
Adding a Total Order to ACL2

Panagiotis Manolios1 and Matt Kaufmann2

1 College of Computing, CERCS Lab
Georgia Institute of Technology

manolios@cc.gatech.edu

http://www.cc.gatech.edu/∼manolios,
2 Advanced Micro Devices, Inc.

matt.kaufmann@amd.com

Abstract. We show that adding a total order to ACL2, via new axioms,
allows for simpler and more elegant definitions of functions and libraries
of theorems. We motivate the need for a total order with a simple example
and explain how a total order can be used to simplify existing libraries of
theorems (i.e., ACL2 books) on finite set theory and records. These ideas
have been incorporated into ACL2 Version 2.6, which includes axioms
positing a total order on the ACL2 universe.

1 Introduction

ACL2 [7, 6, 8] is a logic of total functions. One particularly pleasant consequence
is that many properties of functions can be stated as unconditional rewrite rules.
For example, we can prove (equal (* y (* x z)) (* x (* y z))) without
having to establish that x, y, and z are numbers. Such unconditional rewrite
rules lead to simpler libraries of theorems, which in turn improve the ability of
ACL2 to reduce large terms automatically and efficiently.

Unfortunately, it is problematic to exploit fully the totality of functions in
ACL2 Version 2.5. One is often forced to use rewrite rules with hypotheses
because of the lack of a definable total order on the ACL2 universe.

To examine the issue, consider the problem of sorting, i.e., the problem of
defining a function that returns an ordered permutation of its input. Since ACL2
is untyped, one might expect that it is possible to define a function isort that
satisfies the following two properties (where (perm x y) holds iff x is a permu-
tation of y).

(perm x (isort x))
(equal (perm x y)

(equal (isort x)
(isort y)))

Unfortunately, this does not seem to be the case, even if we restrict x and y to
lists of length two. One is forced to write sorting functions for different types,
the very thing we are trying to avoid.

The reason why a sorting function with the above properties cannot be
defined is that the ACL2 universe is not closed. That is, the ACL2 axioms



2

do not rule out the existence of bad atoms, atoms that do not satisfy any of
acl2-numberp, symbolp, characterp, or stringp. To define a sorting function
on the whole of the ACL2 universe, we need a way to order bad atoms. This is
not possible since in general the set of bad atoms cannot be linearly ordered; see
Section 2.3.

In the next section, we show that extending ACL2 Version 2.5 with a total
order on the bad atoms is equivalent to extending it with a total order on the
ACL2 universe. In the same section, we also discuss total orders from a set-
theoretic point of view. We then consider three example applications where the
existence of a total order is used to simplify matters. In Section 3, we define
sorting functions that satisfy the above properties. In Section 4 we show how
to simplify J Moore’s finite set theory book [12]. In Section 5, we show how to
simplify a book on records due to Kaufmann and Sumners [14, 10]. Section 6
contains the conclusions. The full proofs can be found in the supporting books,
which are freely available. In this paper we often omit definitions, theorems, and
parts of events (such as the :rule-classes portion of theorems) for presentation
purposes.

2 Total Orders

We show that extending ACL2 Version 2.5 with a total order on the bad atoms is
equivalent to extending ACL2 with a total order on the ACL2 universe. The full
ACL2 proofs are in the book total-order, which is written for ACL2 Version
2.5. We also discuss total order from a set-theoretic point of view.

2.1 A Total Order for ACL2

We start by defining bad-atom.

(defun bad-atom (x)
(not (or (consp x)

(acl2-numberp x)
(symbolp x)
(characterp x)
(stringp x))))

We now use defaxiom to introduce a total order. A relation 4 is a total order
if it satisfies the following.

1. x 4 x
2. x 4 y ∧ y 4 x ⇒ x = y
3. x 4 y ∧ y 4 z ⇒ x 4 z
4. x 4 y ∨ y 4 x

A partial order is one satisfying the first three conditions, reflexivity, antisym-
metry, and transitivity, respectively. Notice that reflexivity follows from totality,
the fourth condition. In the ACL2 logic, we have the following definitions.



3

(defstub bad-atom<= (* *) => *)

(defmacro boolp (x)
‘(or (equal ,x t)

(equal ,x nil)))

(defaxiom boolp-bad-atom<=
(boolp (bad-atom<= x y)))

(defaxiom bad-atom<=-antisymmetric
(implies (and (bad-atom x)

(bad-atom y)
(bad-atom<= x y)
(bad-atom<= y x))

(equal x y)))

(defaxiom bad-atom<=-transitive
(implies (and (bad-atom<= x y)

(bad-atom<= y z)
(bad-atom x)
(bad-atom y)
(bad-atom z))

(bad-atom<= x z)))

(defaxiom bad-atom<=-total
(implies (and (bad-atom x)

(bad-atom y))
(or (bad-atom<= x y)

(bad-atom<= y x))))

We say that function f is a total order on objects recognized by o if f satisfies
the properties obtained by replacing bad-atom with o and bad-atom<= by f in
the four preceding properties.

We use bad-atom<= to define atom-order, a total order on atoms by using <=
to compare numbers, char-code to compare characters, string<= to compare
strings, symbol-< to compare symbols and bad-atom<= to compare everything
else. Moreover, in this order numbers precede characters, which precede strings,
which precede symbols, which precede bad atoms. The definition follows.

(defun atom-order (x y)
(cond ((rationalp x)

(if (rationalp y)
(<= x y)

t))
((rationalp y) nil)
((complex-rationalp x)
(if (complex-rationalp y)



4

(or (< (realpart x) (realpart y))

(and (= (realpart x) (realpart y))

(<= (imagpart x) (imagpart y))))

t))

((complex-rationalp y)

nil)

((characterp x)

(if (characterp y)

(<= (char-code x)

(char-code y))

t))

((characterp y) nil)

((stringp x)

(if (stringp y)

(and (string<= x y) t)

t))

((stringp y) nil)

((symbolp x)

(if (symbolp y)

(not (symbol-< y x))

t))

((symbolp y) nil)

(t (bad-atom<= x y))))

With the help of a few lemmas, we have that atom-order is a total order on
atoms.

We now define a total order on the ACL2 universe as follows.

(defun total-order (x y)

(cond ((atom x)

(cond ((atom y)

(atom-order x y))

(t t)))

((atom y) nil)

((equal (car x) (car y))

(total-order (cdr x) (cdr y)))

(t (total-order (car x) (car y)))))

It follows directly from the definition of a total order (at the beginning
of this section, and in book total-order in the supporting materials) that
total-order is a total order on the ACL2 universe. We have shown that adding
a total order to the bad atoms in ACL2 implies that there is a total order on
the ACL2 universe. The other direction is straightforward and is given in the
supporting book total-order-easy-direction.



5

2.2 Soundness

We have seen that adding axioms to ACL2 positing the existence of a total order
on the whole of the ACL2 universe is equivalent to adding axioms positing the
existence of a total order on the bad atoms. An important question is whether
adding such axioms preserves soundness.

Soundness is preserved, as we now show. First, note that if the ACL2 axioms
are sound, there are models with no bad atoms: although the axioms do not
close the universe, neither do they populate it with bad atoms. Thus, if we can
show that there is a total order on the ACL2 universe without bad atoms, we
are done. A proof of this can be found in the supporting book soundness.

We define a good atom as follows.

(defun good-atom (x)
(and (atom x)

(or (acl2-numberp x)
(symbolp x)
(characterp x)
(stringp x))))

A predicate to recognize good objects, objects in the ACL2 universe without
bad atoms (i.e., objects built from good-atoms), follows.

(defun good-object (x)
(if (consp x)

(and (good-object (car x))
(good-object (cdr x)))

(good-atom x)))

In the book soundness we exhibit a total ordering on the good objects. The
definitions follow closely those in the previous section, thus we do not present
them here.

Finally, we note that a somewhat stronger property holds for the axioms on
total order, namely, conservativity: No additional theorems are provable from any
ACL2 Version 2.5 books not involving the total order on bad atoms when the
axioms on bad-atom are added. This is immediate from the lemma immediately
preceding the theorem in Appendix B of [9], which in fact guarantees that it is
conservative to add a bijection of the ACL2 universe with the natural numbers.

2.3 Total Orders From a Set-Theoretic Perspective

In this section we review some well-know facts about total orders in a purely
set-theoretic setting. Good references include the books by Kunen, Devlin, and
Halmos [11, 3, 4] and Part B of the Handbook of Mathematical Logic [1], es-
pecially chapter B.2 on the Axiom of Choice [5]. This section can be skipped
without impacting readability of the rest of this paper.

Recall the Axiom of Choice, which (among many equivalent formulations)
can be stated as follows: every set can be well-ordered. Thus, in ZFC (Zermelo-
Frankel set theory with the Axiom of Choice), every set can be totally ordered.



6

In ZF (ZFC without the Axiom of Choice), one cannot prove that every set
can be totally (linearly) ordered. One needs further axioms, but not the full
power of the Axiom of Choice. For example, the Boolean Prime Ideal Theorem,
a weaker statement than the Axiom of Choice, will do. The Boolean Prime
Ideal Theorem (every Boolean algebra has a prime ideal) is equivalent to the
Compactness Theorem of model theory: If every finite subset of S, a set of first-
order sentences, has a model, then S has a model. From the compactness theorem
one can prove that every set can be totally ordered.

Define Cn, for n a positive integer, to be the following statement.

If F is a family of sets each of which has exactly n elements, then F has
a choice function.

C2 is not provable in ZF. An instructive example of this is due to Russell.
Consider an infinite set of pairs of shoes. A choice function (a function that
chooses one shoe from each pair) is easy to find, e.g., always choosing the right
shoe will do. In contrast, consider an infinite set of pairs of socks (where there is
no distinction between the socks in a pair). It does not seem possible to construct
a choice function, as there is no way to simultaneously choose one of the two socks
for each pair. Tarski initiated the investigation of the Cn statements and showed
that C2 implies C4. There have been various papers clarifying the relationships
between combinations of Cn’s, e.g., it is known that C2 implies Cn is provable
iff n is 1,2, or 4.

We raised the Cn problem because there is an obvious parallel between the
socks problem and the problem mentioned in the introduction, namely the prob-
lem of sorting lists of length two. In both cases, we are required to find a choice
function on a collection of pairs, where there is no way to distinguish between
elements in a pair.

2.4 The Total Order in ACL2 Version 2.6

We have justified adding axioms to ACL2 positing the existence of a total order.
We now give an overview of the total order provided with ACL2 Version 2.6. The
file axioms.lisp contains the definition of function bad-atom and axioms posit-
ing that bad-atom<= is a total order on the bad atoms, as above. The function
alphorder is defined and shown to be a total order on atoms. The definition
of alphorder is similar to our definition of atom-order. Finally, lexorder, a
function corresponding to our total-order, is defined and shown to be a total
order on the ACL2 universe. In directory books/misc, the ACL2 distribution for
Version 2.6 contains the book total-order, which defines an order << based on
lexorder: (<< x y) if and only if x and y are not equal and (lexorder x y).
Having justified the addition of new axioms positing the existence of a total
order, we will now use the Version 2.6 books in the sequel.



7

3 Sorting

We show how the new total ordering axioms can be used to sort arbitrary ACL2
objects. We then define insertion sort and quicksort and show that they are
equal.

Our approach is in line with ACL2 tradition: we define total functions with an
intended domain, generally the set of true (null-terminated) lists, while keeping
the definitions simple by avoiding any reference to the intended domain. For the
most part, we can prove theorems that do not contain assumptions about the
intended domain (i.e., true-listp hypotheses). This leads to simpler rewrite
rules (see [7] for a full explanation).

3.1 Permutations and Ordered Lists

We start by defining perm, a function that checks if its arguments are permuta-
tions, and related theorems in the book perm.

(defun in (a X)
(cond ((atom X) nil)

((equal a (car X)) t)
(t (in a (cdr X)))))

(defun remove-el (a x)
(cond ((atom x) nil)

((equal a (car x)) (cdr x))
(t (cons (car x) (remove-el a (cdr x))))))

(defun perm (x y)
(cond ((atom x) (atom y))

(t (and (in (car x) y)
(perm (cdr x) (remove-el (car x) y))))))

We prove that perm is an equivalence relation.

(defequiv perm)

This allows us to use congruence-based reasoning and we prove various con-
gruence rules, including the following.1

(defcong perm perm (append x y) 1)
(defcong perm perm (append x y) 2)
(defcong perm perm (cons x y) 2)
(defcong perm equal (in x y) 2)

In the book perm-order, we define the function orderedp which checks if its
argument is ordered, using the total order lexorder.

(defun <<= (x y) (lexorder x y))

1 Close analogues of these results are proved with the built-in ACL2 function
mini-proveall.



8

(defun orderedp (x)
(cond ((atom x) (null x))

(t (or (null (cdr x))
(and (<<= (car x) (cadr x))

(orderedp (cdr x)))))))

3.2 Insertion Sort

In the book insertion-sort, we define insertion sort as follows.

(defun insert (a x)
(if (consp x)

(if (<<= a (car x))
(cons a x)

(cons (car x) (insert a (cdr x))))
(list a)))

(defun isort (x)
(if (consp x)

(insert (car x) (isort (cdr x)))
nil))

We prove the usual theorems, taking advantage of the total order to eliminate
the need for hypotheses that restrict the types of the list elements.

(defthm ordered-sort
(orderedp (isort x)))

(defthm perm-sort
(perm (isort x) x))

We also prove the following theorem, thereby showing how to solve the problem
we raised in the introduction.

(defthm main
(equal (perm x y)

(equal (isort x)
(isort y))))

Two related theorems, showing that any ordered permutation of an object
equals the isort of the object and that ordered permutations are equal follow.

(defthm main2
(implies (and (orderedp x)

(perm x y))
(equal (isort y)

x)))



9

(defthm main3
(implies (and (orderedp x)

(orderedp y)
(perm x y))

(equal x y)))

3.3 Quicksort

In the book quicksort, we define quicksort as follows.

(defun less (x lst)
(cond ((atom lst) nil)

((<< (car lst) x)
(cons (car lst) (less x (cdr lst))))

(t (less x (cdr lst)))))

(defun notless (x lst)
(cond ((atom lst) nil)

((not (<< (car lst) x))
(cons (car lst) (notless x (cdr lst))))

(t (notless x (cdr lst)))))

(defun qsort (x)
(cond ((atom x) nil)

(t (append (qsort (less (car x) (cdr x)))
(list (car x))
(qsort (notless (car x) (cdr x)))))))

Besides proving the obvious theorems,

(defthm qsort-is-ordered
(orderedp (qsort x)))

(defthm perm-qsort
(perm (qsort x) x))

we also prove the following theorem, with the help of theorem main2, which
relates quicksort and insertion sort.

(defthm qsort-main
(equal (qsort x)

(isort x))
:hints (("goal" :use (:instance main2 (x (qsort x)) (y x)))))

A referee has noted that the use of a total order on the ACL2 universe can
lead to code that is computationally less efficient than the use of an order on
the intended domain, for example in sorting. As the referee also points out, this
need not be a troublesome issue: it would be straightforward to define two sets
of functions, one using the total order on the ACL2 universe and one using
the domain-specific order, and then prove their correspondence on the intended



10

domain. Then one can happily use the first set of functions for reasoning and
the second set of functions for execution.

4 Set Theory

Various efforts to design ACL2 books on set theory have led researchers to define
a function, call it c, to put sets into a canonical form. Ideally, c should have the
property that X and Y are equal as sets iff (equal (c X) (c Y)). It is not
possible to define such a function without restricting the set of objects that can
be put into canonical form. (See the discussion of pairs of socks in Section 2.3.)
In this section, we examine J Moore’s book on finite set theory [12] and show
how it can be simplified with the use of a total order.

J Moore’s books on set theory, which can also be found in the ACL2 distri-
bution in directory books/finite-set-theory/, are included in the supporting
books. They are total-ordering-original and set-theory-original. The
books total-ordering and set-theory, also part of the supporting books, are
based on Moore’s books, but use the total order. We now discuss the differences.

The original books include a definition of “ordinary” objects and “standard”
atoms.

(defun ordinaryp (x)
(cond ((atom x)

(or (acl2-numberp x)
(characterp x)
(stringp x)
(symbolp x)))

(t (and (consp x)
(ordinaryp (car x))
(ordinaryp (cdr x))))))

(defun standard-atom (x)
(or (acl2-numberp x)

(characterp x)
(stringp x)
(symbolp x)))

A binary function, <<, is defined and shown to be a total order on ordinary
objects. In addition, various functions, including o-fix, a function which con-
verts objects into ordinary objects, are used to define canonicalize, a function
that puts ordinary objects into canonical form, and canonicalp, a function that
recognizes canonical objects.

With our books, the functions ordinaryp, standard-atom, and o-fix are
not required and all of the theorems and definitions that depend on them can
be elided or simplified. For example, the theorem



11

(defthm ordinaryp-set-insert
(implies (and (ordinaryp e)

(ordinaryp x))
(ordinaryp (set-insert e x))))

appears in the original books but is not needed in our books. The theorem

(defthm <<-cons-1
(implies (and (ordinaryp x)

(ordinaryp y))
(<< x (cons x y))))

which gives rise to a conditional rewrite rule is simplified to the following un-
conditional rewrite rule in our books.

(defthm <<-cons-1
(<< x (cons x y)))

The conceptual simplifications result in better certification times. In one pair
of tests the new books required 3 minutes and 4.9 seconds of user time to certify
whereas the original books required 4 minutes and 21.0 seconds.

5 Records

Many different approaches to dealing with records have appeared in the work
of various ACL2 users. This is not surprising, as records play an important role
in programming. One approach is to use alists, where the car of an element
indicates the field and the cdr indicates the value. For big projects such as the
FM9801 verification effort by Sawada [13] the structures book by Bishop Brock
has been found useful [2]. At the first ACL2 Workshop, Ken Albin gave a talk
where he reviewed some of the approaches to memory modeling and requested
that the community come up with a nice solution.

One problem from which all of the above approaches suffer is the complexity
of the rewrite rules obtained. For example, when using alists one often uses
congruence-based reasoning because there are many ways to represent the same
record: permutations of the alist tend to represent the same record.

A very promising approach to dealing with records in ACL2 is due to Kauf-
mann and Sumners. They developed a book on records with very simple rewrite
rules: specifically, there are no hypotheses that require objects to be well-formed
records. Here are the main theorems proved, where s is a function to set a field
in a record and g is a function to the get the value of a field in a record. The
complete proof scripts are from [14] and are in the book records-original
which is part of the supporting materials.

(defthm s-same-g
(implies (force (fieldp a))

(equal (s a (g a r) r)
r)))



12

(defthm g-same-s
(implies (force (fieldp a))

(equal (g a (s a v r))
v)))

(defthm s-same-s
(implies (force (fieldp a))

(equal (s a y (s a x r))
(s a y r))))

(defthm s-diff-s
(implies (and (force (fieldp a))

(force (fieldp b))
(not (equal a b)))

(equal (s b y (s a x r))
(s a x (s b y r))))

:rule-classes ((:rewrite :loop-stopper ((b a s)))))

(defthm g-diff-s
(implies (and (force (fieldp a))

(force (fieldp b))
(not (equal a b)))

(equal (g a (s b v r))
(g a r))))

We do not give the definitions of s and g here, as they are complicated and
not germane to this paper. The interesting thing about this approach is that the
focus is on the algebraic properties of the functions in question. Even though
the definitions of s and g are messy, it does not matter because the rewrite rules
obtained are very simple and when proving theorems we only use the rewrite
rules, as the definitions of s and g are disabled.

One drawback is the need for hypotheses about objects being fields. The
reason for this is no surprise. We need a way to order objects and since we cannot
order bad atoms, we are forced to choose a subset of the ACL2 universe and to
require that objects are in this class, by adding hypotheses to our rewrite rules.
When we subsequently decide to use some other type of field, we have to revise
the book. For example, originally fields were symbols, then they became symbols
or integers, and one can imagine many definitions of “field”. The most general
hypothesis is probably that they are good objects as defined in the set theory
section, above. Using the total order we can now prove the following theorems.
The full proof scripts are in the supporting book records. Also, records books
that take advantage of the total order are described in [10].

(defthm s-same-g
(equal (s a (g a r) r)

r))



13

(defthm g-same-s
(equal (g a (s a v r))

v))

(defthm s-same-s
(equal (s a y (s a x r))

(s a y r)))

(defthm s-diff-s
(implies (not (equal a b))

(equal (s b y (s a x r))
(s a x (s b y r))))

:rule-classes ((:rewrite :loop-stopper ((b a s)))))

(defthm g-diff-s
(implies (not (equal a b))

(equal (g a (s b v r))
(g a r))))

As before, we get a non-trivial reduction in the both the size of the resulting
books and the certification time. The size of the original records book is 382 lines,
whereas our book is 288 lines. In addition, the certification time was reduced
from 74 seconds to 33 seconds. Perhaps more important is the elimination of
hypotheses, resulting in more efficient rewrite rules.

6 Conclusion

We presented new ACL2 axioms positing the existence of a total order on the
ACL2 universe. These axioms have been added to ACL2 Version 2.6. We showed
that a total order often simplifies ACL2 books and leads to simpler and more
efficient rewrite rules. We applied the ideas to develop books on sorting and to
simplify existing books on finite set theory and records.

Acknowledgements

We received many useful comments from Rob Sumners and the rest of the Austin
ACL2 group. We also thank the referees for their useful observations, which we
believe have improved the final presentation.

References

[1] J. Barwise, editor. Handbook of Mathematical Logic. North-Holland, 1977.
[2] B. Brock. Defstructure for ACL2, 1997. See URL http://www.cs.utexas.edu/-

users/moore/publications/acl2-papers.html#Utilities.
[3] K. Devlin. The Joy of Sets: Fundamentals of Contemporary Set Theory. Springer-

Verlag, second edition, 1992.



14

[4] P. R. Halmos. Naive Set Theory. Van Nostrand, 1960.
[5] T. J. Jech. About the axiom of choice. In J. Barwise, editor, Handbook of Math-

ematical Logic. North-Holland, 1977.
[6] M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Publishers, June 2000.
[7] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, July 2000.
[8] M. Kaufmann and J. S. Moore. ACL2 homepage. See URL http://www.cs.-

utexas.edu/users/moore/acl2.
[9] M. Kaufmann and J. S. Moore. Structured theory development for a mechanized

logic. Journal of Automated Reasoning, 26(2):161–203, February 2001.
[10] M. Kaufmann and R. Sumners. Efficient rewriting of data struc-

tures in ACL2. In Proc. ACL2 Workshop 2002, 2002. See
http://www.cs.utexas.edu/users/moore/acl2/workshop-2002/.

[11] K. Kunen. Set Theory - an Introduction to Independence Proofs, volume 102 of
Studies in Logic and the Foundations of Mathematics. North-Holland, Amster-
dam, 1980.

[12] J. S. Moore. Finite set theory in ACL2. In R. J. Boulton and P. B. Jackson,
editors, The 14th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2001), volume 2152 of LNCS, pages 313–328. Springer-Verlag,
Sept. 2001.

[13] J. Sawada. Formal Verification of an Advanced Pipelined Machine. PhD thesis,
University of Texas at Austin, Dec. 1999. See URL http://www.cs.utexas.edu/-

users/sawada/dissertation/.
[14] R. Sumners. An incremental stuttering refinement proof of a concurrent pro-

gram in ACL2. The University of Texas at Austin, Technical Report TR-00-29,
November 2000.


