
Termination Analysis with Calling Context Graphs⋆

Panagiotis Manolios and Daron Vroon

College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
http://www.cc.gatech.edu/home/{manolios,vroon}

Abstract. We introducecalling context graphsand various static and theorem
proving based analyses that together provide a powerful method for proving ter-
mination of programs written in feature-rich, first order, functional programming
languages. In contrast to previous work, our method is highly automatedand
handles any source of looping behavior in such languages, including recursive
definitions, mutual recursion, the use of recursive data structures, etc. We have
implemented our method for the ACL2 programming language and evaluated the
result using the ACL2 regression suite, which consists of numerous libraries with
a total of over 10,000 function definitions. Our method was able to automatically
detect termination of over 98% of these functions.

1 Introduction

Proofs of termination are a critical component of program correctness arguments. In
the case of transformational systems, termination proofs allow us to extend partial cor-
rectness results to total correctness. In the case of reactive systems, they are used to
prove liveness properties,i.e., to show that some desirable behavior is not postponed
forever. Unfortunately, besides being the quintessentialundecidable problem [21], ter-
mination analysis is further exacerbated by modern programming language features
such as recursion, mutual recursion, non-linear loop conditions, and loops that depend
on recursive data structures.

Because of this, previous work has tended to focus on finding decidable fragments
of the problem, or has been designed for simple languages that lack the complexity of
actual programming languages. Within such restricted settings, much progress has been
made,e.g., there is work on analyzing the termination of semi-algebraic programs, toy
functional languages, and term rewriting systems (see Section 6).

We present a new termination analysis based on calling context graphs (CCGs) for
a fully featured class of modern functional programming languages. If a purely func-
tional program is nonterminating, there exists a sequence of valuesv1, v2, . . . , vn such
that for some functionf1, f1(v1, v2, . . . , vn) leads to an infinite sequence of function
calls,f2(. . .), f3(. . .), . . ., where the call tofi results in the call tofi+1, for all i. CCGs
are a data structure which can conservatively approximate all such possible sequences.
In addition, we show that CCGs are amenable to various analyses, involving both static
analysis and theorem proving, that enable us to construct surprisingly precise approx-
imations of the actual function call sequences. The termination proof then involves

⋆ This research was funded in part by NSF grants CCF-0429924, IIS-0417413, and CCF-
0438871.

assigning sets of calling context measures (CCMs) over well-founded domains to the
calls and showing that for every possible infinite sequence there is a corresponding se-
quence of CCMs that is infinitely decreasing. We present an algorithm based on CCGs
and CCMs that can automatically reason about any source of looping behavior in first
order purely functional programming languages and which can automatically handle a
much larger class of programs than previous approaches.

We have implemented our algorithm in the ACL2 theorem proving system, which
consists of a feature-rich first-order functional programming language, a logic for that
language, and an automatic theorem prover [11, 10, 9]. It hasa large, worldwide user
base, and has been used in a wide variety of industrial verification projects ranging from
reasoning about modern processor designs to modeling programs written in imperative
languages such as Java. ACL2 is part of the Boyer-Moore family of provers, for which
its authors received the 2005 ACM Software System Award. Termination plays a key
role in ACL2, as it is used to justify induction schemes and also every defined func-
tion must be shown to terminate. Therefore, users spend a significant amount of time
reasoning about termination, and stand to greatly benefit from the work presented here.

In order to evaluate our work, we ran our implementation on the ACL2 regression
suite, a collection of numerous libraries by a variety of authors covering topics such as
commercial floating point verification (at AMD and IBM), JVM bytecode verification,
term rewriting algorithm verification, the verification of amodel checker, the verifica-
tion of graph algorithms, etc. Our algorithm was able to automatically prove termina-
tion for over 98% of the more than 10,000 functions in the regression suite. This was
accomplished with no user interaction.

The rest of the paper is organized as follows. In Section 2 we introduce the core of
first-order functional languages. In Section 3, we introduce and develop the theory of
calling context graphs. Our termination algorithm appearsin Section 4, and experimen-
tal results are given in Section 5. Some readers may want to read Section 5 first. We end
with related work and conclusions.

2 Semantics

While our method works for feature-rich, first-order functional programming languages
including ACL2, such languages are quite complicated and wecannot fully describe
them here. Instead, in Figure 1, we present the semantics ofFL, a language that only
contains the core features of first-order functional languages. The semantics are similar
to what can be found in standard programming language texts.Some readers may want
to skim this section initially, returning as needed later.

We are concerned with proving the termination of well-formed function definitions
(members of the setDefs), which are of the formdefine f(x1, . . . , xn) = e, where
f ∈ FName is a function name,x1, . . . , xn ∈ Var are variables, ande ∈ Expr is an
expression whose free variables are a subset of{x1, . . . , xn}.

The universe of values over whichFL is defined isVal and it includes symbols,
strings, integers, rationals, and lists, but is otherwise unspecified. However, since this is
a first order language, functions are not first class data objects, and are not included in

d ∈ Defs

f ∈ FName

x ∈ Var

e ∈ Expr

v ∈ Val

u ∈ Val⊥ = Val ∪ {⊥}
ǫ ∈ Env = Var → Val

φ ∈ Funct = Val∗ → Val⊥
ψ ∈ TFunct = Val∗ → Val ⊆ Funct

h ∈ IHist = FName → Val∗ → Val⊥
H ∈ Hist = FName → Val∗ → Val ⊆ IHist

JeKh ǫ : Expr × IHist × Env → Val⊥
O : Op → TFunct

str : Funct → Val∗
⊥

→ Val⊥
D JdKH : Defs × Hist → Funct+

fix : (Funct∗ → Funct∗) → Funct∗

str (φ) 〈ui〉
n
i=1 =

⊥ if 〈∃i ∈ [1..n] :: ui = ⊥〉
φ (ui)

n
i=1 otherwise

fix ξ = lim
j→∞

ξ
j
〈λvi .⊥〉

m
i=1

JxKh
ǫ = ǫ.x , JvKh

ǫ = v

Je1 op e2Kh
ǫ = str (O JopK)

D

JeiKh
ǫ
E2

i=1

Jf(e1, . . . , en)Kh
ǫ = str (h.f)

D

JeiKh
ǫ
En

i=1

u
wv
let x1 = e1

. . .
xn = en

in e

}
�~

h

ǫ = str
“

λ(vi)
n
i=1 . JeKh

ǫ[vi/xi]
n
i=1

” D

JeiKh
ǫ
En

i=1

Jif e1 then e2 else e3Kh
ǫ = str

„

λ(v) .

Je2Kh ǫ if v 6= nil,
Je3Kh ǫ otherwise.

«

D

Je1Kh
ǫ
E

D

u
wv
define f1(x

1
1, . . . , x

1
n1

) = e1
. . .

define fk(x
k
1 , . . . , x

k
nk

) = ek

}
�~H = fix

„

λ(φi)
k
i=1 .

D

λ(v
i
j)

nj
j=1 . JeiKH[φi/fi] [v

i
j/x

i
j]

ni
j=1

Ek

i=1

«

Fig. 1.Language Semantics ofFL.

Val . We use⊥ (which is not inVal) to denote nontermination, andVal⊥ = Val ∪{⊥}.
An environment maps variables to values.

Function definitions inFL denote mathematical functions, which can either be
members of the setFunct or TFunct . Funct consists of a set of partial functions,
which means that for some inputs, functions inFunct may return⊥, denoting nonter-
mination.TFunct is the subset ofFunct consisting of all the total (i.e., terminating)
functions. Ahistory maps function names to total functions (of the appropriate arity)
and anintermediate historymaps function names to partial functions (of the appropriate
arity).

The termination problem we consider is: given a history,H, and a set of mutually
recursive definitions,d, show that the functions corresponding to the definitions ind
are terminating. To do this, we need to refer not only toH, but also to the (possibly
partial) functions corresponding to the definitions ind. This is accomplished by using
an intermediate history,h, which is justH extended so that it includes the function
names appearing ind and their corresponding functions, as given by the semantics of
FL (which are given in Figure 1 and described in more detail in the next paragraph). We
then attempt to prove that the functions defined ind terminate, which implies that the
intermediate history,h, is actually a history. If so, we have a new history. Otherwise, we
rejectd, revert toH, and report the problem to the user. This allows the user to incre-
mentally define programs, as is common in programming environments for functional
languages, such as Lisp.

We use five functions to define the semantics ofFL. The functionJeK
h

ǫ defines
how to evaluate an expression,e, given an intermediate history,h, and an environ-
ment,ǫ. The functionO mapsFL’s unspecified set of built-in operators (Op) to their
corresponding functions. The set of built-in operators includes the usual Boolean and
arithmetic operators, such asand, or, not, iff, implies, +, -, /, *, etc. The func-
tion str corresponds to strict application. As input, it takes a function and a vector of
values (possibly including⊥, which indicates nontermination). It returns⊥ if any of
the input values is⊥; otherwise, it returns the result of applying the function to the val-
ues (which could also be⊥). The definitions of the semantics functions for variables,
values, built-in operators, function application,lets, andifs are now straightforward.

Function definitions are handled withD JdK H, which defines what mathematical
functions (elements ofFuncts) correspond to a set of function definitions,d, given his-
tory H. Its definition depends on thefix function, which is used to define the semantics
of recursive function definitions using the standard fixpoint approach. Thefix function
takes as inputξ, a function from a vector of functions to a vector of functions, and
returns the vector of functions obtained by taking the limitasj approaches infinity of
applyingξ to the vector of functions returning⊥. The definition ofD JdKH usesfix to
“unroll” the bodies of the definitions an unbounded number oftimes, which results in a
vector of partial functions that corresponds to the semantics of the definitions.

Throughout the rest of this paper, unless otherwise specified, we assume a fixed
history,H and a set of syntactically correct, mutually-recursive function definitions,d,
such that none of the function names ind are the same as those in the domain ofH. The
intermediate historyh is obtained by extendingH with the semantics of the function
definitions ind. To simplify the notation, we assume the uniqueness of subexpressions.
That is, if expressione has two identical subexpressions, then we have some way of
determining which is which. This can be accomplished by pairing each subexpression
with its unique position within the base expression. We use “e1 E e2” to denote thate1

is a sub-expression ofe2.
We now give several definitions related to the semantics ofFL that we will use

throughout the paper. We begin by defining the set ofgovernorsunder which a subex-
pressione′ of e is reached, ignoring nontermination (for now). Our definition is syn-
onymous with that in [12]. Ife is anFL let statement ande′ E e, then we useσee′
to denote the substitution (a mapping from variables to expressions) corresponding to
thelet bindings ofe that are visible ine′. For example, ife = let x = e1 in e2,
thenσee2 = {〈 x, e1〉} andσee1 = {}. We useeσ to denote the expression obtained by
applying substitutionσ to e.

Definition 1. Given expressionse′, e such thate′ E e, theset of governors ofe′ in e
is the set{e1σ

e
e1 | if e1 then e2 else e3 E e ∧ e′ E e2} ∪ {not(e1σ

e
e1) |

if e1 then e2 else e3 E e ∧ e′ E e3}.

The idea of the governors ofe′ in e is that the execution ofe reachese′ exactly when
the governors are true. We therefore define the more general notion of when expressions
“hold”:

Definition 2. We say a set of expressions,E, holdsfor environmentǫ, denotedHh JEK ǫ,
if

∧

e∈E(JeK
h

ǫ /∈ {nil,⊥}).

define f(x) =
if not(intp(x)) or x = 0

then 0
else if x < 0 then f(x+1)

else f(x-1)

1. 〈f, {intp(x), x 6= 0, x < 0}, f(x+1)〉
2. 〈f, {intp(x), x 6= 0, x ≥ 0}, f(x-1)〉

?>=<89:;1
''

?>=<89:;2
ggdefine dec(n) =

if not(intp(x)) or x ≤ 0
then 255
else n - 1

define foo(i, j) =
if i = 1 then

if j = 1 then 0
else foo(dec(j), dec(j))

else foo(dec(i), j)

1. 〈foo, {i = 1, j 6= 1}, foo(dec(j),dec(j))〉
2. 〈foo, {i 6= 1}, foo(dec(i),j)〉

?>=<89:;1
**?>=<89:;2jj hh

Fig. 2.Definitions, contexts, and minimal CCGs forf andfoo.

3 Calling Context Graphs

In this section, we introduce calling context graphs (CCGs)and related notions. We also
show how CCGs can be used reason about program termination.

Definition 3. A calling contextis a triple, 〈f , G, e〉, wheref is the name of a function
defined ind, G is a set of expressions whose free variables are all parameters of f ,
ande is a call of a function ind whose free variables are all parameters off . This is
a precise calling contextif e is a subexpression in the body off and G is the set of
governors ofe in the body off .

We sometimes refer to a calling context simply as a context. The definitions and
contexts for two examples are given in Figure 2. We now introduce the notion of a
well-formed sequence of contexts, a notion that is stronglyrelated to termination in
FL.

Definition 4. Let c =
(

〈fi, Gi, fi+1(ei,1, . . . , ei,ni+1
)〉

)

i
be a sequence of calling

contexts, whereni is the arity offi and(xi,k)
ni

k=1 are the formals offi. For a given vec-
tor of valuesv, we define a sequence of environments whereǫv

1 mapsx1,k to vk andǫv

i+1

mapsxi+1,k to Jei,kK
h

ǫv

i . We sayc is well-formedif there exists awitnessfor c: a vec-
tor of values,v, such that for everyi > 0, Hh JGiK ǫv

i and〈∀j ≤ ni :: Jei,jK
h

ǫv

i 6= ⊥〉.

We use the notationǫv

i introduced in the above definition throughout the paper.
Termination inFL can be expressed in terms of well-formed sequences, as we seein
the next theorem. (Due to space considerations all proofs have been elided.)

Theorem 1. The functions ofd terminate on all inputs iff every well-formed sequence
of precise contexts is finite.

We now define the notion of acalling context graphand show that it is a conserva-
tive approximation of the well-formed sequence of contexts.

Definition 5. A calling context graph (CCG), is a directed graph,G = (C,E), where
C is a set of calling contexts, and for any pair of contextsc1, c2 ∈ C, if the sequence
〈c1, c2〉 is well-formed, then〈c1, c2〉 ∈ E. If C is the set of precise contexts ofd, thenG
is called aprecise CCG ofd.

define size(x) = if pairp(x) then size(first(x)) + size(rest(x)) + 1
else if intp(x) then abs(x) else 0

Fig. 3. Definition ofsize

The minimal precise CCG for functionf in Figure 2 is shown in the same figure.
Note that there is no edge between the two contexts. This is because ifx is a positive
integer, then decrementingx by 1 will not lead to a negative integer. Likewise, adding 1
to x if it is a negative integer cannot produce a positive integer. Notice that this mirrors
the looping behaviors of the function. Figure 2 also contains the minimal precise CCG
for functionfoo. Notice that if the first context offoo is reached,foo calls itself,
passing in(dec j) for both arguments. Since(dec j) cannot simultaneously be
both equal to 1 and not equal to 1, it is impossible to immediately reach context 1
again. However both contexts can reach context 2, and context 2 can reach context 1.

Lemma 1. Given a CCG,G = (C,E), every well-formed sequence of calling contexts
of C is a path inG.

Note that the converse of the above lemma does not hold. This is because the def-
inition of a CCG only requires local reachability whereas a well-formed sequence of
contexts requires that the entire sequence correspond to a single computation. As a re-
sult, a CCG is an abstraction of the actual system. We use CCGsto perform a local
analysis which if successful can determine that the definitions terminate. To do this, we
start by assigning calling context measures to contexts in the CCG.

Definition 6. Given a calling context,c = 〈f,G, e〉, and a setS ⊆ Val , a calling
context measure (CCM) forc overS, s, is an expression whose free variables are pa-
rameters off and for any environment,ǫ, Hh JGK ǫ ⇒ JsK

h
ǫ ∈ S.

CCMs simply map the parameters of a function into some set. For our purposes, this
set will have a well-founded ordering on it. Now we create a mechanism for comparing
the CCM of two adjacent contexts in a CCG.

Definition 7. Let G = (C,E) be a CCG withe = 〈c1, c2〉 ∈ E. Let 〈S,≺〉 be a
well-founded structure whereSc1 and Sc2 are sets of CCMs overS for c1 and c2,
respectively. Then, theCCM function fore over≺, Sc1 , and Sc2 is the functionφ :
Sc1 × Sc2 → {>,≥,×} such that: (1)φ(s1, s2) = > only if for all witnessesv for
〈c1, c2〉, we haveJs1K

h
ǫv

1 ≻ Js2K
h

ǫv

2 ; (2) φ(s1, s2) = ≥ only if for all witnessesv for
〈c1, c2〉, we haveJs1K

h
ǫv

1 � Js2K
h

ǫv

2 ; (3) φ(s1, s2) = ×, otherwise.

We represent CCM functions for〈c1, c2〉 graphically with a box containing the
CCMs for c1, c2 on the left and right, respectively. An edge is drawn froms1, a left
CCM, tos2, a right CCM, with the labelφ(s1, s2) iff it is > or ≥. If φ(s1, s2) is ×, no
edge is drawn.

We now consider some examples. For the functionf in Figure 2, we use thesize
function in Figure 3 applied tof’s parameter,x, as the only CCM for both contexts.
The range ofsize is the set of natural numbers, and the function is designed tomirror

φ1 : 1 → 1, φ2 : 2 → 2

size(x)
>

//size(x)

(a)

φ1 : 1 → 2

dec(i) dec(i)

dec(j)

> 66
n

n
n

n
n

n
n >

//dec(j)

φ2 : 2 → 1, φ3 : 2 → 2

dec(i)
>

//dec(i)

dec(j)
≥

//dec(j)

(b)

Fig. 4. (a) CCM function forf. (b) CCM functions forfoo

define ack (x, y) =
if (not(intp(x)) or x ≤ 0) then 1
else if (not(intp(y)) or y ≤ 0)

then if x=1 then 2 else x+2
else ack(ack(x-1, y), y-1)

?>=<89:;1
''))?>=<89:;2ii gg

φ1 : 1 → 1,
φ2 : 1 → 2

x
>

// x

y
≥

//y

φ3 : 2 → 1,
φ4 : 2 → 2

x x

y
>

//y

1. 〈ack, {intp(x), 0 < x, intp(y), 0 < y}, ack(x-1, y)〉
2. 〈ack, {intp(x), 0 < x, intp(y), 0 < y}, ack(ack(x-1, y), y-1)〉

Fig. 5.Ackermann’s function.

common induction schemes,e.g., induction on the size of a list. Notice that for each
context in our example, the CCM decreases for all values ofx that satisfy the governors
of the context. The resulting CCM functions are shown in Figure 4a. For the function
foo in Figure 2, we use different CCMs. Namely, we applydec to the arguments; note
thatdec always returns a natural number, which is a well-founded domain under the
< relation. The result is shown in Figure 4b. The question of how to choose CCMs is
addressed in Section 4.

We use CCM functions to show that certain infinite paths are not feasible and also
to show that CCGs correspond to terminating functions.

Definition 8. We say that a CCG,G = (C,E) is well-foundedif there exists a well-
founded structure,〈S,≺〉 and a mapping,m, from C into sets of CCMs overS such
that MC,≺,m(c) for all infinite paths,c = c1, c2, . . ., throughG. MC,≺,m is a CCM
predicateand holds for an infinite sequence of contexts,c, iff there existsi0 ≥ 1 and a
sequencesi0 , si0+1, . . . such that for alli ≥ i0, si ∈ m(ci) andφi(si, si+1) ∈ {>,≥},
and for infinitely many suchi, φi(si, si+1) = >, whereφi denotes the CCM function
for 〈ci, ci+1〉 with CCMsm(ci) andm(ci+1).

It is important to note here that we do not need to fix a CCM for each context in
order to satisfy the CCM predicate. Rather, we can select from any of the CCMs for a
given context each time it appears in a sequence. For example, consider Ackermann’s
function, given in Figure 5. Here, if a sequence contains context 2 infinitely often, theny
decreases infinitely, and if it does not, then there is an infinite suffix of the sequence that
is just context 1, which means thatx decreases infinitely often. It is possible to create
one measure that decreases in both cases, but this measure requires a well-founded
structure more powerful and complex than the natural numbers.

define g(x) = f(x+1)
define h(x) = f(x-1)
define f(x) =

if not(intp(x)) or x=0
then 0

else if x < 0
then g(x)

else h(x)

1. 〈g, {}, f(x+1)〉
2. 〈h, {}, f(x-1)〉
3. 〈f, {intp(x), x 6= 0, x < 0}, g(x)〉
4. 〈f, {intp(x), x 6= 0, 0 ≤ x}, h(x)〉

?>=<89:;1
))

��

?>=<89:;3ii

?>=<89:;4
))?>=<89:;2ii

UU

Fig. 6.Altered version of function defined in Figure 2

define f(x) =
if not(intp(x))

or x ≤ 1
then 0

else if x mod 2 = 1
then f(x+1)

else 1 + f(x/2)

1. 〈f, {intp(x), 1 < x, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), 1 < x, x mod 2 6= 1}, f(x/2)〉

?>=<89:;1
))?>=<89:;2ii gg

φ1 : 1 → 2

size(x) size(x)

φ2 : 2 → 1, φ3 : 2 → 2

size(x)
>

//size(x)

Fig. 7. Example of the abstraction inherent in the infinite CCM relation.

It turns out that we only need to consider maximal SCCs (strongly connected com-
ponents) to establish termination.

Theorem 2. LetG = (C,E) be a CCG, s.t.C is the set of precise contexts ofd. If every
maximal SCC ofG is well-founded, then all functions ofd terminate on all inputs.

Notice that the converse of Theorem 2 does not hold because the paths of a CCG
are a superset of the well-formed sequences of contexts. Forexample, notice that when
we split functionf from Figure 2 into several functions, as in Figure 6, all the con-
texts now appear in the same SCC. Why? Consider the function,g. Note thatg(2)
results in the callf(3), which leads to context 4. A similar situation arises forh. Thus
1, 4, 2, 3, 1, 4, 2, 3, . . . is a valid path through any CCG, even though it is not a well-
formed sequence of contexts. Each time through the loop1, 4, 2, 3, the value ofx stays
the same, hence, the termination analysis presented so far fails.

Another source of imprecision is due to the local analysis used in determining if a
CCG is well-founded. If a value decreases over several steps, but increases for one of
those steps, the termination analysis presented so far willfail. Consider the example in
Figure 7. Whenx is odd, 1 is added tox and when it is even,x is divided by 2. This
continues untilx is 1 (or not a positive integer). This results in an overall decrease of
the value ofx despite the initial increase.

In order to gain more accuracy and overcome many of the problems caused by the
local nature of our analysis, we introduce the idea of context merging. This essentially
enables us to consider multiple steps instead of single steps.

1; 2 : 〈f, {intp(x), 0 ≤ x, x 6=1, x mod 2 = 1, intp(x+1), 0 ≤ x+1, (x+1) mod 2 6= 1}, f((x+1)/2)〉
2; 1 : 〈f, {intp(x), 0 ≤ x, x 6=1, x mod 2 6= 1, intp(x/2), 0 ≤ x/2, (x/2) mod 2 = 1}, f(x/2+1)〉
2; 2 : 〈f, {intp(x), 0 ≤ x, x 6=1, x mod 2 6= 1, intp(x+1), 0 ≤ x+1, (x+1) mod 2 6= 1}, f((x/2)/2)〉

Fig. 8. Merging and compaction results for Figure 7.

Definition 9. Thecall substitutionof e =f(e1, e2, . . . , en), denotedσe, mapsxi to ei
for all 1 ≤ i ≤ n, wherex1, x2, . . . , xn are the parameters off .

Definition 10. Let 〈c1, c2〉 be a well-formed sequence of calling contexts, wherec1 =
〈f1, G1, e1〉 and c2 = 〈f2, G2, e2〉. Themergingof c1 and c2, denotedc1; c2, is the
calling context〈f1, G1 ∪ {pσe1 | p ∈ G2}, e2σe1〉.

As an example, note that if in Figure 6 we merge context 3 with context 1 and con-
text 4 with context 2, we get contexts 1 and 2 of Figure 2, respectively. This makes
sense as the example in Figure 6 was obtained by splittingf into several functions and
merging essentially recombines the contexts. For a more interesting example, in Fig-
ure 7 consider merging context 1 with context 2, context 2 with context 1, and context
2 with itself; the result appears in Figure 8.

We now use merging to define the notion of absorption and show that given a CCG,
we can define an infinite sequence of CCGs such that if we can prove that at least one
CCG in the sequence terminates, then so does the original CCG. This can greatly extend
the applicability of our analysis.

Definition 11. Given a CCG,G = (C,E), the result ofabsorbingc ∈ C is a CCG
G′ = (C ′, E′) whereC ′ = C\{c} ∪ {c; c′ | 〈c, c′〉 ∈ E}.

Theorem 3. LetG0,G1, . . . be a sequence of CCGs such thatG0 is a precise CCG of
d, andGi+1 is obtained fromGi by absorbing a context. If for somei, every maximal
SCC ofGi is well-founded, then every function ind terminates on all inputs.

4 Algorithm

The definitions given in Section 3 suggest the following algorithm for the termination
analysis of a set of function definitions,d, using static analysis and theorem proving.

1. Using static analysis, construct the precise calling contexts ofd.
2. Using theorem proving, build a precise CCG.
3. Absorb contexts that have only one successor.
4. Divide the CCG into SCCs
5. Choose a well-founded structure for each SCC, and a set of CCMs for each context.
6. Use theorem proving to construct safe approximations of the CCM functions.
7. Perform analysis to decide the CCM predicate for all pathsthrough each SCC.

Step 1 is straightforward, and one can construct the algorithm from Definition 1.
Step 2 involves building a CCG. We wish to construct as minimal a CCG as we can,
in order to avoid spurious paths through the CCG, which complicate the rest of the

algorithm and can lead to less accurate analysis. Therefore, for every pair of contexts,
c1 = 〈f,G1, e1〉 andc2 = 〈g,G2, e2〉, such thate1 is a call tog, we query the the-
orem prover to prove that〈c1, c2〉 is not well-formed, and therefore no edge needs to
be added fromc1 to c2. The corresponding theorem prover query is〈∀v ∈ Val∗ ::

(
∧

p∈G1
JpK

h
ǫv

1 6= nil) ⇒ ¬(
∧

q∈G2
Jqσe1K

h
ǫv

1 6= nil)〉. If the proof is successful,
we omit the edge〈c1, c2〉.

For this algorithm, we choose a simple absorption strategy.While absorbing a con-
text in a CCG may result in a CCG that is more amenable to analysis, it may also
increase the size of the CCG (by up to a factor of 2). However, if a context has only
one successor in the CCG, absorbing it creates a CCG at most the size of the origi-
nal. We therefore perform several passes through the graph,absorbing all such contexts
with each pass. This simple absorption strategy is quite effective,e.g., it allows us to
automatically prove the termination of the functions in Figure 6. We plan to explore
other strategies, such as looping from step 3 through step 7 and using the result of the
previous failed termination analysis to guide absorption.

Once absorption is completed, we choose well-founded structures and CCMs. Cur-
rently, we always default to natural numbers for our well-founded structure. We use
heuristics to automatically choose CCMs. Currently, theseinclude the following.

– We use a version of thesize function from Figure 3, calledacl2-count, that is
extended to deal with more types, adding thesize of each parameter of a function
to the CCMs of each context from that function.

– Whene1 < e2 or e1 ≤ e2 is a governor of a context, we adde1-e2 as a CCM.
– Whenintp(e) and0 < e are governors of the context, we adde as a CCM.

Finally, we propagate measures other than thesize of the parameters through the rest
of the contexts. That is, if we add a CCMs, to a context, then to each of its predecessors
in the CCG we add the CCMsσe, wheree is the call of the predecessor. We repeat this
until the CCM is propagated to each of the contexts in the CCG.

In step 6, we approximate the CCM functions using the theoremprover. Given two
adjacent contexts,c1 = 〈f,G1, e1〉 andc2 = 〈g,G2, e2〉, in an SCC, then for every
CCM, s1, for c1 and every CCM,s2, for c2, we perform the following analysis. We
first attempt to prove that for allǫ, [(

∧

p∈G1
JpK

h
ǫ 6= nil) ∧ (

∧

q∈G2
Jqσe1K

h
ǫ 6=

nil)] ⇒ Js1K
h

ǫ ≺ Js2σe1K
h

ǫ. If this succeeds, we setφ(s1, s2) to be>. Otherwise,
we attempt to prove that for allǫ, [(

∧

p∈G1
JpK

h
ǫ 6= nil) ∧ (

∧

q∈G2
Jqσe1K

h
ǫ 6=

nil)] ⇒ Js1K
h

ǫ � Js2σe1K
h

ǫ. If this succeeds, we setφ(s1, s2) to be≥. If neither
proof succeeds, we setφ(s1, s2) to be×.

The final step of the algorithm is to determine the value of theCCM predicate. In
other words, we wish to determine that for every path throughthe graph, we can choose
one of the CCMs from each context in the path such that they never increase in value,
and infinitely decrease in value. A basic algorithm for doingthis appears in [13].

5 Experimental Results

In this section, we experimentally evaluate the theory of calling context graphs we have
introduced in this paper. As we saw in the previous section, our analysis is param-

eterized by the CCMs used and by the merging and absorption strategies employed.
Our goal is to evaluate a simple, baseline version of the algorithms we have presented.
Therefore, we use a simple absorption strategy and a small, simple collection of CCMs.

We have implemented our termination algorithm and used it onthe ACL2 system,
an industrial-strength theorem proving system that consists of a feature-rich functional
programming language, a first-order logic for reasoning about this language, and a the-
orem prover for the automation of this reasoning. The ACL2 language can roughly be
thought of as an applicative (pure, functional) subset of Common Lisp. The reality is
more complicated because ACL2 has many advanced features such as single-threaded
objects, which have been shown to enable execution at close to C speeds. ACL2 is
actively used by a worldwide user-base to perform tasks as diverse as microproces-
sor modeling and simulation, the analysis of graph algorithms, algebraic reasoning, the
analysis of imperative programs written in languages such as Java, etc. For more infor-
mation on ACL2 see [11, 10, 9].

ACL2 is a good choice for us because termination arguments play a key role in
its logic. First, every program admitted by the definitionalprinciple must be shown to
terminate before it is accepted by ACL2. This guarantees that definitions do not render
ACL2 inconsistent. Second, inductive reasoning, ACL2’s forte, is justified using termi-
nation arguments (to show that the induction is well-founded). Currently, termination in
ACL2 is proven by providing an ordinal-valued measure and showing that it decreases
on every recursive call. The ordinals are a transfinite extension of the natural numbers
that form the basis of set theory; in fact, any well-founded argument can be phrased in
terms of the ordinals. In recent work, we improved ACL2’s handling of the ordinals, de-
fined algorithms for ordinal arithmetic, and created a library of theorems for reasoning
about the ordinals and ordinal arithmetic. The result was a significant improvement in
ACL2’s ability to reason about termination, once an ordinalmeasure is provided [14–
17]. ACL2 tries to automate termination analysis by guessing a measure of the form
acl2-count(x), wherex is some parameter of the function. Unfortunately, it is of-
ten the case that this simple heuristic fails and the user must discover and provide an
appropriate ordinal measure.

Another advantage of using ACL2 is that it has a regression suite consisting of
137 MB of definitions and theorems. There are over 10,400 function definitions aris-
ing in the work of various researchers around the world and ranging from bit-vector
libraries used by AMD (to prove the correctness of their floating point units) to set
theory libraries to graph algorithms to model checkers,etc. The termination of all of
these functions has already been proven with ACL2. In the cases where ACL2 does not
automatically prove termination, human guidance is required. We distinguish two types
of guidance.

Implicit guidance is given when users prove auxiliary lemmas which help ACL2 to
complete the termination proof. While it is difficult to identify the theorems used solely
to prove termination, it is clear that many termination proofs require auxiliary lemmas
and substantial human effort. For example, in a recent posting to the ACL2 mailing
list, an experienced ACL2 user asked whether a particular proof could be simplified.
After some discussion, he simplified his proof and posted a proof challenge to see if
anyone could simplify it further. The point was to establishthe termination of function

Which Functions Total # Correct% Correct
All 10,442 10,308 98.7%
With Explicit Guidance 421 287 68.2%

Table 1.Results of experiments on the regression suite

fringep. The simplified proof included a library for reasoning aboutarithmetic, seven
lemmas, one theory command, and five function definitions. Two of the functions were
needed to definefringep, but the other three functions were needed for the proof.
The proof script also contained several hints, the use of theproof checker, and several
theorems that were classified as:linear rules (which are handled in a special way by
ACL2). The proof was simplified by another experienced ACL2 user, but it still required
the library, five function definitions, and five theorems. Using our system, we proved
termination directly in seconds, without using the library, without the extra definitions,
without any lemmas, and most importantly, without thinking.

Explicit guidance is given when users provide the measure explicitly or when they
provide hints on how to prove termination. Such guidance is easy to detect and of the
10,442 functions in the regression suite, 404 required the user to provide explicit mea-
sures and 17 more requited hints. For example, here is a part of a function from the
regression suite that specifies an explicit measure: an ordinal constructed using ordi-
nal multiplication (o*), ordinal addition (o+), the first infinite ordinal ((omega)), and
several auxiliary functions (e.g., tuple-set-max-first).

(defun tuple-set->ordinal-partial-sum (k S i)
(declare (xargs

:measure (o+ (o* (omega) (nfix k))
(nfix (- (tuple-set-max-first S) i)))))

...)

The actual function definition is too long to list here, but discovering infinite measures
requires some skill. Our system automatically proves that the above function terminates.

To quantitatively evaluate our work, we removed all sourcesof explicit hints and
ran our termination method on the full regression suite. Since identifying the implicit
guidance is difficult, we did not attempt to remove such lemmas, but we note that since
our termination analysis is very different from ACL2’s, such lemmas are not very likely
to provide much help for us. The results of our experiments are presented in Table 1. Out
of all 10,442 functions analyzed by our system, 10,308 (over98%) were automatically
proven to terminate. Included in these are 287 of the 421 functions which required
the user to provide explicit measures or hints for ACL2 to prove termination. In other
words, of the most difficult 4% of functions to analyze, our tool successfully and fully
automatically analyzed almost 70% of them.

6 Related Work

Termination is one of the oldest problems in computing science and it has received a
significant amount of attention. Here we will briefly review recent work on automating
termination analysis.

One of the most often cited techniques for the proving termination of programs
is called thesize change principle[13]. This method involves using a well-order on
function parameters, analyzing recursive calls to label any clearly decreasing or non-
increasing parameters. Then, all infinite paths are analyzed to ensure that some param-
eter never increases and infinitely decreases over each path. We use this path analysis in
step 7 of our algorithm. The size change principle has several limitations,e.g., it does
not show how to take governors into account and it does not provide any method for
determining the sizes of the outputs of user-defined functions. Both of these considera-
tions are almost always important for establishing termination in realistic programming
languages.

Much work has gone into developing termination analyses forterm rewriting sys-
tems and logic programs,e.g., [2, 8, 4]. However, these methods do not scale to the
complexity of functional programming languages. For example, the AProVE tool [8],
cannot prove the termination of a function that takes two integer arguments,x andy,
and incrementsx until it is greater thany, which is the behavior of a simplefor loop.

There has been a significant amount of work on proving the termination of programs
written in high-level imperative languages such as C. This work tends to focus on semi-
algebraic functions, whose termination behavior is governed by integer arithmetic. Most
of it has been even more narrowly defined than that, dealing only with systems whose
behavior is linear [19, 20]. Recently, this work has been extended to programs with
polynomial behavior [3, 6]. While successful in dealing withsemi-algebraic programs,
these methods are not applicable outside of this domain,e.g., they cannot reason about
data structures, which often play a crucial role in termination proofs, or non-polynomial
arithmetic. A recent paper presents an abstraction-refinement algorithm for termination
analysis. The algorithm deals with loops, but cannot currently handle recursion and was
not implemented [5].

7 Conclusion

We introduced the notion of calling context graphs and various related static and the-
orem proving based analyses that together led to a powerful new method for proving
termination of programs written in feature-rich, first-order, purely functional languages.
We implemented our algorithm and were able to automaticallydetect the termination
of over 98% of the more than 10,000 function definitions in theACL2 regression suite.
For future work, we are developing an abstraction-refinement framework that uses more
advanced absorption and merging strategies to refine CCGs. We are also looking at ex-
tending our analysis to deal with imperative languages suchas C by taking advantage
of various static analyses (such as alias analysis, data-flow, and control-flow) and tak-
ing advantage of the fact that Static Single Assignment (SSA), a popular intermediate
language used for the analysis and optimization of imperative programs, is essentially a
pure functional language [1]. More generally, we are interested in exploring algorithms
that combine static analysis methods with theorem proving [18].

References

1. Andrew W. Appel. SSA is functional programming.SIGPLAN Not., 33(4):17–20, 1998.

2. Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.The-
oretical Computer Science, 236:133–178, 2000.

3. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polynomial programs.
In Cousot [7], pages 113–129.

4. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic programs.
The Journal of Logic Programming, 41(1):103–123, 1999.

5. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement for termi-
nation. InStatic Analysis: 12th International Symposium, SAS 2005, volume 3672 ofLNCS,
pages 87–102, September 2005.

6. Patrick Cousot. Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In Cousot [7], pages 1–24.

7. Radhia Cousot, editor.Verification, Model Checking, and Abstract Interpretation, 6th In-
ternational Conference, VMCAI 2005, Paris, France, January 17-19, 2005, Proceedings,
volume 3385 ofLecture Notes in Computer Science. Springer, 2005.

8. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automatedtermination proofs with
AProVE. InProceedings of the 15th International Conference on Rewriting Techniques and
Applications (RTA-04), volume 3091 ofLNCS, pages 210–220. Springer–Verlag, 2004.

9. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, editors.Computer-Aided Rea-
soning: ACL2 Case Studies. Kluwer Academic Publishers, June 2000.

10. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, July 2000.

11. Matt Kaufmann and J Strother Moore. ACL2 homepage. See URLhttp://www.cs.-
utexas.edu/users/moore/acl2.

12. Matt Kaufmann and J. Strother Moore. Structured theory development for a mechanized
logic. J. Autom. Reason., 26(2):161–203, 2001.

13. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for
program termination. InACM Symposium on Principles of Programming Languages, vol-
ume 28, pages 81–92. ACM Press, 2001.

14. Panagiotis Manolios and Daron Vroon. Ordinal arithmetic: Algorithms and mechanization.
Journal Of Automated Reasoning. To Appear.

15. Panagiotis Manolios and Daron Vroon. Algorithms for ordinal arithmetic. In Franz Baader,
editor,19th International Conference on Automated Deduction – CADE-19, volume 2741 of
LNAI, pages 243–257. Springer–Verlag, July/August 2003.

16. Panagiotis Manolios and Daron Vroon. Ordinal arithmetic in ACL2. In Matt Kaufmann and
J Strother Moore, editors,Fourth International Workshop on the ACL2 Theorem Prover and
Its Applications (ACL2-2003), July 2003. See URLhttp://www.cs.utexas.edu/-
users/moore/acl2/workshop-2003/.

17. Panagiotis Manolios and Daron Vroon. Integrating reasoning aboutordinal arithmetic into
ACL2. In Formal Methods in Computer-Aided Design: 5th International Conference –
FMCAD-2004, LNCS. Springer–Verlag, November 2004.

18. Panagiotis Manolios and Daron Vroon. Integrating static analysis and general-purpose the-
orem proving for termination analysis. InICSE’06, The 28th International Conference on
Softwar Engineering, Emerging Results. ACM, May 2006.

19. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. InVMCAI, pages 239–251, 2004.

20. A. Tiwari. Termination of linear programs. In R. Alur and D. Peled, editors,Computer-Aided
Verification, CAV, volume 3114 ofLNCS, pages 70–82. Springer, July 2004.

21. Alan Turing. On computable numbers, with an application to the entscheidungsproblem. In
Proceedings of the London Mathematical Society, volume 42 ofSeries 2, pages 230–265,
1936.

