
 Flight Critical Software and Systems Development
Using ASSERT™

Kit Siu, Abha Moitra,
Michael Durling, Andy Crapo,

Meng Li, Han Yu,
Heber Herencia-Zapana,

Mauricio Castillo-Effen, Shiraj Sen
General Electric Global Research Center

Niskayuna, NY

Craig McMillan,
Daniel Russell, Sundeep Roy

General Electric Aviation Systems
Grand Rapids, MI

Panagiotis Manolios
Northeastern University

Boston, MA

Abstract—The size and complexity associated with software
that monitors, controls, and protects flight critical products
continues to grow. This is compounded by an increased use of
autonomous systems which are just as complex, if not more so,
since many operator responsibilities are supported and replaced
by software in unmanned systems. Further, these systems are
subject to cyber-enabled attacks, thereby necessitating another
level of complex software to ensure security. General Electric has
devoted a team to research and develop a new suite of tools to
address the challenges with design, development, and verification
of these software-intensive products. The goals are to develop
technology, processes, and tools that result in more efficient
software and system development as measured by cost and cycle
time, and to enable new capabilities such as autonomy and the
Industrial Internet. This paper will introduce the GE approach to
formal requirements capture, requirements analysis, and auto test
generation. We will introduce the ASSERT™ tool chain (Analysis
of Semantic Specifications and Efficient generation of
Requirements-based Tests). We will demonstrate aspects of the
tool on an autonomous aerial inspection system.

Keywords—UAS; Validation; Verification; Formal
Requirements Capture; Semantic Model; Ontology; Requirements
Analysis; Auto Test Generation.

I. INTRODUCTION

To address the cost and cycle time of developing flight
critical software, we must first understand where faults are
introduced in the software development process, when they are
found, and the relative cost to repair them (Fig.1). As much as

35% of the faults are introduced in the requirements engineering
phase, yet only 1% are found [1]. By the code development and
unit test phase, collectively 90% of the errors will have been
introduced, yet only 19.5% will have been found. Faults become
costlier to fix later in the development process – 6.5x more to
rework in the code development phase and as much as 40x to
110x more in system test and customer acceptance test [1].
There are numerous studies and publications that advocate for
better requirements and better testing to minimize project
rework cost and mitigate risks in later stages of the software
development process [2, 3, 4]. Added to this is the special
attention that flight critical software receives because its size and
complexity continue to grow as we push more and more operator
functionality to the software, and now even more so with
autonomous systems where flight operation and safety must be
handled without human intervention [5].

These concerns are not new to aviation and airborne systems.
The need for quality software developed with managed cost has
always been paramount to the reputation of the industry and the
survival of its suppliers. There are published guidelines such as
DO-178 by which certification authorities such as the FAA and
EASA approve software based aviation systems. Motivated by
the newest revisions to these guidelines [6] and the continued
growth in size and complexity associated with flight critical
software, GE has devoted a team of researchers to develop a new
suite of tools that augment the software development process
with technology that discovers and removes faults early (Fig. 2).
In the Requirements Capture phase we introduce technology to
write requirements in a way that is unambiguous, human

 Figure 1. Software development process and where faults are introduced.

Figure 2. The software development process augmented with technology
using ASSERT™ that discovers and removes faults early.

readable, and computer analyzable. Because the requirements
are formalized, we analyze them in the Requirements Analysis
phase to provably say, among other things, if two or more
requirements conflict with each other or if a set of requirements
are complete, etc. If requirements do not satisfy the analyses, the
end user is then able to correct the requirements, guided by error
localization and counterexamples, and apply Requirements
Analysis again. After the requirements have passed analysis, test
cases are automatically generated to produce a set of
Requirements-Based Test Cases to be run against the artifacts
produced during the Detailed Software Design and Code phases.
These test cases are applied during various test phases. The
technologies mentioned above are packaged within our tool
called ASSERT™ - Analysis of Semantic Specifications and
Efficient generation of Requirements-based Tests.

There are other tools that capture formal requirements and
analyze them [7, 8, 9, 10, 11]. One tool in particular is SpeAR –
Specification and Analysis of Requirements [12, 13], which is
an open source tool and language that allows for capturing and
analyzing requirements. SpeAR uses semantics of the Lustre
synchronous dataflow programming language and Past Linear
Temporal Logic (Past LTL) to express temporal relationships.
SpeAR supports requirements analysis, real-time type checking,
dimensional analysis of unit computations, and other checks to
provide feedback to users that assists them in the elaboration of
well-formed requirements. Some features of SpeAR are
comparable to our tool, though we believe that our tool differs
in the following ways: 1) we rely on ontology-based
technologies, which allow for automated reasoning about
concepts and relationships in the domain relevant to the system
and to the requirements that are being refined and analyzed, and
2) we generate tests based on requirements even before a single
line of executable code is written. ASSERT™ packages all these
capabilities in a tool suite.

In this paper we will work through one illustrative example
using ASSERT™. The paper is organized as follows. Section II
describes the autonomous aerial inspection system, a new GE
product, to which we applied ASSERT™ and which we will use
as the illustrative example throughout the paper. Section III
describes the Requirements Capture technology. Section IV
describes the Requirements Analysis technology. Section V
describes the Requirements-Based Test Case generation
technology. Section VI describes how code is validated against
the auto generated requirements-based test cases in a relevant
test environment. Conclusions are described in Section VII.

II. AN AUTONOMOUS AIR INSPECTION SYSTEM

Early in 2017 GE Ventures spawned Avitas Systems—a GE
Venture [14] which was the result of almost two years’ worth of
effort between researchers and leaders from GE Global
Research, GE Oil & Gas (O&G), and GE Ventures. This
collaboration culminated in an offering to meet the needs of
O&G customers – an autonomous flare-stack inspection product
that reduces inspection time and cost and decreases risk to
humans, while improving accuracy through automation. The
inspection solution uses a small unmanned air system (sUAS)
called Euclid. Euclid’s software components include the Robot
Operating System middleware (ROS), mission planning,
mission execution, flight management, user interfaces, and

vehicle health management. The health management includes
Automated Contingency Management (ACM), which is
modeled after prior work at NASA [15]. The goal of the ACM
is to autonomously adapt to fault conditions while still achieving
mission objectives. It brings the sUAS to a degraded nominal
state if reconfiguration is feasible; otherwise it switches to a
Fail-safe mode to guarantee safety (Fig. 3). The ACM will be
the example in this paper to demonstrate how ASSERT™ was
used to capture, analyze, and refine system requirements.

The ACM is dependent on the proper performance of other
supporting components on the sUAS, such as the battery,
sensors, and the radio link. Euclid’s software includes anomaly
detection of these components. We will demonstrate how
ASSERT™ was used to generate requirements-based test cases
that test the software implementation to detect anomalies in the
power supply (i.e., the battery).

III. REQUIREMENTS CAPTURE

We introduce a Requirements Capture language developed
for use by a requirements engineer that is as close as possible to
English, allowing her to write requirements using terms and
concepts from her domain, yet is formal enough that
requirements written in this language can be analyzed using
formal methods. The underpinning concept is a model that
captures domain concepts in an unambiguous way. By
unambiguous we mean preciseness in concept definition—each
concept has a single meaning that will be shared across all
requirements and by users of the model. This forms a domain
model, which is a formal representation of the concepts that are
used in the domain and what those concepts mean. To build this
domain model, we use an ontology language that is based on set
theory and a decidable fragment of first order logic. It has been
hypothesized that set theory is what humans apply when forming
mental models [16, 17, 18] – an organization of objects based on
a human’s perception of the world. Having a requirements
language that formalizes objects in the same way that an
engineer’s mind works makes the language feel simple and
natural to use.

Set theory allows us to formalize collections of related
objects using sets, also known as classes, and allows us to
formalize relationships between classes, including class
hierarchies. Classes and subclasses have members, or instances.
Properties describe relationships between instances and can be
refined with domain and range, the classes to which these
instances belong. As was the case with classes, there can be
hierarchies of properties. Set theory enables inheritance, which
leads to parsimony in model development.

Figure 3. Euclid’s automated contingency management, modeled after
NASA’s ACM [15].

Giving the requirements engineer a language that is well-
founded allows her to come up with a model that captures the
domain in a formal notation. Once these domain concepts are
defined, they can then be used to express requirements. The
requirements are understandable to practitioners in the domain
because they are expressed in terms compatible with subject
matter experts’ mental models and compatible with the literature
of the domain. The focus is then shifted away from the
formalism itself and towards the domain.

A. From OWL to SADL to SRL

There are several choices when it comes to ontology
languages. We selected the Web Ontology Language (OWL)
[19], which combines set theory with a decidable fragment of
first order logic, because it is a “standard” of the World Wide
Web Consortium (W3C) [20] and it is widely used.

The standard serializations of OWL and its variants are not
very easy or natural for human users to read and write. This was
the motivation for developing a controlled-English language
called the Semantic Application Design Language (SADL),
which is Open Source under the Eclipse Public License [21, 22].
SADL can express all the constructs of OWL Version 1 and
qualified cardinality from OWL Version 2.

SADL allows us to define domain models and also supports
rules as a means of capturing additional domain knowledge.
SADL also provides a number of constructs to help test, debug
and maintain domain models. All valid SADL models are saved
both in SADL textual syntax and in a user-specified standard
serialization of OWL. If rules are present they are saved in a
user-specified target rule language as well.

Besides being an ontology language, SADL is also an Xtext-
based integrated development environment (IDE) [23]. This
environment provides semantic coloring of different types of
concepts in models, hyperlinking of concepts to their definitions
and usage, integration with source code control systems via
Eclipse plug-ins, graphical visualization of models, type
checking, content assist, and other functionality useful for
creating and maintaining models over their lifetime.

More recently, SADL has been extended to support
requirements capture and analysis, which forms the
requirements capture environment for ASSERT™. The SADL
Requirements Language (SRL) [24, 25] is very similar to the
SADL rule language but provides additional expressivity
necessary for capturing requirements. It also provides
specialized keywords and constructs to make it as similar to
natural-language requirements as possible. Here’s an example
of a requirement written using SRL.

Requirement R1.3:
SYSTEM shall set LNAV_Valid of Is_LNAV_Valid to true
when Air_Ground of Aircraft is In_Air.

This requirement, with identifier R1.3, says that the System shall
set LNAV_Valid to true when the property Air_Ground is In_Air.
SRL differentiates between ontology properties whose value is
being set in the “shall” part of the requirement and those
providing the value to be used in the conditional “when” part of
the requirement. The former we call the controlled variables, and
the latter we call the monitored variables.

In addition to the basic type of requirement just illustrated,
SRL supports various other kinds of requirements that
requirements engineers have identified as important for
requirements specification.

 Time-dependent conditions with or without a specified
interval, using the keywords previous, was, was … in the
past <n> <time-unit>, has been, has been … for the past
<n> <time-unit>

 Events, where an event is something that happens at a
point in time.

 Typed lists, where a list is a sequence of instances or
values of a particular class or type. We allow users to
define named and unnamed list classes and we support
about a dozen list operations for replacement, insertion,
retrieval, querying, appending, filtering, ordering, etc.

 Tables provide a compact representation for what would
otherwise be a set of requirements. Each input column
specifies a set of values of an expression over monitored
variables; each output column specifies a corresponding
set of values of a controlled variable. Each row
corresponds to one requirement in the set of equivalent
requirements.

 Decomposition provides abstraction and structuring
mechanisms. Abstract decomposition is used to formalize
requirements that contain unspecified behavior, which
will be refined in lower-level requirements.
Decompositions can be linked together, providing a
structuring capability that allows one to define
functionality that can be reused in multiple contexts.

 Equations are used to describe mathematical concepts
and computations that can be used across different
requirements and projects.

 Assumptions are used to place constraints on monitored
variables. They are used to characterize the valid set of
inputs for a component.

 Assertions are used to formalize conditions under which
the value of the controlled variable is immaterial (“don’t
care” conditions).

The ASSERT™ requirements capture environment is linked
with IBM Rational DOORS®, which may be used for
requirements management. Requirements are captured using
Eclipse and managed using DOORS®. Movement of
requirements between DOORS and ASSERT™ is made
possible through DOORS eXtension Language (DXL) scripts.

B. Requirements Capture applied to Autonomous Air
Inspection System

We developed a domain model for our Autonomous Air
Inspection System. Fig. 4 shows a portion of the domain model
that captures some of the classes and properties for the
Autonomous Air Inspection System. The portion of the model
shown in Fig. 4 focuses on aspects that relate to ACM and code
validation that we will discuss in more detail later. Classes
appear in bold blue, instances appear in light blue, and properties
are in green.

A selection of the requirements for the ACM are shown in
Fig. 5. This set considers Failure_State_Space and the
conditions under which it stays in the same state or transitions to
Degraded_Nominal_State_Space or Degraded_State_Space as
illustrated in Fig. 3.

We want to highlight that both the model and the
requirements are easily understood by a subject matter expert.
Furthermore, capturing the model and the requirements is
facilitated in the Eclipse IDE by type checking, content assist,
etc.

IV. REQUIREMENTS ANALYSIS

The requirements are formally analyzed using the GE
patented Requirements Analysis Engine (RAE) [26]. RAE is
based on theorem proving technology and is the reasoning
engine of the ASSERT™ tool. RAE is built on top of A
Computational Logic for Applicative Common Lisp Sedan
(ACL2s) [27]. ACL2s is an open source, Eclipse plug-in that
provides an integrated development environment and extends
the ACL2 theorem prover. The ACL2 theorem prover is an
industrial-strength theorem prover that has been used to prove
some of the most complex theorems ever proven about industrial
systems [28]. ACL2s extends ACL2 with a powerful
termination analysis capability [29, 30], an automated counter-

example generation engine [31, 32] and an expressive data
definition framework [33].

The Requirements Analysis Engine (RAE) analyzes
requirements captured in the ASSERT™ requirements capture
environment. RAE can be used to analyze both complete and
incomplete sets of requirements, i.e., RAE can provide
meaningful results as soon as requirements are written, even if
not all the requirements in a project are completely captured.
Requirements are analyzed without requiring access to lower-
level requirements, executable code or higher-level
requirements [26].

RAE finds requirements errors early in the process. In fact,
it finds the errors as soon as requirements are written. As we
argued above, numerous studies have shown that one of the
primary reasons that the development of safety-critical systems
is so expensive is that errors tend to be introduced early in the
design process, but are only caught late in the design process.
The longer the gap between error introduction and error
discovery, the larger the costs associated with the error. By

Figure 4. Portion of the Autonomous Air Inspection System domain model.

Figure 5. Selection of ACM requirements: initial set.

providing requirements engineers with immediate feedback on
their requirements, RAE can prevent expensive rework that
potentially involves not only correcting the requirements with
the error, but also propagating those changes forward. This can
affect everything that depends on the corrected requirements,
including lower-level requirements, architecture decisions,
derived requirements, code, etc. With RAE, the costs of fixing
such errors can be significantly reduced: even orders of
magnitude savings are possible.

If RAE reports an error, then it has a proof that the
requirements are actually erroneous. This is important because
false alarms tend to frustrate users of formal methods tools. If a
certain percentage of errors identified by a tool turn out to not
be actual errors, then the effort spent by requirements engineers
in determining what is and what is not an actual error can
partially offset the effort saved by finding errors early.

 When RAE discovers an error, it localizes it and provides
actionable feedback to the requirement engineer. Typically, this
feedback is in the form of a counterexample [31, 32], a minimal
set of requirements, the name of the analysis that failed, and a
helpful explanation. The counterexample can be thought of as a
test case that exhibits why the analysis in question fails for the
set of requirements identified by RAE. Given that projects can
easily contain thousands of requirements, localizing errors by
identifying a small set of requirements that are needed to exhibit
the error is of great practical importance. While most analysis
failures generate counterexamples, some do not. For example, if
requirement R is implied by a set of other requirements, then we
have an independence error. Notice that no test case can exhibit
an independence error. In fact, one would need to consider all
possible test cases to see that requirement R is implied by a set
of requirements. In such cases, RAE will identify a subset of the
requirements that imply R and RAE will provide a helpful
explanation. Given that RAE has a proof of independence, not
just inconclusive evidence of independence, the requirements
engineer can focus all her energy on determining what is wrong
with the requirements.

The Requirements Analysis Engine performs a set of
requirement analyses, as described in this section. These
analyses are done in an order, prescribed in the following way.
First, simpler analyses come before more complex analyses.
Simpler analyses can be performed more quickly and they tend
to find obvious, egregious errors that should be corrected right
away. Second, if performing analysis A can help simplify
analysis B, then analysis A should come before analysis B.
Some of the analyses are simplified with the assumption that the
preceding analyses have already been performed.

Analyses are turned into (ACL2s) theorem proving queries.
In typical cases, such queries return “passed” or “failed.”
However, in general, the result of a query can also be
“undetermined.” This can happen if the query uses an
undecidable fragment of logic. Another reason for undetermined
results is that the underlying logic may be intractable (e.g., the
computational complexity of the decision procedure for the
logic may be non-polynomial) or the theorem prover may run
out of available resources (e.g., a time-out may occur).
“Undetermined” results are not reported as errors, but are
reported as potential errors that requirements engineers are free

to ignore. Our experience has been that undetermined results are
rare.

Currently, requirements analysis is performed only when
initiated by the user. We are working on changes to the tool so
that some of the analyses will be done immediately and feedback
can be provided in real time. The goal is the integration of RAE
and the Requirements Capture environment such that the
selected analyses occur automatically as soon as the user updates
the requirements, without the need for the user to explicitly
initiate the analysis, and RAE errors are displayed as markers in
the requirements editor.

The set of requirements analyses performed by RAE can be
found in [26]. This includes type-safety, contingency,
independence, conflict and completeness analyses. In the next
subsection, we show how RAE is used to analyze our example
system. The mathematical foundations of these analyses can also
be found in [26].

A. Requirements analysis applied to Autonomous Air
Inspection System

The model and requirements developed for the Autonomous
Air Inspection System were analyzed using RAE and the results
were presented in the RAE Viewer (see Fig. 6). The viewer is a
compact, user-friendly way of communicating the analysis
results to the end-user, with the results highlighted in color and

Figure 6. RAE analysis of the initial set of ACM requirements.

actionable feedback in the form of counterexamples displayed
in the output window. Portions of the viewer with analysis
results of the requirements from Fig. 5 are shown in Fig. 6. RAE
groups outputs into ACL2s files. The top part of Fig. 6 shows all
the ACL2s files that were generated and all but one of the files
are shown with green background, meaning that all the
requirement checks passed successfully. The remaining file
(failure_state_DroneSystem) appears with red background
indicating that some requirement checks have failed. Clicking
on that file shows the details of requirement checks that were
run for that file and whether the checks passed or failed. Fig. 6
shows that conflict and completeness checks failed. The RAE
Viewer output window shows the detailed results of all the
checks run and the reason for the conflict check failing. First of
all, it identifies the two requirements that are conflicting
(ContinueInFailureStateSpace and ToDegradedStateSpace2)
and then it specifies a system state under which bodies of both
of these requirements are satisfied and the controlled variable is
being set to two different values. This illustrates how RAE
provides localization (which two requirements have a conflict in
this example) and provides a counterexample (the system state)
which shows the conflict. The counterexample is a test case for
which one requirement claims that failure_state of DroneSystem
should be set to one value, but the other requirement states it
should be set to a different value.

Based on the localization and counterexample, shown in the
RAE Viewer, the requirements engineer will then be able to
refine the requirements to correct the issue. In this case, an extra
“when” condition was left off of one of the requirements and the
corrected set of requirements are shown in the top of Fig. 7 (the
condition that was added has the comment “// added” after it to
make it easier to see the change). With this correction, the model
and requirements were analyzed again using RAE and a portion
of the RAE viewer is shown in the bottom of Fig. 7 indicating
that all the requirements pass all the checks.

So, to recap, the requirements engineer would refine and
revise the requirements over possibly multiple iterations until all
the requirements pass all the checks.

V. REQUIREMENTS-BASED TEST CASES

Software architecture, detailed design, and code is
developed after getting a set of good requirements. We
demonstrated in the previous sections that the set of
requirements coming from Requirements Capture and
Requirements Analysis of ASSERT™ are unambiguous,
conflict-free, and complete. After the software is designed it
needs to be tested, to verify that it adequately satisfies the
requirements. Verification of safety-critical flight systems can
account for as much as a third of the overall cost of the system
[34]. The timeliness of the verification process can also impact
overall business costs.

There is a wealth of publications on automating aspects of
the testing process to cut down the cost of verification. In fact,
many software development environments provide the
capability to automate test execution. Test generation, however,
remains a largely manual process in the industry. There are
several automation approaches in the literature, some suggesting
the use of a specification model like UML [35, 36]. The idea is

to generate test cases from UML diagrams such as state-charts,
use-case diagrams, and sequence diagrams, which describe the
software independent of the way a given system is designed.
This is a fine approach if UML is already part of the business
software development process. Still researchers and
practitioners have found that UML diagrams alone are not
enough to generate testable test cases. In one case UML
diagrams needed to be augmented with information from the
design or from a data dictionary [37].

Then there are other approaches that automate test
generation from a design model or a software program. This is
an especially common approach for generating structural code
coverage tests. There are several approaches that use formal
methods. For example, one uses a model checker to generate

Figure 7. Selection of ACM requirements: corrected after reviewing RAE
analysis.

counterexamples for when an input executed on a program is
“always not P,” where P is a formula that describes a desired
structural coverage criteria [38]. This is also a fine approach,
except that test cases generated from a design cannot be
considered independent and a test generation method that
depends on having a design does not help eliminate errors as
early as possible in the software development process.

Our approach is to use what we have captured up to this point
using ASSERT™ to generate a set of requirements-based test
cases. In this way, we make further use of our well-developed,
formalized set of requirements by developing technology to
automatically generate test cases from requirements. These are
tests cases that can be executed on the code during Unit Test,
Integration Test, and System Test (Fig. 2). Requirements-based
test cases specify sets of inputs, conditions, and expected outputs
derived from requirements and used to verify compliance of the
design with the requirements. Because the requirements are
formalized, they are rich with information such as the inputs and
outputs, their types, and their relationships. We built an
Automated Test Generation (ATG) tool that automatically
extracts this information from the requirements, translates the
information into variable types such as boolean, real, or integer
and constructs their relationships into expressions (Fig. 8).

ATG builds XML data models and refines them along the
way. First, the ATG Translator takes as input the requirements
from ASSERT™’s Requirements Capture and translates them
into an Intermediate Model, which is an XML data model
conforming to an ATG XML schema. This intermediate model
contains all the expressions from the requirements, including
any constraints expressed as assumptions in the requirements.
The ATG Reasoner then analyzes the Intermediate Model and,
based on the requirement expressions and data types, identifies
the test strategies that need to be applied to generate the test
cases. Test strategies can be thought of as ATG’s approach to

generating tests for Modified Condition/Decision Coverage
(MC/DC), equivalence class, robustness, boundary value, etc. In
addition to the Intermediate Model, the Reasoner can also
incorporate manually generated test cases into its analysis. ATG
supports the capability to add manual test cases because in
industry there could be a set of legacy test cases for a product
line, or there could be some special test points that an engineer
would like to test. The Reasoner produces Internal Test
Objective Models (ITOMs), which are data models of test cases
in XML, produced to conform to an ATG ITOM schema. At this
point the ITOMs are used to produce two things: human-
reviewable test cases and machine-readable test procedures. The
purpose of having human-reviewable test cases is so the test
engineer can read from a text file a list of test cases and the test
objectives they cover. This text file is produced by the ATG
Interpreter. The machine-readable test procedures are in XML
which can be further converted to a format executable in a test
environment relevant to the design, making the test procedures
generally applicable. The ATG Synthesis produces the test
procedures by performing several things: 1) reachability
analysis, 2) expression simplification, 3) test case optimization,
4) test data generation, and 5) test procedure generation.

A. Test Strategies

Test strategies can be thought of as ATG’s approach to
generating tests that align with DO-178C test objectives, such
as MC/DC, boundary value, equivalence class, and robustness
test [6]. The test strategies are listed in Table 1 and are designed
to map to the kinds of requirements found in industry,
supported by ASSERT™’s Requirements Capture.

TABLE I. REQUIREMENTS-BASED TEST STRATEGIES

Test
Strategies

Applied Requirement Examples
Test
Objectives

Logic
Coverage

SYSTEM shall set mode of CMA to Normal
when level > min and
 level <= max.

MC/DC,
Decision
Coverage,
Condition
Coverage

Event
SYSTEM shall set x to y
when event1 is received for SYSTEM

Event can
only be the
triggers

Equivalence
Class

SYSTEM shall set x to y
when y > 50 and z < 100

Boundary
value,
Equivalence
class, and
Robustness

List
SYSTEM shall replace x in list1 with z
when list1 contains x

Min and
max list
size.
First, middle
and last
elements.

Timing
SYSTEM shall set x to y
when x has been y for the past 5 seconds

Leading
trigger and
Lagging
trigger

Assumption SYSTEM assumes that x is y
Assumption
s invalidate
test cases

Equation

SYSTEM shall set x to Formula(x, y).

Equation Formula (real i2, real i8) returns
real (sin(i2)^2 + cos(i8)^2)/2

Sufficiently
test
parameter
range

Figure 8. Components within Automated Test Generator of ASSERT™.

Automated Test Generation

Translator

Requirements

Machine-
Readable Test

Procedures

Test
Strategies

Intermediate
Model

ITOM

Reasoner

Interpreter

Human-
Reviewable
Test Cases

Synthesis

Solvers

Manual
Test Cases

We will now provide a more in-depth discussion of one of
these test strategies – logic coverage as it relates to MC/DC test
objective [39]. MC/DC is a method of ensuring adequate testing
for safety-critical software. It refers to having test cases that
cover all the following: 1) each entry and exit point in a
software statement is invoked, 2) each decision in the software
takes on all possible outcome, 3) each condition in a decision
in the software takes on all possible outcome, 4) each condition
in a decision in the software independently affects the outcome
of the decision. MC/DC is software centric – it is thought of in
the context of code coverage, thereby it invokes ideas on how
to exercise the code and leads to automation solutions that rely
on using the code to generate tests [40, 41, 42]. A point of
departure with our tool is that we insist on testing 100% of the
requirements, automatically generating test cases from the
requirements. Our conjecture is that if the code is a truthful
representation of the high-level requirements, then MC/DC test
cases generated from requirements are applicable to the design
and are expected to provide a high degree of coverage. After
applying the requirements-based test cases, if the design and
structural coverage analysis finds gaps in code coverage, then
we review the code for things like undesired behavior, dead
code, and derived requirements. The requirements are also
further refined and implementation decisions are made,
including decisions on data structures and algorithms.

Here is an illustrative example of requirements-based test
cases automatically generated following MC/DC test
objectives. Suppose ATG receives a requirement that says:

SYSTEM shall set LNAV_Valid of Is_LNAV_Valid to true
when
(Air_Ground of Aircraft is In_Air and
((Speed of Aircraft > 100) or
 (Active_Plan_Exists of FlightPlanManager is true) or
 (LNAV_TO_Capable of Is_LNAV_Valid is true))).

The ATG Translator produces an intermediate model
containing a mathematical expression equivalent to the logic
diagram in the top of Fig. 9. This requirement has 4 conditions

and 4 decisions. The ATG reasoner applies the logic coverage
test strategy and produces the set of test cases in a human-
reviewable format as shown in the bottom of Fig. 9. In this
example, four test cases are produced following MC/DC
criterion. The highlighted test case TC002 demonstrates that
condition 2.2, marked with an asterisk T*, independently
affects the decision in this requirement. (Note: the parentheses
around F have no meaning; they are only there for readability,
to more easily distinguish the letter T from F.) This set of test
cases alone would not satisfy MC/DC because it does not
contain a test for when all the conditions are set to F. ATG only
generates test cases that satisfy each requirement. A test case
where all the conditions are F would have to come from another
requirement where LNAV_Valid is set to F. If this requirement
was missing from the set, the user would have been notified by
the RAE of a requirements completeness error.

B. ATG Synthesis

The ATG Synthesis takes as input the ITOMs and performs
several functions: 1) reachability analysis to filter out the test
cases that are invalid, 2) expression simplification to reduce
redundant expressions in the ITOM, 3) test case optimization to
combine test cases to get a reduced set, 4) test data generation to
generate test data that satisfies the constraints indicated by the
test cases, and 5) test procedure generation to sequence the test
cases with the test data into test procedures.

The ATG Synthesis analyzes the ITOMs and synthesizes
their equivalent satisfiability modulo theories (SMT) formula.
Different SMT constraint solvers are invoked depending on the
input data types of the SMT formulas. For example, one SMT
solver may be invoked to solve an SMT formula that contains
nonlinear arithmetic constraints, while another SMT solver may
be invoked to solve the simple first-order relational or logical
constraints. The solver utilizes applicable theories (e.g., theory
of arrays, theory of datatypes, theory of linear and nonlinear
arithmetic) to check the satisfiability of the SMT formulas. If the
SMT formulas are satisfiable, a test vector will be generated
with concrete values assigned to the variables in the ITOM,
making up the test data for the test procedures. In case of
unsatisfiability, the ITOM will be reported as unreachable with
the corresponding rationale provided from querying the solver.

The ATG Synthesis reduces the number of test cases using
an SMT solver. For example, heuristics-based optimization can
guide the SMT solver to generate a single test case which
satisfies the constraints in more than one ITOM. This implies
that several test cases can be combined and tested together. Fig.
10 shows a simple example of how test cases can be combined.
Reducing the number of test cases is always desirable since it
has a direct impact on reducing the cost of testing, an important
factor in industry.

C. Requirements-Based Test Cases applied to Autonomous
Air Inspection System

ATG generated 105 test cases to cover all the test strategies
for the ACM requirements in the Autonomous Air Inspection
System. Fig. 11 shows one of these for testing the requirement

Figure 9. ATG generated requirements-based test cases following MC/DC
test objective.

named loadBatteryLimits from Fig 5. This requirement specifies
when the property setBatteryLimits is to be set to true; a portion
of the human-reviewable test case file is shown at the top of Fig.
11 for logic coverage for that requirement. Notice that the
human-reviewable test case file shows which condition is being
verified in the test case (under the “when“ part) and which
conditions are being held (under the “while” part). The human-
reviewable test cases do not contain the concrete test values.
These values come from the auto-generated test procedures,
which will be used in code validation.

VI. CODE VALIDATION

The auto-generated test procedures containing concrete test
values are written in XML and converted to an executable
format for testing in an environment relevant to the design.
Some commonly used test environments in the aviation industry
are Esterel SCADE LifeCycle Qualified Testing Environment,
Rational Rhapsody Test Conductor, and VectorCast. To test a
design implemented using SCADE, for example, we wrote a
translator to convert the test procedure from XML to .sss scripts.
For our Autonomous Air Inspection System, we demonstrate the
use of Google Test to test the ACM code which is written in
C++.

Google Test is a testing framework for C++ based on the
xUnit architecture [43]. Behavior of the system is expressed in
Google Test using assertions, which are macros that resemble
function calls. The results of the assertions can be success,
nonfatal failure, or fatal failure. Fatal failures cause Google Test
to abort the program execution, otherwise it continues with the
run. In either case, when an assertion fails, it provides the test
engineer with information about the file, line number, and a
customizable message about the failure. Fig. 11 shows an
example where we translate our test case into nonfatal assertions
expressed using the functions EXPECT_FALSE(condition) and
EXPECT_TRUE(condition). The test case from the top of Fig.
11 is automatically translated into a two-step test procedure,
shown in the middle of Fig. 11. The first step of the test
procedure is a negation of the verify part, negation of the when

part, and satisfaction of the while part. The test procedure
automatically generated concrete values for critical_threshold =
0.0 and warning_threshold = 101.0 to satisfy the first step. The
second step is a set of concrete values to satisfy the verify, when,
and while parts of the test case, notably critical_threshold = 0.0
and warning_threshold = 100.0. Notice also that the first step of
the test procedure is actually the test case from the inverse of the
requirement for when the property setBatteryLimits is to be set
false. Because ATG automatically sequences test cases, what we
are seeing here is two test cases sequenced and tested together.
The result from Google Test are shown at the bottom of Fig. 11,
demonstrating that the code adequately satisfies the
requirement.

VII. CONCLUSION

The ASSERT™ tool chain is currently being used on several
projects within GE where we have seen reduced cost and
improved cycle time. The tool chain is generally applicable and
is most relevant to projects for industries that must demonstrate
adherence to requirements, either as a contractual obligation,
insurance liability, or as part of customer acceptance test. We
have used ASSERT™ on a flight management application, an
avionics network switch program, an aircraft engine health
monitor program, and a safety controller for a power system. All
these programs experienced the following common benefits.
Capturing requirements using ASSERT™ allowed users to have
the same mental model, which was necessary on large projects
with many developers spanning multiple functions and
organizations. Analyzing requirements with ASSERT™
allowed us to catch and correct requirement errors early in the
development process. Auto-generated test cases and test
procedures using ASSERT™ allowed for test cases to be
generated before writing a single line of code. We hope that with
more demonstrated successes, ASSERT™ can become a
companywide, or even an industry, standard.

Figure 10. ATG synthesis reduces the number of test cases.

Figure 11. ATG test cases, Google Test script and results.

///////////////////////////////
//Checking SetBatteryLimits()
//////////////////////////////
TEST(SetBatteryLimits, setBatteryLimitsFalse_TC002_00A)
{
ContingencyParameters test;
int critical_threshold = 0.0;
int warning_threshold = 101.0;

EXPECT_FALSE(test.setBatteryLimits(critical_threshold, warning_threshold));
}

TEST(SetBatteryLimits, setBatteryLimitsTrue_TC002_00A)
{
ContingencyParameters test;
int critical_threshold = 0.0;
int warning_threshold = 100.0;

EXPECT_TRUE(test.setBatteryLimits(critical_threshold, warning_threshold));
}

Please contact Michael Durling (durling@ge.com) for more
information about using ASSERT™.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Christin Rauche, Scott
Stacey, Gary Quackenbush, and Michael Idelchik for their
unwavering support throughout the course of this research.

REFERENCES
[1] Software Engineering Institute, “Reliability validation and improvement

framework,” Special Report, CMU/SEI-2012-SR-013, November 2012.

[2] R. Charette, “Why software fails,” IEEE Spectrum, pp. 42-49,
September 2005.

[3] Research Triangle Institute, “The economic impacts of inadequate
infrastructure for software testing,” NIST Planning Report 02-3, May
2002.

[4] D. Galin, “Software quality assurance: from theory to implementation,”
Harlow, England: Pearson Education Limited, 2008.

[5] D. Dvorak, "NASA study on flight software complexity," AIAA
Infotech Aerospace Conference and AIAA Unmanned, Unlimited
Conference, 2009.

[6] "DO-178C Software Considerations in Airborne Systems and
Equipment Certification," RTCA, 12/13/2011.

[7] E. Borger, E. Riccobene, J. Schmid, “Capturing requirements by abstract
state machines: the light control case study,” Journal of Universal
Computer Science, pp. 597-620, 2000.

[8] N. Leveson, M. Heimdahl, H. Hildreth, J. Reese, “Requirements
specification for process-control systems,” IEEE Transaction on
Software Engineering, September 1994.

[9] S. Rayadurgam, A. Joshi, M. Heimdahl, “Using PVS to prove properties
of systems modelled in a synchronous dataflow language,” International
Conference on Formal Engineering Methods, November 2003.

[10] J. Badger, D. Throop, C. Claunch, “VARED: Verification and analysis
of requirements and early designs,” IEEE Requirements Engineering
Conference (RE14), Karlskrona, Sweden, 2014.

[11] Y. Zhao, “K. Rozier, “Formal specification and verification of a
coordination protocol for an automated air traffic control system,”
Science of Computer Programming Journal, volume 96, number 3, pp.
337-353, December 2014.

[12] GitHub SpeAR [Online] https://github.com/lgwagner/SpeAR.

[13] K. Gross, A. Fifarek, J. Hoffman, “Incremental formal methods based
design approach demonstrated on a coupled tanks control system,” IEEE
17th International Symposium on High Assurance Systems Engineering,
2016.

[14] Avitas Systems—A GE Venture [Online] http://www.avitas-
systems.com/

[15] NASA Automated Contingency Management. [Online]
https://ti.arc.nasa.gov/tech/dash/pcoe/automated-contingency-
management/

[16] P. Johnson-Laird, “Mental models: towards a cognitive science of
language, inference, and consciousness,” Harvard University Press,
Cambridge, MA, 1983.

[17] P. Johnson-Laird, “Mental models: the computer and the mind,”
Harvard University Press, Cambridge, MA, 1988.

[18] P. Johnson-Laird, “Human and machine thinking,” Lawrence Erlbaum
Associates, Hisdale, NJ, 1993.

[19] OWL Web Ontology Language Reference: W3C Recommendation 10
February 2004, available on-line at http://www.w3.org/TR/owl-ref .

[20] W3C [Online] https://www.w3.org .

[21] Semantic Application Design Language (SADL). [Online]
http://sadl.sourceforge.net/index.html .

[22] A. Crapo, A. Moitra, “Toward a unified English-like representation of
semantic models, data, and graph patterns for subject matter experts,”
International Journal of Semantic Computing, Vol. 7, No. 3, 2013, pp.
215-236.

[23] Xtext: Language Engineering for Everyone. [Online]
http://www.eclipse.org/Xtext/.

[24] “Safety critical software and systems research @ General Electric,” Safe
and Secure Systems and Software Symposium (S5), July 12-14, 2016.
[Online] http://www.mys5.org/Proceedings/2016/Day_2/2016-S5-
Day2_0845_Durling.pdf.

[25] A. Crapo, A. Moitra, C. McMillan, D. Russell. “Requirements capture
and analysis in ASSERT™,” to appear in IEEE Requirements
Engineering Conference (RE17).

[26] P. Manolios, “Scalable methods for analyzing formalized requirements
and localizing errors,” United States Patent No. 9,639,450, May 2017.

[27] H. Chamarthi, P. Dillinger, P. Manolios, D. Vroon, “The ACL2 sedan
theorem proving system.”, TACAS, 2011, Springer.

[28] M. Kaufmann, P. Manolios, J. Strother Moore, “Computer-aided
reasoning: an approach,” Kluwer Academic Publishers, 2000.

[29] P. Manolios, D. Vroon, “Termination analysis with calling context
graphs,” Computer Aided Verification (CAV), Lecture Notes in
Computer Science 4144, Springer, pp. 401–414, 2006.

[30] P. Manolios, D. Vroon, “Interactive termination proofs using
termination cores,” Interactive Theorem Proving, July 2010, Springer
LNCS 6172.

[31] H. Chamarthi, P. C. Dillinger, M. Kaufmann, P. Manolios, “Integrating
testing and interactive theorem proving,” ACL2 2011, EPTCS 70, pp. 4–
19.

[32] H. Chamarthi, P. Manolios, “Automated specification analysis using an
interactive theorem prover,” FMCAD 2011, pp. 46–53.

[33] H. Chamarthi, P. C. Dillinger, P. Manolios, “Data definitions in the
ACL2 sedan,” ACL2, 2014.

[34] D. Boren, “Management of test complexity for emerging safety critical
control systems program,” Air Force Office of Scientific Research Final
Report, May 2006.

[35] J. Offutt, A. Abdurazik, “Generating tests from UML specifications,” 2nd
International Conference on Unified Modeling Language, Fort Collins,
CO, 1999.

[36] L. Briand, Y. Labiche, "A UML-based approach to system testing,"
Software and Systems Modeling, pp. 10-42, 2002.

[37] M. Sarma, D. Kundu, R. Mall, “Automatic test case generation from
UML sequence diagrams,” International Conference on Advanced
Computing and Communications, 2007.

[38] J.Rushby, "Automated test generation and verified software," Working
Conference on Verified Software: Theories, Tools, and Experiments,
Springer, Berlin Heidelberg, 2005.

[39] Federal Aviation Administration, “Rationale for accepting masking
MC/DC in certification projects,” Certification Authorities Software
Team, Position Paper, CAST-6, 2001.

[40] Z. Awedikian, "Automatic generation of test input data for MC/DC test
coverage," Soccer Lab, Ecole Polytechnique de Montreal.

[41] “Improving the quality of complex control logic design using model
verification”, [Online]
http://www.matlabexpo.com/in/2013/proceedings/improving-the-
quality-of-complex-control-logic-design-using-model-verification-and-
validation-techniques.pdf.

[42] B. Prasad, D. Priyanka, V. Ramanathan, S. Ulka, “System and method
for automatic generation of test data to satisfy modified condition
decision coverage,” United States Patent No. 8,612,938, December
2013.

[43] GitHub Google Test. [Online] https://github.com/google/googletest.

