
Towards A Formal Theory
of On Chip Communications in the ACL2 Logic

Julien Schmaltz
Saarland University

Institute for Computer Architecture
FR 6.2 Informatik, Postfach 151150

D66041 Saarbrücken, Germany

julien@cs.unisb.de

Dominique Borrione
Joseph Fourier University

TIMA Laboratory VDS Group
46, avenue Felix Viallet,
38031 Grenoble, France

Dominique.Borrione@imag.fr

ABSTRACTThis paper is devoted to the expression of a formal theory ofommuniation networks in the ACL2 logi. More preisely,we have developed a generi model alled GeNoC , in a gen-eral mathematial notation, with the use of quanti�ationover variables as well as over funtions. We present here itsexpression in the �rst order quanti�er free logi of the ACL2theorem prover. We desribe our systemati approah toast it into ACL2, espeially how we use the enapsulationpriniple to obtain a systemati methodology to speify andvalidate on hip ommuniations arhitetures. We sum-marize the di�erent instanes of GeNoC developed so far inACL2, some ome from industrial designs. We illustrate ourapproah on an XY routing algorithm.
Categories and Subject DescriptorsF.0 [Theory of Computation℄: General; B.7.2 [IntegratedCiruits℄: Design Aids
General TermsCommuniation theory, design and veri�ation
Keywordsnetwork on a hip, formal theory, theorem proving
1. INTRODUCTIONThe design of omplex systems on a hip (SoC) relies onthe integration of pre-existing modules. In this framework,the overall behavior of SoC's highly depends on the inter-onnet struture. Its design and the veri�ation of the om-muniation arhiteture beome ruial [12℄.The prinipal veri�ation e�orts regarding embedded om-muniation arhitetures are the following. Conerning pro-tools dediated to bus arhitetures, Royhoudhury et al.
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACL2 ’06 Seattle, Washington USA

Copyright 2006 ACL2 Steering Committee 0978849302/06/08.

use the SMV model heker to debug an aademi imple-mentation of the AMBA AHB protool [7℄. Their modelis written at the register transfer level and without any pa-rameter. Royhoudhury et al. detet a livelok senario thatomes more from their own arbiter than the protool itself.More reently, Amjad [1℄ used a model heker, implementedin the HOL theorem prover, to verify the AMBA protoolsAPB and AHB and their omposition in a single system.Using model heking, safety properties are veri�ed on eahprotool. The HOL tool is used to verify their omposition.The model is also at a low level of abstration and with-out any parameter. Regarding networks on a hip (NoC)little work has been done about their formal veri�ation.Gebremihael et al. [3℄ have reently spei�ed the Ætherealprotool of Philips in the PVS logi. The main property theyveri�ed is the absene of deadlok for an arbitrary numberof masters and slaves.On the one hand, these studies onsider design at theregister transfer level (RTL). The urrent trend in the SoCdesign ommunity is to raise the level of abstration [12℄.On the other hand, these studies are dediated to partiularappliations. To verify another ommuniation network, onehas to formalize and prove everything again. Indeed, thereis no formal theory of ommuniation networks. Most text-book (e.g. [2℄) desribe arhitetures in an informal manner.The objetive of our researh is to formalize the di�er-ent onepts that belong to ommuniation arhitetures,i.e. to de�ne a formal theory for ommuniation networks.We express this theory in a lassial mathematial notation.Then, one an ast it into her/his favorite tool.A �rst step towards this theory has been ahieved inShmaltz's Ph.D. thesis [8℄. The main ontribution of thiswork is the de�nition of a generi network on a hip (GeNoC)model. It is de�ned as the omposition of key omponents(routing, sheduling and interfaes). We have identi�ed theessential properties inherent in eah one of them. The proofof the overall orretness of GeNoC is diretly dedued fromthese onstraints. Hene, this orretness is preserved forany partiular network arhiteture, provided its ompo-nents satisfy the onstraints.We brie�y present the general theory in setion 2. This pa-per fousses on how we embed this theory in the ACL2 logi.For instane, the mathematial notations involve quanti�-ation over funtions whih is elegantly expressed using theenapsulation priniple and the derived inferene rule "fun-tional instantiation". Setion 3 presents the strategy weused to express GeNoC in the ACL2 logi. Setions 4 to 7

expose the ACL2 de�nition of the omponents of GeNoC .We show onrete instanes of GeNoC in setion 8. Setion9 onludes the paper.
2. A GENERIC NETWORK ON CHIPTo treat the di�erent ommuniation arhitetures in asingle formalism, we generalize them to a unique modelexplained in the next subsetion. After that, we desriberapidly funtion GeNoC and give the general expression ofits orretness.
2.1 A Unique Communication ModelConsider the general ommuniation model of Figure 1.An arbitrary, but �nite, number of nodes are onneted tosome ommuniation arhiteture. The latter represents theinteronnetion struture, e.g. bus or network. It om-prises topologies, routing algorithms and sheduling poliies.Our model makes no assumption on these omponents. Asproposed by Rowson and Sangiovanni-Vinentelli [6℄, eahnode is separated into an appliation and an interfae. Thelatter is onneted to the ommuniation arhiteture. In-terfaes allow appliations to ommuniate using protools.Any interfae-appliation pair mathes the layers of the OSImodel. Interfaes generally refer to layers 1 to 4; applia-tions to layers 4 to 7. Layer 4 is a boundary and an bepart of either interfaes or appliations. To distinguish be-tween interfae-appliation and interfae-interfae ommu-niations, an interfae and an appliation ommuniate us-ing messages; two interfaes ommuniation using frames.

Interface

Application

Interface

Application

Interface

Application

Interface

Application

messages

messages

messages

messages

frames

frames

frames

frames

Communication

ArchitectureFigure 1: Communiation ModelAppliations represent the omputational and funtionalaspets of nodes. They are either ative or passive. Typ-ially, ative appliations are proessors and passive appli-ations memories. We onsider that eah node ontains onepassive and one ative appliation, i.e. eah node is apa-ble of sending and reeiving frames. As we want a generalmodel, appliations are not onsidered expliitly: passive ap-pliations are not atually modeled, and ative appliationsare redued to the list of their pending ommuniation oper-ations. We fous on ommuniations between distant nodes.We suppose that in every ommuniation, the destinationnode is di�erent from the soure node.
2.2 Overview of GeNoCFuntion GeNoC represents a generi ommuniation ar-hiteture. This arhiteture has an arbitrary topology, rout-ing algorithm and swithing tehnique. Funtion GeNoCrepresents the transfer of messages from their soure to theirdestination. Its main argument is the list of messages emit-ted at soure nodes. It returns the list of the results reeived

at destination nodes. Its de�nition mainly relies on the fol-lowing funtions:1. Interfaes are represented by two funtions; one fun-tion, send , to injet frames on the network, and onefuntion, recv , to reeive frames,2. the routing algorithm and the topology are representedby funtion Routing ,3. the swithing tehnique is represented by funtion
Scheduling .These funtions are generi in the sense that they do nothave an expliit de�nition. They are only de�ned by anumber of properties, alled proof obligations or simply on-straints.Interfaes. Funtion send represents the enapsulationof a message into a frame. Funtion recv represents thedeoding of this frame to reover the emitted message. Themain onstraint assoiated to these funtions expresses thata reeiver should be able to extrat the enoded information,i.e. the omposition of funtion recv with funtion send(recv ◦ send) is the identity funtion.Routing Algorithm. The routing algorithm is repre-sented by the suessive appliation of unitary moves. Foreah pair made of a soure and a destination, the routingfuntion omputes all possible routes allowed by the uni-tary moves. The main onstraint assoiated to the routingfuntion expresses that eah route from a soure s to a des-tination d e�etively starts in s and uses only existing nodesto end in d.Swithing Tehnique. The sheduling poliy partii-pates in the management of on�its that appear on thenetwork. It de�nes the set of ommuniations that anbe performed at the same time. Formally, these ommu-tations satisfy an invariant. Sheduling a ommuniation,i.e. adding it to the urrent set of authorized ommunia-tions, must preserve the invariant, for all times and in anyadmissible state of the network. The invariant is spei� tothe sheduling poliy. In our formalization of the shedul-ing poliy, the existene of this invariant is assumed butnot expliitly represented. From a list of requested ommu-niations, the sheduling funtion extrats a sub-list thatsatis�es the invariant. The rest make up the list of delayedommuniations.Funtion GeNoC .` Funtion GeNoC is pitured in Fig.2. It takes as arguments the list of requested ommuni-ations and the harateristis of the network. It produestwo lists as results: the messages reeived by the destinationof suessful ommuniations and the aborted ommunia-tions. In the remainder of this setion, we detail the basiomponents of the model.The main input of GeNoC is a list T of transations of theform t = (id A msgt B). Transation t represents the inten-tion of appliation A to send a message msgt to appliation

B. A is the origin and B the destination. Both A and Bare members of the set of nodes, NodeSet . Eah transationis uniquely identi�ed by a natural id. Valid transations arereognized by prediate Tlstp(T ,NodeSet).Brie�y, funtion GeNoC works as follows. For every mes-sage in the initial list of transations, it omputes the or-responding frame using send . Eah frame together with itsid, origin and destination onstitutes a missive. A missiveis valid if the ids are naturals (with no dupliate); the origin

Routing

Scheduling

Messages Messages
Application Application

Node A

Node A Interface

Node A

Node B Interface

Node B

Node B

FramesFrames
send

recv recv

send

Figure 2: GeNoC : A generi network on hip modeland the destination are members of NodeSet . A valid list, Mof missives is reognized by prediate Mlstp(M,NodeSet).Then, GeNoC omputes the routes of the missives and shed-ules them using funtions Routing and Scheduling . To keepour model general, funtion Routing omputes a list of routesfor every missive. If the routing algorithm is deterministi,this list has only one element. One routes are omputed,a travel denotes the list omposed of a frame, its id andits list of routes. A list V of travels is valid if the ids arenaturals (with no dupliate). Suh a list is reognized byprediate Vlstp(V). The results of the sheduled travels areomputed by alling recv . The delayed travels are onvertedbak to missives and onstitute the argument of a reursiveall to GeNoC . To make sure that this funtion terminates,we assoiate to every node a �nite number of attempts. Atevery reursive all of GeNoC , every node with a pendingtransation will onsume one attempt. The assoiation list
att stores the attempts and att [i] denotes the number of re-maining attempts of the node i. Funtion SumOfAtt(att)omputes the sum of the remaining attempts of the nodesand is used as the dereasing measure of parameter att .Funtion GeNoC halts if every attempt has been onsumed.The �rst output list R ontains the results of the ompletedtransations. Every result r is of the form (id B msgr) andrepresents the reeption of a message msgr by its �nal desti-nation B. Transations may not run to ompletion (e.g. dueto network ontention). The seond output list of GeNoCis named Aborted and ontains the anelled transations.FuntionGeNoC is onsidered orret if every non abortedtransation t = (id A msg B) is ompleted in suh a way that
B e�etively reeives msg. Formally, we prove that for every�nal result r, there is a unique initial transation t suh that
t has the same id and msg as r.

∀rst ∈ R, ∃!t ∈ T ,

(

IdR(rst) = IdT (t)
∧ MsgR(rst) = MsgT (t)
∧ DestR(rst) = DestT (t)

(1)This formula is proved a theorem using the proof obliga-tions assoiated to eah omponent. These proof obligationshave often the same struture. For all elements produed bysome funtion (here funtion GeNoC) we look for a uniqueelement in the prinipal argument of that funtion (here thetransations) suh that both elements satisfy a given prop-

erty. We do not go further into the mathematial transla-tion. In the next setion, we explain how we translate itto the ACL2 logi. Then, we give all ACL2 de�nitions andonstraints about GeNoC , as well as its proof of orretness.The mathematial model has been published elsewhere [8℄.
3. MODELING PRINCIPLESFuntions Routing , Scheduling , recv and send are not de-�ned but onstrained to satisfy a list of properties. In thefollowing subsetion, we show how to use the enapsulationpriniple to express this seond order quanti�ation. Usingfuntional instantiation, ACL2 an generate the proof obli-gations that must be disharged by a partiular instane ofa omponent. We show how to systematially use that rulefor design veri�ation.
3.1 Encapsulation of the ConstraintsFuntion send takes a message as a unique argument andreturns a frame. No assumption is made on the de�nitiondomains, Dmsg and Dfrm of messages and frames. Funtions
send and recv , in the ACL2 logi, are funtions taking oneargument and returning one argument. They have the fol-lowing signatures: ((send ∗) ⇒ ∗)((recv ∗) ⇒ ∗)The main onstraint on these funtions is that their om-position is an identity. This is expressed by the followingproof obligation:Proof Obligation 1. Interfae Corretness(defthm InterfaeCorretness;; recv ◦ send(msg) = msg(equal (recv (send msg)) msg))For tehnial reasons, two other onstraints are assoiatedto funtion send . The �rst one states that if nothing has tobe sent, funtion send returns the empty list (onstraint
send -nil). The seond onstraint states that if the messageto be sent is not the empty list, funtion send does notreturn the empty list (onstraint send -not-nil).The omplete enapsulate event regarding the interfaesis as follows:

(enapsulate(((send ∗) ⇒ ∗)((recv ∗) ⇒ ∗))(loal (defun send (msg) msg)) ;; loal witness(loal (defun recv (frm) frm)) ;; loal witness(defthm InterfaeCorretness(equal (recv (send msg)) msg))(defthm send-nil(not (send nil)))(defthm send-not-nil(implies msg (send msg))))Using the funtional instantiation inferene rule, ACL2generates - and tries to prove - the proof obligations asso-iated to partiular de�nitions of recv and send . Let usrede�ne these funtions outside the enapsulate. Considerfuntion sende that starts a ommuniation by sending aonstant bit list to synhronize with a reeiver. Let thisonstant be *start* = (0 1 0 1 0 1 0 1). To satisfy on-straint send-nil, this funtion returns nil if its input mes-sage is nil. Its de�nition is the following:(defun sende (msg)(if (not msg)nil(append *start* msg))Funtion recv e reads a bit list lst. If this list is empty, itreturns nil. If the �rst 8 bits equal *start*, it returns lstless these �rst 8 bits. Otherwise, it onsumes one bit andlooks for *start* in the rest of lst. Its de�nition is:(defun recve (lst)(if (endp lst)nil(if (equal (firstn 8 lst) *start*)(nthdr 8 lst) ;; lst less *start*(recv e (dr lst)))))The proof obligations assoiated to these two de�nitionsan be automatially generated (and proved) by ACL2. Thepriniple is to prove some property (the onstant t for in-stane) and to give a hint to ACL2 that fores it to use theproperties of the enapsulate above. We ask ACL2 to provethe following theorem:(defthm hek-instane-interfaet ; we prove "true":rule-lasses nil ; no rule is generated:hints (("GOAL"; we fore ACL2 to use InterfaeCorretness; by substituting recv by recve; and send by sende:use(:funtional-instane InterfaeCorretness(recv recv e)(send sende)))))A similar approah is taken to hek if onrete designs offuntions Routing or Scheduling are valid instanes of theirgeneri ounterparts. The enapsulate event about theseremaining omponents are desribed in the next setion.

3.2 Removing QuantifiersThe ACL2 logi is generally onsidered quanti�er free.The formulae presented in the previous setion do not trans-late diretly into ACL2. The priniple is to express quan-ti�ers by reursive funtions. Let us onsider the formula
∀x ∈ E , p(x), whih means that all elements in set E satisfyprediate p. In ACL2, we rather onsider a list, the elementsof whih are in E. We de�ne a funtion fp whih veri�esthat all elements of a list satisfy p. The de�nition of fp isthe following1 :

fp(l) ,

n

t if l = ǫ
p(e) ∧ fp(l

′) otherwise l = e.l′
(2)Let l ⊆l E mean l is a list, the elements of whih are inset E. Property ∀x ∈ E , p(x) beomes ∀l, l ⊆l E, fp(l). Inthe ACL2 syntax, this is expressed by an impliation:(defthm foo(implies (Ep l) (fp l)))where Ep is a prediate that reognizes a list, the elementsof whih are members of E.More generally, the main formulae of GeNoC express prop-erties about a list L, and the result F(L) of the appliationof a funtion to that list. These properties express that forall elements e′ of a list F(L) , there exists a unique element

e of L suh that e and e′ satisfy some property ψ(e, e′). Theformula takes the following form:
∀e′ ∈l F(L), ∃!e ∈l L, ψ(e, e′) (3)Lists L and F(L) are lists of missives, travels, transa-tions, et. Formula ψ always involves the equality betweenthe identi�ers of e and e′. The uniqueness of element e isensured by the type information that guarantees the unique-ness of the identi�ers of elements of L (resp. F(L)). Filter-ing list L aording to the identi�ers of F(L), one obtains alist that an be ompared with F(L) element by element.The �ltering operator is illustrated as follows. If V is a listof travels, V/ids denotes a sublist of V, whih is the resultof �ltering V aording to some identi�ers ids.Example 1. If V is

((123 m1 (1 3 9))
(212 m2 (12 4 25))
(313 m3 (1 12 3)))then V/(123 313) is

((123 m1 (1 3 9))
(313 m3 (1 12 3)))Let fψ be a Boolean funtion over two argument lists. fψreturns t if the arguments have equal length and property ψholds pairwise on their orresponding elements; otherwise,

fψ returns nil . The de�nition of fψ is:
fψ(l1, l2) ,

8

>

>

>

<

>

>

>

:

t if l1 = ǫ ∧ l2 = ǫ
nil if l1 6= ǫ ∧ l2 = ǫ

∨ l1 = ǫ ∧ l2 6= ǫ
ψ(e, e′) ∧ fψ(l′1, l

′
2) otherwise l1 = e.l′1

∧ l2 = e′.l′21For the existential quanti�er, the onjuntion is replaedby a disjuntion.

Let DL be the de�nition domain of list L. Expressionsof the form 3, "for all e′ of F(L), there exists a unique eof L suh that ψ(e, e′)", translate to "for all lists L of DL,funtion fψ applied to list F(L) and to L �ltered by theidenti�ers of F(L) is always true". That is expressed as:
∀L ⊆l DL, fψ(F(L),L/F(L)⌊id) (4)Finally, the universal quanti�er is replaed by an implia-tion and we get the following form:
L ⊆l DL ⇒ fψ(F(L),L/F(L)⌊id) (5)In the ACL2 syntax, the left hand side of the impliationis translated to the harateristi funtion of domain DL,noted DL-p. Let filter be the ACL2 funtion implement-ing the �ltering operator, and ids be the funtion olletingthe identi�ers, one obtains the following ACL2 ode:(defthm bar(implies (DL-p L)(fψ (F L)(filter L (ids (F L))))))

4. NODES AND PARAMETERSWe now desribe all funtions and theorems that form theenapsulation event for the de�nition of the nodes and theparameters.Nodes are de�ned on an arbitrary domain, GenNodeSet .A list of elements of that domain is reognized by predi-ate NodeSetp, whih is a onstrained funtion. The setof nodes of a partiular network is noted NodeSet . It isgenerated from parameters pms de�ned on an arbitrary do-main GenParams and funtion NodeSetGen . Valid param-eters are reognized by prediate ValidParamsp and onsti-tute the generating base for NodeSet . The funtionality of
NodeSetGen is as follows:

NodeSetGen : GenParams → P(GenNodeSet) (6)These funtions are valid if, for all parameters reognizedby prediate ValidParamsp, every element produed by fun-tion NodeSetGen belongs to domain GenNodeSet (i.e. sat-is�es prediate NodeSetp):Proof Obligation 2. De�nition of NodeSet .(defthm nodeset-generates-valid-nodes(implies (ValidParamsp pms)(NodeSetp (NodesetGenerator pms))))Finally, we need to prove that, for eah partiular instaneof prediate NodeSetp , any sublist of a valid list of nodes isalso a valid list of nodesProof Obligation 3. Sublists of Valid Node Lists.(defthm subsets-are-valid(implies (and (NodeSetp x) (subsetp y x))(NodeSetp y)))
5. ROUTING ALGORITHMWe now desribe the funtion de�nitions and theorems forthe routing module of GeNoC . The orretness of routes isnot partiular to a network. In the next subsetion, we de-�ne the general prediates that will be used for any routingalgorithm. Then, we give the onstraints assoiated withthe routing funtion.

5.1 Route ValidityA route r is orret aording to some missive m if (1)the �rst element of r equals the origin of m; (2) the lastelement of r equals the destination of m; (3) eah node of
r is a member of the set NodeSet of the existing nodes.The lengh of any route must be greater than 2. Amongthese properties, one only depends on NodeSet . To avoidfree variables, we state it in a separate prediate. The otherproperties are de�ned as follows:(defun ValidRoutep (r m)(and (equal (ar r) (OrgM m))(equal (ar (last r)) (DestM m))(<= 2 (len r))))Funtion ChekRoutes takes a list of routes, a missive andthe set NodeSet. It heks that any route of the list of routessatis�es ValidRoutep and is a member of NodeSet.(defun ChekRoutes (routes m NodeSet)(if (endp routes)t(let ((r (ar routes)))(and (ValidRoutep r m)(subsetp r NodeSet)(ChekRoutes (dr routes) m NodeSet)))))Prediate CorretRoutesp heks travels orretness a-ording to missives, i.e. routes assoiated to some travel
v satis�es prediate ChekRoutes for some missive m suhthat v and m have the same identi�er and the same frame.We also hek that the list of travels and the list of missiveshave the same length.(defun CorretRoutesp (V M NodeSet)(if (endp V)(if (endp M)t ;; len(M) = len(V)nil)(let* ((tr (ar V))(msv (ar M))(routes (RoutesV tr)))(and (ChekRoutes routes msv NodeSet)(equal (IdV tr) (IdM msv))(equal (FrmV tr) (FrmM msv))(CorretRoutesp (dr V)(dr M) NodeSet)))))This prediate implies that onverting the travel list V toa missive list produes M.(defthm orretroutesp-=>-tomissives(implies (and (CorretRoutesp V M NodeSet)(Missivesp M NodeSet)(Vlstp V))(equal (ToMissives V) M)))
5.2 Generic Routing FunctionThe generi routing funtion takes two arguments: a mis-sive list and the existing nodes. It returns a travel list. Itssignature is the following:(((Routing * *) => *))The loal witness of the enapsulate simply orrespondsto routing in a bus. There is only one route made of the

origin and the destination. In the following de�nition, fun-tions IdM, FrmM, OrgM, DestM are the aessors of the variousomponents of a missive: identi�er, frame, origin, destina-tion.;; loal witness(loal (defun route (M)(if (endp M)nil(let* ((msv (ar M))(Id (IdM msv))(frm (FrmM msv))(org (OrgM msv))(dest (DestM msv)))(ons (list Id frm(list (list org dest)))(route (dr M)))))))(loal (defun routing (M NodeSet)(delare (ignore NodeSet))(route M)))The main onstraint on funtion Routing states that itmust satisfy prediate CorretRoutesp.Proof Obligation 4. Routing Corretness(defthm Routing-CorretRoutesp(let ((NodeSet (NodeSetGenerator pms)))(implies (and (Missivesp M NodeSet)(ValidParamsp pms))(CorretRoutesp (Routing M NodeSet)M NodeSet))))Another onstraint heks that this funtion outputs avalid travel list.Proof Obligation 5. Type of funtion Routing(defthm Vlstp-routing(let ((NodeSet (NodeSetGenerator pms)))(implies (and (Missivesp M NodeSet)(ValidParamsp pms))(Vlstp (routing M NodeSet)))))We have shown the main onstraints on funtion Routing .Some loal lemmas on the witness are neessary. There aretwo additional onstraints. One that heks that funtionRouting outputs a true list. Another one heks that fun-tion Routing returns nil if the initial missive list is empty.
6. SCHEDULING POLICYIn the next subsetion, we introdue the generi de�nitionof the sheduling poliy. Then, we give its assoiated proofobligations.
6.1 Generic DefinitionFuntion Scheduling takes as arguments the travel list pro-dued by funtion Routing and the list att of the attemptnumbers at the nodes. It returns two travel lists: the list
Scheduled and the list Delayed . It also updates the attemptnumber list att . The funtionality of Scheduling is the fol-lowing:

Scheduling : DV × AttLst → DV ×DV × AttLst (7)Its ACL2 signature is the following:

((sheduling * *) => (mv * * *))For every sheduled travel of a missive that has severalroutes, the sheduling funtion generally keeps only one route.In order to avoid the introdution of a new data type, weonsider sheduled travels like "lassial" travels, i.e. trav-els that ontain a list of routes, even if this list has only oneelement.The loal witness is very simple but fully full�ls its duty.If the sum of all attemps is zero, all travels are delayed.Otherwise, all travels are sheduled and eah node withat least one attempt left onsumes one attempt (funtiononsume-attempts).(loal(defun sheduling (V att);; loal witness(mv;; sheduled frames(if (zp (SumOfAttempts att))nil ;; no attempt left, no sheduleV) ;; otherwise all sheduled;; delayed frames(if (zp (SumOfAttempts att))V ;; no attempt left, all delayednil) ;; otherwise no delayed(if (zp (SumOfAttempts att))att ;; no attempt left, att unhanged(onsume-attempts att))))) ;; onsume att
6.2 Proof ObligationsFirst, if the list V is a valid travel list, the lists Scheduledand Delayed are also valid.Proof Obligation 6. Type of Scheduled and Delayed .(defthm Vlstp-sheduled-delayed(implies (Vlstp V)(and(Vlstp (mv-nth 0 (sheduling V att)))(Vlstp (mv-nth 1 (sheduling V att))))))At eah sheduling round, all travels of V are analyzed.If several travels are assoiated to a single node, this nodeonsumes one attempt for the set of its travels. At eah allto Scheduling , an attempt is onsumed at eah node. If allattempts have not been onsumed, the sum of the remain-ing attempts after the appliation of funtion Scheduling isstritly less than the sum of the attempts before the applia-tion of Scheduling . This is expressed by the following proofobligation:Proof Obligation 7. Consume one attempt.(defthm onsume-at-least-one-attempt(mv-let (Sheduled Delayed newatt)(sheduling V att)(delare (ignore Sheduled Delayed))(implies (not (zp (SumOfAttempts att)))(< (SumOfAttempts newatt)(SumOfAttempts att)))))The delayed travels are onverted to missives in the reur-sive all of GeNoC . This proess should result in a sublist ofthe initial list of missives. To obtain a valid missive list, the

information ontained in the delayed travels must be iden-tial to the information ontained in the initial list V. Thelist of the delayed travels must be a sublist of V. Formally,one ensures that list Delayed is equal to �ltering the ini-tial travel list aording to the identi�ers of Delayed . Thatorresponds to the following proof obligation:Proof Obligation 8. Corretness of Delayed .(defthm delayed-travel-orretness(mv-let(Sheduled Delayed newatt)(sheduling V att)(delare (ignore newatt sheduled))(implies (Vlstp V)(equal Delayed(filter V(v-ids Delayed))))):rule-lasses nil)This rule is likely to introdue loops in the rewriter beause
Delayed appears in the left and the right hand side. There-fore, we do not store it as a rule.Generally, the sheduling funtion only keeps one routefor every sheduled travel. Consequently, the list Scheduledis not exatly a sublist of the initial travel list V. The iden-ti�ers and the frames are not modi�ed. We hek that theroute, or more generally, the routes of a sheduled travel be-long to the routes assoiated with the orresponding initialtravel.Let us onsider prediate s-travel-orretness. It takesas arguments two travel lists sV and V/sids. It heks thatthese lists have an equal length. It reursively heks thateah element of sV has the same identi�er, the same frameof the orresponding element in V/sids. It also reursivelyheks that routes of elements of sV are part of the routesof orresponding elements in V/sids. The de�nition of thisprediate is the following:(defun s-travel-orretness (sV V/sids)(if (endp sV)(if (endp V/sids)tnil)(let* ((str (ar sV))(tr (ar V/sids)))(and (equal (FrmV str) (FrmV tr))(equal (IdV str) (IdV tr))(subsetp (RoutesV str) (RoutesV tr))(s-travel-orretness (dr sV)(dr V/sids))))))The onstraint regarding the sheduled travels states thatthis prediate must be satis�ed if sV is the list of the shed-uled travels and V/sids is the initial travel list �ltered a-ording to the identi�ers of the sheduled travels.Proof Obligation 9. Corretness of Scheduled .(defthm sheduled-travels-orretness(mv-let (Sheduled Delayed newatt)(sheduling V att)(delare (ignore Delayed newatt))(implies (Vlstp V)

(s-travel-orretnessSheduled(filter V(V-ids Sheduled))))))Sine routes of travels in Scheduled are routes of travels of
V, funtion Scheduling preserves the orretness of routes.We prove outside the enapsulate that the list Scheduledsatis�es prediate CorretRoutesp.The goal of the sheduling poliy is to partition a travellist into two exlusive lists: Scheduled and Delayed . The in-tersetion of the identi�ers of these two lists must be empty.Proof Obligation 10. Mutual Exlusion.(defthm not-in-delayed-sheduled(mv-let (sheduled delayed newatt)(sheduling V att)(delare (ignore newatt))(implies (Vlstp V)(not-in (v-ids delayed)(v-ids sheduled)))))We have exposed the main onstraints about funtion
Scheduling . For tehnial reasons, additional onstraintsare neessary. To apply funtion mv-nth properly, funtion
Scheduling needs to return a list of values. This propertyis not added by ACL2 from the signature. We also need toknow that lists Scheduled and Delayed are true lists.
7. OVERALL MODELThe de�nition of funtion GeNoC follows Figure 3. Fun-tion ComputeMissives applies funtion send to eah trans-ation of the initial list T . This produes the orrespond-ing list of missives. Funtion Routing omputes the routesof eah missive and funtion Scheduling �xes the sheduledand the delayed travels. Funtion ComputeResults appliesfuntion recv to eah sheduled travel to obtain results. De-layed travels are onverted to missives. If all attempts havenot been onsumed, delayed travels are proessed again fromfuntion Routing . Otherwise, delayed travels onstitute theaborted ommuniations.The orretness of funtion GeNoC has been de�ned insetion 2, with respet to results only. As explained in se-tion 3, quanti�ers are replaed by prediates on lists. InACL2, the orretness of GeNoC onerns the results andthe �ltering of the initial transations with the identi�ersof the results. Thus, prediate GeNoC-orretness heksthat eah result orresponds to a transation with the sameidenti�er, message and destination. We obtain the following:Theorem 1. ACL2 Corretness of GeNoC .(defthm GeNoC-is-orret(let ((NodeSet (NodeSetGenerator pms)))(mv-let (res abt)(GeNoC Trs NodeSet att)(delare (ignore abt))(implies (and (Tp Trs NodeSet)(ValidParamsp pms))(GeNoC-orretnessres(filter Trs (R-ids res))))))

Case 2. Pr.Obl. 8
M : m = (id A frm B)

ComputeMissives

Routing

Delayed Scheduled

Scheduling

ComputeResults
ToMissives

true

false

A : abt = (id A frm B)
R : rst = (id B msg)

SumOfAttemps(att)
?
= 0

T : t = (id A msg B)

V : v = (id frm Routes)ToMissives

GeNoCt (GeNoC nt
t)

φ(Scheduled) ∧ φ(Delayed)

Proof : by indutionIndution StepCase 1. Pr.Obl. 9 ∧ Pr. Obl. 4.
∧ Indution Hypothesis⇒ φ(Scheduled)

⇒ φ(Delayed)

Figure 3: Proof of GeNoCThis theorem is proven by indution on the struture offuntion GeNoC . The indutive proof only onerns theomposition of funtions Routing and Scheduling . Thanksto proof obligation 10, the sheduled and the delayed travelsan be proven separately. Sheduled travels have a orre-spondane with the travel list input in Scheduling (proofobligation 9). Funtion Routing produes orret routes(proof obligation 4), whih are still orret after Scheduling .So, frames and destinations after Scheduling math the mis-sives input to funtion Routing . Results are mathed to theinitial transations using the orretness of interfaes (proofobligation 1). The delayed travels are proven using the in-dution hypothesis and proof obligation 8.The proof of GeNoC and its modules involves 71 fun-tions, 119 theorems in 1864 lines of ode. Only one fourthof these is dediated to the enapsulation of the di�erentmodules. Most of the de�nitions and theorems onern datatypes and the proof of the overall orretness. This makes
GeNoC �relatively simple� to use, beause users will only beonerned with the modules. We import the last book onarithmeti developed by R. Krug and books on lists by B.Bevier.
8. METHODOLOGY AND CASE STUDIESThe generi model de�nes also a methodology for the spe-i�ation and the validation of routing algorithms, shedul-ing poliies and interfaes. In this setion, we �rst give anoverview of di�erent onrete instanes of GeNoC . As aase study, we apply GeNoC on an XY routing algorithmin a 2D mesh.
8.1 OverviewTo show the adequay between our generi model and realappliations, we apply GeNoC to a litany of onrete de-signs. Any ombination of these di�erent onrete instanesis de�ned and validated by generi funtion GeNoC , thatmeans without any additional e�ort. These onrete in-stanes are summarized in Fig 4.We have shown that the iruit [10℄ and the paket [11℄swithing tehniques are onrete instanes of Scheduling .Based on previous work [9℄, we proved that bus arbitrationin the AMBA AHB is also a valid instane of the generisheduling poliy. From Moore's work on asynhrony [5℄,

we proved that his model of the biphase protool onsti-tutes a valid instane of the interfaes. We have modeled anEthernet ontroler2 and we are investigating its omplianewith GeNoC .In the next subsetion, we illustrate our approah on anXY routing algorithm, with an ACL2 oriented presenta-tion. This proof has already been presented to a generalaudiene [11℄. The routing in the Otagon network [4℄ -developed by STMiroeletronis - also onstitutes a validinstane of our generi routing funtion. Finally, we areurrently working on the proof that an adaptive routing al-gorithm - the double Y hannel algorithm in a 2D mesh - isa valid instane of funtion Routing . More details about allthese studies an be found in Shmaltz's thesis [8℄.We now detail the methodology assoiated with the rout-ing algorithm and illustrate it on an XY routing algorithm.
8.2 Case Study: XY routingRegarding the routing funtion, the methodology proeedsin two steps. First, nodes and parameters are de�ned andproven ompliant with the enapsulate given in setion 4.Then the routing algorithm is modeled as a funtion thatmathes funtion Routing . In both steps, heking the om-pliane with the generi model is done by proving t as ex-plained in setion 3.1.
8.2.1 Mesh Node DefinitionIn a 2D mesh, a node is represented by a pair of oordi-nates on the X and Y axes. A pair of oordinates is re-ognized by prediate Coordinatep. A list of oordinates isreognized by prediate mesh-nodesetp.Mesh parameters are the number of nodes in eah dimen-sion; they are reognized by prediate ValidParamsp2D. Let
NX and NY denote the number of nodes in the �rst andthe seond dimension. The node set, i.e. the set of oordi-nates from (0 , 0) to ((NX − 1), (NY − 1)), is generated byfuntion mesh-nsgen. It is de�ned as follows.Funtion XGen(NX , y) takes as arguments the number
NX of nodes in the �rst dimension and a onstant y in theseond dimension. It generates all admissible pairs for that2This work has been done during a visit of the �rst authorat the University of Texas at Austin, in ooperation withWarren Hunt.

Routing

Scheduling

FramesFrames

Node A Interface Node B Interface

- Bi-Φ-M- Ethernet

Network Sheduling Poliies- Ciruit Swithing- Paket SwithingBus Arbitration- AMBA AHB Arbiter
- OtagonDeterministi Routing- XY routingAdaptive Routing- Double Y Channel
send

recv

send

recv

OSI Layer 1OSI Layer 2 Figure 4: Conrete Instanes of GeNoCpartiular y. Funtion mesh-nsgen omputes the oordi-nates by applying funtion XGen to all values of y rangingfrom zero to NY − 1 . To prove the main onstraint on thenode de�nition, we �rst prove that the generation on the Xaxis is valid, and use this fat prove that nodes generatedon the Y axis are valid.Theorem 2. Mesh Nodes Validation.(defthm 2d-mesh-nodesetgenerator(implies (ValidParamsp2D pms)(mesh-nodesetp (mesh-nsgen pms))))One this theorem is proven, we hek that the oordi-nates are a valid instane of the generi node de�nition byproving t as explained in setion 3.1.
8.2.2 XY Routing AlgorithmLet s = (sx , sy) be a node ontaining a paket addressedto node d = (dx , dy). In the XY algorithm, the X dire-tion has higher priority. If the X of destination d is greater(resp. less) than the X of origin s, the next node is the node
(sx + 1 , sy) (resp. (sx − 1 , sy)) on the X-axis. Otherwise,the X's are equal and we ompare the Y's: the next nodeis either (sx , sy + 1) or (sx , sy − 1) on the Y-axis. This al-gorithm is applied reursively to ompute the route from asoure to a destination. The measure is simply the sum ofthe absolute values of the di�erene of the oordinates.Definition 1. XY Routing Algorithm(defun xy-routing (from to)(delare (xargs :measure (XY-measure from to)));; from = (x_o y_o) dest = (x_d y_d)(if (or (not (oordinatep from))(not (oordinatep to)))nil(let ((x_d (ar to))(y_d (adr to))(x_o (ar from))(y_o (adr from)))

(if (and (equal x_d x_o) ;; x_d = x_o(equal y_d y_o)) ;; y_d = y_o;; if the destination is equal to;; the urrent node, we stop(ons from nil)(if (not (equal x_d x_o)) ;; x_d /= x_o(if (< x_d x_o) ;; dereasing x(onsfrom(xy-routing (list (- x_o 1) y_o)to));; x_d > x_o(onsfrom(xy-routing (list (+ x_o 1) y_o) to)));; otherwise we test the y-diretion;; y_d /= y and x_d = x_o(if (< y_d y_o)(onsfrom(xy-routing (list x_o (- y_o 1)) to));; y_d > y_o(onsfrom(xy-routing (list x_o (+ y_o 1)) to))))))))We then ast this funtion suh that it mathes the de�-nition of Routing :Definition 2. Mathing Routing.(defun XYRouting (M NodeSet)(delare (ignore NodeSet))(xy-routing-top M))where:(defun xy-routing-top (M)(if (endp M)nil(let* ((miss (ar M))

(from (OrgM miss))(to (DestM miss))(id (IdM miss))(frm (FrmM miss)))(ons (list id frm(list (xy-routing from to)))(xy-routing-top (dr M))))))This funtion is a valid instane of the generi routingfuntion of GeNoC if it omputes a route that satis�es pred-iate CorretRoutesp:Theorem 3. Validity of the XY algorithm.(defthm CorretRoutesp-XYRouting(let ((NodeSet2D (mesh-nsgen pms)))(implies (and (ValidParamsp2D pms)(Missivesp M NodeSet2D))(CorretRoutesp (xy-routing-top M)M NodeSet2D))))Proof. Most properties de�ned in CorretRoutesp arestraightforward, and the ACL2 proofs are automati. Onlyone proof requires an interation with the prover: showingthat eah route uses valid nodes only. The set of nodes isgenerated by funtion mesh-nsgen and is made of all natu-ral pairs (x , y) suh that 0 ≤ x < NX and 0 ≤ y < NY . Theproof strategy is to show that any set of oordinates satisfy-ing these inequalities is a subset of NodeSet2D. Then, it suf-�es to show that the route produed by funtion xy-routingsatisfy these inequalities. The validation of this proof tatirequires 5 lemmas et 2 additional funtions. The proof of the"losure" of xy-routing on NodeSet2D requires 30 lemmas.ACL2 needs a hint for only two of them.Before heking that this routing funtion is a valid in-stane of the generi routing funtion, we prove that it pro-dues a valid travel list. This proof is obvious and not de-tailed further. One again, the ompliane of the XY routingalgorithm with GeNoC is done by proving t.
9. CONCLUSIONSWe have presented the modeling of GeNoC in the ACL2logi. We have shown how ACL2 an automatially pro-due proof obligations for partiular instanes of the generimodel. We kept the number of enapsulated onstraints aslow as possible. Thus, the proof e�ort for partiular in-stanes is minimized.The translation of our general theory in ACL2 is not di-ret. In higher order logis, prediates over funtions wouldhave replaed the enapsulations. Nevertheless, the fun-tional instaniation priniple automatially produes onje-tures for partiular appliations. Moreover, ACL2 tries toprove them automatially. The user is diretly left with themore interesting part of the proofs. The ACL2 implementa-tion of GeNoC bene�ts greatly from these two priniples.On-going work at TIMA involves the appliation of GeNoCto wormhole routing, and the elaboration of a re�nementmethod to derive the orretness of a partiular hardwareimplementation.
10. ACKNOWLEDGMENTSThe authors would like to thank J Strother Moore, MattKaufmann and Warren Hunt for valuable remarks and help-ful advie.

11. REFERENCES[1℄ H. Amjad. Model Cheking the AMBA Protool inHOL. Tehnial report, University of Cambridge,Computer Laboratory, September 2004.[2℄ W. Dally and B. Towles. Priniples and Praties ofInteronnetion Networks. Morgan-KaufmannPublisher, 2004.[3℄ B. Gebremihael, F. Vaandrager, M. Zhang,K. Goossens, E. Rijpkema, and A. Rădulesu.Deadlok Prevention in the Æthereal protool. InD. Borrione and W. Paul, editors, Corret HardwareDesign and Veri�ation Methods (CHARME'05),volume 3725 of LNCS, pages 345�348, 2005.[4℄ K. Karim, A. Nguyen, and S. Dey. An InteronnetArhiteture for Networking Systems On Chip. IEEEMiro, pages 36�45, September-Otober 2002.[5℄ J. S. Moore. A Formal Model of AsynhronousCommuniations and Its Use in MehaniallyVerifying a Biphase Mark Protool. Formal Aspets ofComputing, 6(1):60�91, 1993.[6℄ J. Rowson and A. Sangiovanni-Vinentelli.Interfae-Based Design. In 34th Design AutomationConferene (DAC'96), pages 178�183, 1997.[7℄ A. Royhoudhury, T. Mitra, and S. Karri. UsingFormal Tehniques to Debug the AMBASystem-on-Chip Bus Protool. In Design Automationand Test Europe (DATE'03), pages 828�833, 2003.[8℄ J. Shmaltz. Une formalisation fontionnelle desommuniations sur la pue. PhD thesis, JosephFourier University, Grenoble, Frane, January 2006. InFrenh. A partial translation is available upon requestto the �rst author.[9℄ J. Shmaltz and D. Borrione. Veri�ation of aParameterized Bus Arhiteture Using ACL2. InProeedings of the Fourth International Workshop onthe ACL2 Theorem Prover and its Appliations, April2003.[10℄ J. Shmaltz and D. Borrione. A Funtional Approahto the Formal Spei�ation of Networks on Chip. InA. Hu and A. Martin, editors, Formal Methods inComputer-Aided Design (FMCAD'04), volume 3312 ofLNCS, pages 52�66, Austin, Tx, USA, November2004. Springer-Verlag.[11℄ J. Shmaltz and D. Borrione. A Generi Network onChip Model. In T. Melham and J. Hurd, editors,Theorem Proving in Higher Order Logis(TPHOLs'05), volume 3603 of LNCS, pages 310�325,Oxford, UK, August 2005. Springer-Verlag.[12℄ G. Spirakis. Beyond Veri�ation: Formal Methods inDesign. In A. Hu and A. Martin, editors, FormalMethods in Computer-Aided Design (FMCAD'04),volume 3312 of LNCS, Austin, Texas, USA, November2004. Springer-Verlag. Invited Speaker.

