
Double Rewriting for
Equivalential Reasoning in

ACL2

Matt Kaufmann and J Strother Moore

ACL2 Workshop, FLoC, Seattle, August 16, 2006

1



Introduction

I ACL2 provides a powerful congruence-based rewriting
capability.

I However, some have encountered an issue in using this
feature.

I In this talk we describe that issue and a partial solution
(starting with ACL2 Version 2.9.4, February, 2006).

I Above, we say “partial” because the solution requires
users to annotate rewrite rules. We are soliciting ideas
from the user community for how to automate this solution.

2



Introduction

I ACL2 provides a powerful congruence-based rewriting
capability.

I However, some have encountered an issue in using this
feature.

I In this talk we describe that issue and a partial solution
(starting with ACL2 Version 2.9.4, February, 2006).

I Above, we say “partial” because the solution requires
users to annotate rewrite rules. We are soliciting ideas
from the user community for how to automate this solution.

3



Introduction

I ACL2 provides a powerful congruence-based rewriting
capability.

I However, some have encountered an issue in using this
feature.

I In this talk we describe that issue and a partial solution
(starting with ACL2 Version 2.9.4, February, 2006).

I Above, we say “partial” because the solution requires
users to annotate rewrite rules. We are soliciting ideas
from the user community for how to automate this solution.

4



Introduction

I ACL2 provides a powerful congruence-based rewriting
capability.

I However, some have encountered an issue in using this
feature.

I In this talk we describe that issue and a partial solution
(starting with ACL2 Version 2.9.4, February, 2006).

I Above, we say “partial” because the solution requires
users to annotate rewrite rules. We are soliciting ideas
from the user community for how to automate this solution.

5



Outline

I Introduction
I Review of congruence-based rewriting in ACL2
I The problem with caching
I A partial solution
I Warning messages
I Conclusion and a plea for help

6



Review of congruence-based rewriting in ACL2

The rewriter is given:

I a term, α;
I a substitution, σ;
I an equivalence relation, equiv ; and
I some assumptions, γ

It returns a term β such that the following is an ACL2 theorem:

I ( implies γ (equiv α/σ β))

The rewriter maintains a set of equivalence relations for which it
can do such a rewrite.

7



Review of congruence-based rewriting in ACL2

The rewriter is given:

I a term, α;
I a substitution, σ;
I an equivalence relation, equiv ; and
I some assumptions, γ

It returns a term β such that the following is an ACL2 theorem:

I ( implies γ (equiv α/σ β))

The rewriter maintains a set of equivalence relations for which it
can do such a rewrite.

8



Review of congruence-based rewriting in ACL2

The rewriter is given:

I a term, α;
I a substitution, σ;
I an equivalence relation, equiv ; and
I some assumptions, γ

It returns a term β such that the following is an ACL2 theorem:

I ( implies γ (equiv α/σ β))

The rewriter maintains a set of equivalence relations for which it
can do such a rewrite.

9



The problem with caching – Wishful thinking
Distillation of an example from Dave Greve:

(defequiv equiv)
(defcong equiv iff (pred x) 1)
(defthm pred-h (pred (h x)))
(defthm g-to-h (equiv (g x) (h x)))
(defthm pred-implies-f

(implies (pred x) (iff (f x) t)))

Consider the rewrite of (f (g y)) . NAIVELY :

> (f (g y)) [matches pred-implies-f]
>> (pred (g y)) [try to relieve hypothesis]

>>> (g y) [rewrite inside-out, in
equiv context (by defcong)]

<<< (h y) [by g-to-h]
<< (pred (h y)) ... rewrites to t by pred-h

10



The problem with caching – Wishful thinking
Distillation of an example from Dave Greve:

(defequiv equiv)
(defcong equiv iff (pred x) 1)
(defthm pred-h (pred (h x)))
(defthm g-to-h (equiv (g x) (h x)))
(defthm pred-implies-f

(implies (pred x) (iff (f x) t)))

Consider the rewrite of (f (g y)) . NAIVELY :

> (f (g y)) [matches pred-implies-f]
>> (pred (g y)) [try to relieve hypothesis]

>>> (g y) [rewrite inside-out, in
equiv context (by defcong)]

<<< (h y) [by g-to-h]
<< (pred (h y)) ... rewrites to t by pred-h

11



The problem with caching – Wishful thinking
Distillation of an example from Dave Greve:

(defequiv equiv)
(defcong equiv iff (pred x) 1)
(defthm pred-h (pred (h x)))
(defthm g-to-h (equiv (g x) (h x)))
(defthm pred-implies-f

(implies (pred x) (iff (f x) t)))

Consider the rewrite of (f (g y)) . NAIVELY :

> (f (g y)) [matches pred-implies-f]
>> (pred (g y)) [try to relieve hypothesis]

>>> (g y) [rewrite inside-out, in
equiv context (by defcong)]

<<< (h y) [by g-to-h]
<< (pred (h y)) ... rewrites to t by pred-h

12



The problem with caching – The reality

(defcong equiv iff (pred x) 1)
(defthm pred-h (pred (h x)))
(defthm g-to-h (equiv (g x) (h x)))
(defthm pred-implies-f

(implies (pred x) (iff (f x) t)))
-------------------------------------------------
> (f (g y))

>> (g y) [rewrite inside-out]
<< (g y) [unable to apply g-to-h]

[Now match pred-implies-f]
> (f x) {x := (g y)}

>> (pred x) {x := (g y)} [relieve hyp]
>>> x {x := (g y)} [rw inside-out]
<<< (g y) [by lookup]

<< (pred (g y)) [cannot be further rewritten,
so ‘relieve hyp’ fails]

13



A partial solution

(defcong equiv iff (pred x) 1)
(defthm pred-h (pred (h x)))
(defthm g-to-h (equiv (g x) (h x)))
(defthm pred-implies-f

(implies (pred (double-rewrite x))
(iff (f x) t)))

-------------------------------------------------
> (f x) {x := (g y)}

>> (pred (d-rw x)) {x := (g y)}
>>> (d-rw x) {x := (g y)} [rw inside-out]

>>>> (g y) {} [d-rw, so rewrite again!]
<<<< (h y) [by g-to-h]

<<< (h y)
<< (pred (h y)) [Now rewrite with pred-h.]
>> (pred (h x)) {x := y}
<< t [by pred-h]

14



Warning messages

ACL2 warns as follows when it sees possible benefit for the
insertion of a double-rewrite call. See the paper for details.
(Most of the implementation work was in producing warnings.)

ACL2 Warning [Double-rewrite] in ( DEFTHM
PRED-IMPLIES-F ...): In a :REWRITE rule generated
from PRED-IMPLIES-F, equivalence relation EQUIV is
maintained at one problematic occurrence of
variable X in the first hypothesis, but not at any
binding occurrence of X. Consider replacing that
occurrence of X in the first hypothesis with
(DOUBLE-REWRITE X). See :doc double-rewrite for
more information on this issue.

15



Conclusion and a plea for help

I Manual insertion of double-rewrite can avoid failures
to relieve hypotheses due to rewrite caching.

I NOTE: We automate double rewriting (since Version 2.9,
October 2004) at the top level of a hypothesis.

I CURRENT ADVICE: Insert double-rewrite when there
is a warning. If ACL2 seems slow, use
accumulated-persistence for debug.

I CHALLENGE : Find heuristics for when to insert
double-rewrite without significantly slowing down the
rewriter. Insertion to eliminate every warning appears to be
too expensive (see 100x example in the paper).

16



Conclusion and a plea for help

I Manual insertion of double-rewrite can avoid failures
to relieve hypotheses due to rewrite caching.

I NOTE: We automate double rewriting (since Version 2.9,
October 2004) at the top level of a hypothesis.

I CURRENT ADVICE: Insert double-rewrite when there
is a warning. If ACL2 seems slow, use
accumulated-persistence for debug.

I CHALLENGE : Find heuristics for when to insert
double-rewrite without significantly slowing down the
rewriter. Insertion to eliminate every warning appears to be
too expensive (see 100x example in the paper).

17



Conclusion and a plea for help

I Manual insertion of double-rewrite can avoid failures
to relieve hypotheses due to rewrite caching.

I NOTE: We automate double rewriting (since Version 2.9,
October 2004) at the top level of a hypothesis.

I CURRENT ADVICE: Insert double-rewrite when there
is a warning. If ACL2 seems slow, use
accumulated-persistence for debug.

I CHALLENGE : Find heuristics for when to insert
double-rewrite without significantly slowing down the
rewriter. Insertion to eliminate every warning appears to be
too expensive (see 100x example in the paper).

18



Conclusion and a plea for help

I Manual insertion of double-rewrite can avoid failures
to relieve hypotheses due to rewrite caching.

I NOTE: We automate double rewriting (since Version 2.9,
October 2004) at the top level of a hypothesis.

I CURRENT ADVICE: Insert double-rewrite when there
is a warning. If ACL2 seems slow, use
accumulated-persistence for debug.

I CHALLENGE : Find heuristics for when to insert
double-rewrite without significantly slowing down the
rewriter. Insertion to eliminate every warning appears to be
too expensive (see 100x example in the paper).

19


