).

Proof. The proof proceeds by construction of the locative abstraction map. We
do so by defining a sequence of abstract states ς̂ = 〈ς̂0, ς̂1, . . .〉, a sequence of
abstract locatives ˆ̀= 〈ˆ̀0, ˆ̀

1, . . .〉 and a sequence of partial locative abstraction
maps α = 〈α0, α1, . . .〉 through recurrence equations. We show by induction that
β(αi)(ςi) v ς̂i.

Let N be the length of the concrete execution sequence ς = 〈ς0, ς1, . . .〉. For
later use, fix a choice function choose : P

(
L̂× Σ̂

)
→ (L̂ × Σ̂). The initial

abstraction map α0 is defined to be ⊥L̂ at every point: α0 = λ`.⊥L̂.
We construct the abstract locative ˆ̀

i and the abstract state ς̂i+1 simultane-
ously. Let the set of candidate transitions Ci ⊆ L̂× Σ̂ be:

Ci = {(ˆ̀, ς̂) : ς̂i
ˆ̀
 ς̂ and β(αi[`i 7→ ˆ̀])(ςi) v ς̂}.

The set Ci must be non-empty because the graph is closed and the dependent
simulation criterion is satisfied. So, we set (ˆ̀i, ς̂i+1) = choose(Ci) and αi+1 =
αi[`i 7→ ˆ̀

i]. The satisfying locative abstraction map is then:

αL = lim
i→N

αi.

Example We will now construct a posteriori locative-abstraction maps for the
following Malloc program:

L1: x := malloc()
L2: y := malloc()
L3: z := malloc()

Using natural numbers for concrete addresses yields the following final state:

ςf = (〈〉, [[[x]] 7→ 1, [[y]] 7→ 2, [[z]] 7→ 3], [1 7→ 0, 2 7→ 0, 3 7→ 0]).

If a non-deterministic abstract interpretation allocated the abstract locative ˆ̀
1,

then ˆ̀
2, then ˆ̀

2, then the locative-abstraction map αL : L → L̂ would be:

αL(1) = ˆ̀
1 αL(2) = ˆ̀

2 αL(3) = ˆ̀
2.

If, instead, it had allocated ˆ̀
1, then ˆ̀

2, then ˆ̀
1, then the locative-abstraction

map would be:

αL(1) = ˆ̀
1 αL(2) = ˆ̀

2 αL(3) = ˆ̀
1.

In each case, the locative-abstraction map leads to simulation. 2

11

9 Example: ∃CFA

To demonstrate the applicability of the a posteriori soundness theorem, we
construct the generalized, non-deterministic higher-order control-flow analysis
(∃CFA) by policy-factoring k-CFA [23, 24]. This leads to a factored concrete
transfer function, f : Σ → L ⇀ Σ, a factored abstract transfer function,
f̂ : Σ̂ → P

(
L̂ → Σ̂

)
and a factored abstraction map, β : (L → L̂) → (Σ → Σ̂).

An interesting side effect of constructing ∃CFA is that it doubles as a proof of
correctness for all existing CFAs (e.g., 0CFA, k-CFA, poly/CFA, CPA) and all
future CFAs.

For simplicity, we operate over continuation-passing style (CPS), as described
in the following grammar:

v ∈ Var is a set of identifiers
λ ∈ Lam ::= (λ (v1 · · · vn) call)

f, e ∈ Exp = Var + Lam
call ∈ Call ::= (f e1 · · · en).

A concrete state consists of a call site, a binding environment over variables and
a value environment over bindings:

ς ∈ ΣCPS = Call× BEnv ×VEnv

ρ ∈ BEnv = Var ⇀ L
b ∈ Bind = Var × L

ve ∈ VEnv = Bind ⇀ D
d ∈ D = Clo

clo ∈ Clo = Lam× BEnv .

The policy-factored concrete transfer function f is:

f([[(f e1 · · · en)]], ρ, ve)(`) = (call , ρ′′, ve ′),

defined only if no variable v exists so that (v, `) ∈ dom(ve) and where:

([[(λ (v1 · · · vn) call)]], ρ′) = A(f, ρ, ve)
di = A(ei, ρ, ve)
ρ′′ = ρ′[vi 7→ `]
ve ′ = ve[(vi, `) 7→ di],

where the argument evaluator is A : Exp → BEnv ⇀ D :

A(λ, ρ, ve) = (λ, ρ)
A(v, ρ, ve) = ve(v, ρ(v)).

12

The abstract state-space is:

ς̂ ∈ Σ̂CPS = Call× B̂Env × V̂ Env

ρ̂ ∈ B̂Env = Var ⇀ L̂

b̂ ∈ B̂ind = Var × L̂

v̂e ∈ V̂ Env = B̂ind → D̂

d̂ ∈ D̂ = P
(
Ĉlo

)
ĉlo ∈ Ĉlo = Lam× B̂Env.

According to this, the abstract locatives correspond to the abstract contours of
higher-order control-flow analysis.

The policy-factored abstract transfer function f̂ is:

f̂([[(f e1 · · · en)]], ρ̂, v̂e) = {λˆ̀.F(ĉlo)(ˆ̀) : ĉlo ∈ Â(f, ρ̂, v̂e)},

where the state finalizer F : Ĉlo → L̂ → Σ̂ is:

F([[(λ (v1 · · · vn) call)]], ρ̂′)(ˆ̀) = (call , ρ̂′′, v̂e ′), where:

d̂i = Â(ei, ρ̂, v̂e)

ρ̂′′ = ρ̂′[vi 7→ ˆ̀]

v̂e ′ = v̂e t [(vi, ˆ̀) 7→ d̂i],

where the abstract argument evaluator is Â : Exp → B̂Env → D̂:

Â(λ, ρ̂, v̂e) = {(λ, ρ̂)}
Â(v, ρ̂, v̂e) = v̂e(v, ρ̂(v)).

The appropriate policy-factored abstraction map β : (L → L̂) → Σ → Σ̂
walks component-wise over the state-space:

β(αL)(call , ρ, ve) = (call , βBEnv (αL)(ρ), βVEnv (αL)(ve))
βBEnv (αL)(ρ)(v) = αL(ρ(v))

βVEnv (αL)(ve))(v, ˆ̀) =
⊔

αL(`)=ˆ̀

{βClo(αL)(ve(v, `))}

βClo(αL)(λ, ρ) = (λ, βBEnv (αL)(ρ)).

10 Adaptive allocation policies

One of the payoffs for proving all conceivable allocation policies correct is in the
ability to make allocation policies adaptive, or more precisely, precision-sensitive.

13

A precision-sensitive abstract allocation policy makes allocation decisions based
on the perceived effect upon the precision of the analysis.

One way to make a context-sensitive allocation policy into a greedy precision-
sensitive policy is to augment it with a reserve pool of m abstract locatives, where
m is a fixed cap. Abstract locatives in the reserve pool are not associated with
a particular context; they are allocated as necessary to prevent excessive merg-
ing. For example, if the default abstract locative to be allocated would cause
a closure over λ42 to coexist in the same abstract store slot as a closure over
λ314, then an adaptive analysis can allocate from the reserve pool of abstract
locatives to prevent the merge, so long as the reserve pool is not yet exhausted.
Adding a reserve pool of abstract locatives to an existing context-sensitive anal-
ysis is a simple way to alleviate the damage to precision from places where the
context-sensitive heuristic causes excess merging. Enlarging the reserve pool is
an effective way of gradually improving the precision of the analysis.

Adaptive analysis alleviates excess splitting by looking for abstract locatives
which, upon allocation, cause the least change to the abstract store. For example,
if the default abstract locative would give a fresh slot to a closure over λ42, when
another slot already contains a closure over λ42, the adaptive analysis may opt
to allocate the locative already in use.

Adaptive allocation policies, which are not provably correct under a priori
soundness, highlight the practical advantages of non-determinism in abstract
interpretation.

11 Related work

This work taps into the foundations of the Cousots’ work on abstract interpre-
tation [6, 7]. The standard soundness recipe we presented is a simplification of
the soundness regime presented throughout their work [5, 8]. The use of a pos-
teriori abstraction maps is a simple way of extending their framework to allow
a practical degree of non-determinism in abstract interpretation.

This work should not be confused with the body of work on the (determin-
istic) abstract interpretation of non-deterministic systems [9, 13]. However, it
is likely that non-deterministic abstract interpretation of non-deterministic sys-
tems will lead to considerable gains in precision. This work should also not be
confused with random interpretation [10], which is unsound. Our work is related
in that we enable probabilistic abstract interpretation, but our work retains
soundness.

This work impacts the large body of work on alias and shape analysis [2–4,
12, 22] by liberating these analyses from the needless rigidity imposed by a priori
abstraction maps.

This work also directly impacts higher-order relatives of alias and shape
analysis, environment analysis [14, 17–19, 21] and control-flow analysis [15, 16,
23, 24], by expanding the set of contour-allocation schemes.

14

12 Conclusions and Future Work

We have presented a framework for enabling sound non-deterministic abstract
interpretations. We introduced non-determinism into allocation policies in order
to free analyses from the rigidity of a priori abstraction maps. By proving the
correctness of the non-deterministic framework using the novel proof technique
of a posteriori abstraction maps, we have proven that all conceivable abstract
allocation policies are correct. We discussed a practical benefit: that allocation
policies may be made adaptive with respect to analytic precision, a behavior
which cannot be proven sound under the Cousots’ standard correctness frame-
work. And, we instantiated this framework to create a non-deterministic flow
analysis: ∃CFA.

For future work, we plan to explore precision-sensitive allocation where ab-
stract locatives are allocated probabilistically, according to evolving distributions
that tend toward “do not allocate” in the limit. We also plan to investigate the
issue of optimality. For example, for an alias analysis, a good metric would be the
average size of an abstract value set in the abstract store; the equivalent metric
for a CFA would be the average size of a flow set. For a fixed set of n abstract
locatives and a given program, there must exist optimal allocation policies which
minimize this metric. With a notion of optimality, we can begin to ask whether
there are fundamental bounds on precision, and whether an optimal allocation
policy can be computed without resorting to exhaustive search.

References

1. Agesen, O. The cartesian product algorithm: Simple and precise type inference
of parametric polymorphism. In Proceedings of ECOOP 1995 (1995), pp. 2–26.

2. Andersen, L. O. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

3. Balakrishnan, G., and Reps, T. Recency-abstraction for heap-allocated storage.
In Proceedings of the Static Analysis Symposium (Seoul, Korea, 2006).

4. Chase, D. R., Wegman, M., and Zadeck, F. K. Analysis of Pointers and Struc-
tures. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (White Plains, New York, June 1990), pp. 296–310.

5. Cousot, P. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Electronic Notes in Theoretical Computer Science 6
(1997). URL: http://www.elsevier.nl/locate/entcs/volume6.html, 25 pages.

6. Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Los Angeles, California, 1977), ACM Press,
New York, NY, pp. 238–252.

7. Cousot, P., and Cousot, R. Systematic design of program analysis frameworks.
In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Antonio, Texas, 1979), ACM Press,
New York, NY, pp. 269–282.

8. Cousot, P., and Cousot, R. Abstract interpretation frameworks. Journal of
Logic and Computation 2, 4 (Aug. 1992), 511–547.

15

9. Gallagher, J., Gallagher, J. P., Puebla, G., and Puebla, G. Abstract
interpretation over non-deterministic finite tree automata for set-based analysis
of logic programs. In In Fourth International Symposium on Practical Aspects of
Declarative Languages, number 2257 in LNCS (2002), Springer-Verlag, pp. 243–
261.

10. Gulwani, S. Program analysis using random interpretation. In Ph.D. Dissertation,
UC-Berkeley (2005).

11. Harrison, W. L. The interprocedural analysis and automatic parallelization of
Scheme programs. Lisp and Symbolic Computation 2, 3/4 (Oct. 1989), 179–396.

12. Hudak, P. A semantic model of reference counting and its abstraction (detailed
summary). In Proceedings of the 1986 ACM Conference on LISP and Functional
Programming (Cambridge, Massachusetts, Aug. 1986), pp. 351–363.

13. Huth, M. An abstraction framework for mixed non-deterministic and probabilistic
systems. In Validation of stochastic systems, vol. 2925. 2004, pp. 419–444.

14. Jagannathan, S., Thiemann, P., Weeks, S., and Wright, A. K. Single and
loving it: Must-alias analysis for higher-order languages. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Diego, California, January 1998), pp. 329–341.

15. Jones, N. D. Flow analysis of lambda expressions (preliminary version). In Pro-
ceedings of the 8th Colloquium on Automata, Languages and Programming (Lon-
don, UK, 1981), Springer-Verlag, pp. 114–128.

16. Jones, N. D., and Muchnick, S. S. A flexible approach to interprocedural
data flow analysis and programs with recursive data structures. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 1982), ACM, pp. 66–74.

17. Might, M. Environment Analysis of Higher-Order Languages. PhD thesis, Geor-
gia Institute of Technology, 2007.

18. Might, M., and Shivers, O. Environment analysis via ∆CFA. In Proceedings of
the 33rd Annual ACM Symposium on the Principles of Programming Languages
(POPL 2006) (Charleston, South Carolina, January 2006), pp. 127–140.

19. Might, M., and Shivers, O. Improving flow analyses via ΓCFA: Abstract
garbage collection and counting. In Proceedings of the 11th ACM International
Conference on Functional Programming (ICFP 2006) (Portland, Oregon, Septem-
ber 2006), pp. 13–25.

20. Might, M., and Shivers, O. Analyzing the environment structure of higher-
order languages using frame strings. Theoretical Computer Science 375, 1–3 (May
2007), 137–168.

21. Might, M., and Shivers, O. Exploiting reachability and cardinality in abstract
interpretation. Journal of Functional Programming (2008).

22. Sagiv, M., Reps, T., and Wilhelm, R. Parametric shape analysis via 3-valued
logic. In Symposium on Principles of Programming Languages (1999), pp. 105–118.

23. Shivers, O. Control-flow analysis in Scheme. In Proceedings of the SIGPLAN
’88 Conference on Programming Language Design and Implementation (PLDI)
(Atlanta, Georgia, June 1988), pp. 164–174.

24. Shivers, O. Control-Flow Analysis of Higher-Order Languages. PhD thesis, School
of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, May
1991. Technical Report CMU-CS-91-145.

25. Wright, A. K., and Jagannathan, S. Polymorphic splitting: An effective poly-
variant flow analysis. ACM Transactions on Programming Languages and Systems
20, 1 (January 1998), 166–207.

