
Combining ACL2 and an Automated Verification Tool to
Verify a Multiplier

Erik Reeber
University of Texas at Austin

Department of Computer Sciences

reeber@cs.utexas.edu

Jun Sawada
IBM Austin Research Laboratory

sawada@us.ibm.com

ABSTRACT
We have extended the ACL2 theorem prover to automati-
cally prove properties of VHDL circuits with IBM’s Internal
SixthSense verification system. We have used this extension
to verify a multiplier used in an industrial floating point unit.
The property we ultimately verify corresponds to the cor-
rectness of the component that produces a pair of bit-vectors
whose summation is equal to the product. This property is
beyond the scale of the SixthSense system alone. In this
paper we show how we verified the multiplier by illustrat-
ing key ACL2 lemmas and theorems, and also properties
checked by SixthSense.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-level implementation]: De-
sign Aids—Verification; I.2.3 [Artificial Intelligence]: De-
duction and Theorem Proving—Deduction

Keywords
Hardware verification, theorem proving, model checking

General Terms
verification, design

1. INTRODUCTION
Fully automatic methods, such as model checking and

symbolic evaluation, are well suited to handling the verifica-
tion of relatively small low-level hardware designs. However,
automatic methods often fail to scale to large components
and systems. On the other hand, theorem provers can verify
large systems such as an entire processor model, although it
requires a significant amount of human effort to guide the
provers. We believe that these two approaches should be
combined so that automated tools are used to handle the
low-level hardware details, while theorem proving is used in
proofs of higher-level mathematical properties that require

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

human insights, or to combine results produced by auto-
mated verification tools.

In this paper we show how we use a combination of the
ACL2 theorem prover and IBM’s internal verification tool
called SixthSense to verify a multiplier used in an industrial
floating point unit (FPU). The strength of this combina-
tion is in our use of the SixthSense system both to hide the
low-level details of the proof and to avoid embedding the
complex semantics of VHDL within ACL2.

In particular we have verified that the product of two in-
put vectors to the multiplier is equivalent to the summation
of two output vectors. Due to the FPU data-flow organi-
zation, the final two output vectors are added at another
portion of the FPU. This paper focus on the ACL2 proof of
the multiplier, and the techniques used for it.

In Section 2, we provide background information on the
SixthSense system and our integration technique with ACL2.
In Section 3 we describe the multiplier circuit and provide
its ACL2 specification. In Section 4 we describe the verifi-
cation of the Booth encoding algorithm and in Section 5 we
describe the verification of the compression algorithm. In
Section 6 we provide some analysis of the human and ma-
chine efforts required to perform this verification. Finally,
in Section 7 we discuss related work, before concluding in
Section 8.

2. BACKGROUND
Although this paper focuses on the proof of the multiplier,

we will briefly explain the ACL2 extension for the SixthSense
verification tool, as our work is based on that particular
setting. We assume the reader is familiar with ACL2, which
is described in the book by Kaufmann, Manolios, and Moore
[5] and demonstrated through the ACL2 tutorial on the web
[6]. The details of this ACL2 extension for SixthSense is
provided in another paper[15].

SixthSense is an IBM internal verification tool. The tar-
get hardware and the checked properties are provided as
VHDL. SixthSense can prove that a property always holds
after a given number of initial cycles, and present counter-
examples as waveforms if it does not. SixthSense employs
a transformation-based verification approach[8]. It has a
number of automated verification engines that take a verifi-
cation problem and either prove it, or convert it to a simpler
problem and pass it to the next engine. Just a few of the
engines used in SixthSense are:

• Redundancy removal engine: It identifies functionally
redundant gates and removes them.

• Re-timing engine: It moves logic gates beyond hard-
ware latches, in an attempt to reduce the number of
latches.

• Localization engine : An over-approximate transfor-
mation that isolates a cut point of the net-list and
replaces it by primary inputs.

• Semi-formal search engine: Combines symbolic and
random simulations.

SixthSense applies a dozen of these engines successively in
an attempt to verify or contradict a property. One can also
provide SixthSense with a configuration file that guides it
to use engines in a specified order with specific parameters.

In a sense, SixthSense’s approach is similar to the ACL2
theorem prover. ACL2 takes the original problem and ap-
plies rewriting, linear arithmetic, generalization, mathemat-
ical inductions and other simplifying mechanisms to the
given hypothesis until it is reduced to T. Similarly, Sixth-
Sense applies a number of verification engines successively
to the given verification problem. The order and types of
engines applied to the verification problem is critical to the
success of the verification. This problem has been addressed
by using an expert-system mechanism in selecting the verifi-
cation engines. It tries to intelligently call a number of ver-
ification engines with various parameters, sometimes back-
tracking to earlier stages and applying different series of en-
gines. This approach has automatically verified a number
of industrial-size problems.

Although SixthSense uses random simulation techniques
in an attempt to disprove properties and also help formal
verification techniques, it declares that a property is valid
only when the property is formally verified. The soundness
of the SixthSense tool itself is maintained in a similar way
to the ACL2 system, that is, by fixing soundness bugs with
the utmost urgency.

We built an extension of ACL2 that connects to Sixth-
Sense. As a first step, we modified the ACL2 source code to
add a new :external hint. This modification is a prototype
of an external tool integration mechanism, which we hope
to be present in some future version of the ACL2 theorem
prover. The :external hint is similar to ACL2’s computed
hint, as it uses a user defined function. The major differ-
ence is how the user defined functions are used. While the
user defined function for the computed hint only decides
the timing and the kind of ACL2 hints to be applied, the
user defined functions for :external hint actively tries to
simplify or prove the ACL2 terms.

With this extension, a user can write his own little prover
as an ACL2 program-mode function and call it through the
:external hint. The user defined function inputs a clause
and returns a list of simplified clauses that imply the origi-
nal, or an empty list if the input clause is proved. We can
also write an ACL2 function that calls other verification
tools through ACL2’s sys-call function, and uses its result
to simplify the original clause.

The :external hint itself is written as a small extension
to the ACL2 source code, with only 57 lines of additional
code. Although we use this new hint mechanism for the
connectivity to SixthSense, the :external hint implemen-
tation itself has nothing specific to it, and can be used for
the connection to other decision procedures.

We use the combination of ACL2 and SixthSense for rea-
soning hardware design in VHDL. Meanwhile, we specify all

the properties to be checked in the ACL2 logic. The proof
using SixthSense is carried out by passing such a property to
an :external hint function named acl2six. First, acl2six
translates a given ACL2 property into VHDL, and combines
it with the VHDL description of hardware. Then acl2six

calls SixthSense, which tries to prove that the translated
property holds for the hardware. If SixthSense successfully
proves the property, then the proven property is added as
a hypothesis of the original clause and returned to ACL2,
which continues to simplify it. The definition of acl2six,
which is a pure ACL2 program-mode functions, is written
as 3200-line of ACL2 logic. We also used the ACL2VHDL
translator[13] for the language translation.

In ACL2 logic, signals in the VHDL model are represented
by two function symbols, sigbit and sigvec, with the fol-
lowing type signatures:

(sigbit entity signame cycle phase) => bit

(sigvec entity signame lb hb cycle phase) => bv

These functions are constrained to output a single-bit value
bit or bit-vector value bv of a signal in our hardware design,
given a machine model entity, the signal name signame,
integer pair lb and hb providing the lowest and highest in-
dex of a bit-vector, and natural numbers cycle and phase

denoting the time. Our view is that these functions are con-
strained functions, and all the properties that can be proved
by SixthSense are treated as implicit axioms of ACL2.

We use the simple adder as an example to illustrate the
use of acl2six through :external hint. In Fig. 1, the adder
is surrounded by the dashed box labeled A. This adder takes
two 32-bit inputs, a and b, and produces their 32-bit sum-
mation, sum, when clk is triggered. This adder design is
given as a hand-written VHDL, and its internal can be as
complex as a typical carry-propagate adder.

The verification script for this adder is shown in Fig. 2.
Essentially, theorem adder-adds states that the output of
the adder is the summation of two inputs. Here, function
bv+ represents the binary addition of bit vectors. The func-
tion adder32 defines the entity information as a list of the
VHDL entity name, its interface, and clocking information.
The input clk is driven by a built-in clock source called c0.
The function adder32 definition is “disabled” to prevent the
theorem prover from expanding it. This entity definition
allows us to succinctly write the sigvec signal expression,
even for a hardware module with many interface ports and
many other execution conditions.

The integer n specifies the cycle at which the signals are
sampled. Since the adder model takes one clock cycle to
compute the addition, the input is sampled at the second
phase of clock cycle (1- n), while the output is sample at
clock cycle n.

To prove that the adder adds we use an :external hint,
which calls our function acl2six to simplify the specified
ACL2 goal. It translates the property in adder-adds and
generates the VHDL file corresponding to the dashed box
B in Fig. 1. It then calls SixthSense to prove that the sig-
nal coming out of the equality comparison always stay true
after initial cycles specified by :ignore-init-cycles. Fi-
nally, the acl2six function adds the proved property as a
hypothesis to the original term and returns it, which is easily
reduced by ACL2 to T.

Our prototype :external hint can be dangerous in the
sense that it may introduce unsoundness to the system. The

+

=

cycle
delay

cycle
delayADD

b

sum

d
q

a

clk

BA
signal for the property

latch

Figure 1: A 32-bit adder model

(defun adder32 ()

’(adder32

(port (clk :in std_ulogic)

(a :in std_ulogic_vector (0 31))

(b :in std_ulogic_vector (0 31))

(sum :out std_ulogic_vector (0 31)))

(extra-assigns (clk "c0"))))

(defthm adder-adds

(implies

(and (integerp n) (<= 1 n))

(equal

(bv+ (sigvec (adder32) a (0 31) (1- n) 2)

(sigvec (adder32) b (0 31) (1- n) 2))

(sigvec (adder32) sum (0 31) n 2)))

:hints

(("Goal" :external

(acl2six ((:cycle-expr n)

(:ignore-init-cycles 1))))))

Figure 2: The entity definition of the adder and its
proof script.

current :external hint can call any function, even the func-
tion that “proves” nil. In order to mitigate this danger,
future external tool mechanisms should only allow the use
of :external functions that the user has declared to be
trusted. Also unsoundness can result from functional in-
stantiation of sigbit or sigvec. When new theorems are
proven by acl2six, it is equivalent to introducing new con-
straints to encapsulated function sigbit or sigvec. How-
ever, the functional instantiation does not check that the in-
stantiating function satisfies these theorems introduced by
acl2six. One way to remove this unsoundness is to disal-
low the instantiation of functions that are associated with
an :external function, such as sigbit and sigvec.

3. MULTIPLIER
We worked on a multiplier used in a double-precision FPU

design. A double-precision floating-point number has a 52
bit mantissa, not including the implicit leading bit [2]. In-
cluding the leading bit, we need at least 53x53 multiplier for
a double-precision FPU.

A simplified block diagram of the multiplier is given in
Figure 3. This multiplier is named da fp mult. It takes two

operands A and C, and, after three and half cycles later,
produces two bit-vectors Sum and Carry, such that Sum+
Carry = A× C.

The multiplier first performs Booth-encoding. It produces
27 vectors representing either −2× C, −1× C, 0, 1× C or
2 × C, by looking at the three consecutive bits of A at 27
different places. When these 27 vectors are shifted by 2-bit
increments and added together, it equals to the product A×
C. These additions are performed by the sequence of carry-
save-adder stages 1 through 5. A typical 3-to-2 carry-save-
adder takes three inputs I0, I1 and I2 and produces output
O0 and O1 such that I0 +I1 +I2 = O0 +O1. Stage1 consists
of such 3-to-2 carry-save-adders and reduces 27 vectors to
18 while preserving the total sum. Similarly, the subsequent
3-to-2 and 4-to-2 carry-save-adder stages reduce the number
of bit vectors to 12, 6, 4, and to the final 2 vectors.

A complete binary multiplier adds the final two bit vec-
tors using a carry-propagate adder or similar scheme to get
the final product. However, in a typical FPU design, the
final addition is performed separately from the multiplier to
increase its performance, and it is not part of our design,
either.

The correctness of this design is encoded by the following
ACL2 theorem:
(defthm multiplier-correct

(implies

(and (integerp n)

(<= 7 n))

(equal (bv+ (Sum-output n 1)

(Carry-output n 1))

(bv (* (bv-val (A-input (- n 4) 2))

(bv-val (C-input (- n 4) 2)))

108))))
Essentially, this theorem states that the product of A-input
and C-input is equal to the addition of Sum-output and
Carry-output. In the VHDL implementation of the multi-
plier, the correct output starts to stream out after 7 cycles
of initialization and filling the pipeline, thus adding the con-
dition (<= 7 n). As we have seen in the previous section,
bv+ returns the bit vector representing the sum of two ar-
guments. Function bv-val returns the value represented by
a bit-vector, and (bv v l) returns a bit vector of length l

representing value v.
A-input, C-input, Sum-output, and Carry-output desig-

nate the corresponding VHDL input and output signals of
the multiplier at a given cycle and phase. It hides some of
the hardware implementation details. For example, the ac-
tual hardware outputs are logically negated due to design
constraints. A-input and C-input also include the implicit
leading bit at the most significant position and extra con-
stant bits at the least significant position which do not exist
in real hardware.

Multiplier designs are particularly difficult to verify with
an OBDD-based symbolic simulation or a SAT-solver. Our
experiment shows that it is hard to verify even that stage 1
preserves the summation of its 27 input and 18 output vec-
tors. This can be easily understood if we consider the OBDD
representation of the most significant bit of the sum of 27
vectors. We think this example shows the strength of the
combined use of theorem prover and automated verification
tools.

The overall proof strategy is to use the theorem prover to
reduce the final theorem into properties that can be proven
automatically with our integration of ACL2 and SixthSense.

B
O
O
T
H

E
N
C
O
D
E
R

S
T
A
G
E
1

(3:2)

...

...

(3:2) (4:2) (3:2) (4:2)

18 12 46

A

C

S
T
A
G
E
2

S
T
A
G
E
3

S
T
A
G
E
4

S
T
A
G
E
5

Sum

Carry

2

......

1.50.5 2 3 3.51

27# Vectors:

Cycle #:

Figure 3: An overview of the da fp mult design.

First the final theorem is reduced to two major lemmas, the
correctness of the Booth encoder and the correctness of the
subsequent compressions stages. The Booth encoder lemma
states that the addition of all the bit-vectors coming out
of the Booth encoder is equal to the product of A and C.
The second lemma states that the summation is preserved
during the compression stages. Combining these two major
lemmas leads to the proof of multiplier-correct.

4. VERIFICATION OF THE BOOTH EN-
CODING

We verify the Booth encoding by creating three ACL2
models of a Booth encoder, which we call the high-level
model, the low-level model, and the BV model. We first ver-
ify the high-level model, then prove the equivalence of the
high-level and the low-level model, then prove the equiva-
lence of the low-level and the BV model, and finally prove
the equivalence of the BV model and the actual hardware
design.

We start this verification process by defining the high-level
Booth encoder in ACL2:
(defun acl2-booth-vector (x y)

(cond

((equal x 3)

;; x = 3

(* 2 y))

((or (equal x 2) (equal x 1))

;; x = 2 or x = 1

y)

((or (equal x 0) (equal x 7))

;; x = 0 or x = -1 mod 8

0)

((or (equal x 6) (equal x 5))

;; x = -2 mod 8 or x = -3 mod 8

(- y))

(t

;; x = -4 mod 8

(* -2 y))))

(defun acl2-booth-mult1 (x y)

(if (zp x)

0

(+ (acl2-booth-vector (mod x 8) y)

(* 4 (acl2-booth-mult1 (floor x 4) y)))))

(defun acl2-booth-mult (x y)

(acl2-booth-mult1 (* 2 x) y))

The function acl2-booth-mult specifies the Booth encoding
algorithm. It multiplies two numbers x and y by summing
Booth-encoding vectors, each of which consist of either 2×y,
y, 0, −y, or −2× y.

These functions can be easily defined with the help of
ACL2 arithmetic books. The reader who is are not familiar
with Booth-encoding algorithm may play with acl2-booth-mult.
For example, (acl2-booth-mult 7 3) multiplies 7 by 3, by
calling (acl2-booth-mult1 14 3). This leads to the calcu-
lation of Booth vectors (acl2-booth-vector 6 3) = −3,
and (acl2-booth-vector 3 3) = 6. Finally these values
are added to −3 + 4× 6 = 21, a correct product of 7 and 3.

The correctness of the Booth encoding algorithm specified
by acl2-booth-mult is stated as the following theorem:
(defthm acl2-booth-mult-multiplies

(implies (and (natp x)

(integerp y))

(equal (acl2-booth-mult x y)

(* x y))))
With the help of the arithmetic-2 book [6], its proof is
short and straightforward. We used the following gener-
alized lemma to help the proof:
(defthm acl2-booth-mult1-multiplies

(implies

(and (natp x)

(integerp y))

(equal (acl2-booth-mult1 x y)

(* (floor (1+ x) 2) y))))
This lemma is then proved by the induction scheme sug-
gested by acl2-booth-mult1. Some helper lemmas regard-
ing floor, mod, and integerp are also required.

We next define our low-level Booth encoder model as fol-
lows:
(defun acl2-lbitn (n x)

(if (not (and (integerp n) (< 0 n)))

(not (equal (mod x 2) 0))

(acl2-lbitn (1- n) (floor x 2))))

(defun acl2-ll-booth-vector (nm x y)

(let* ((x (* 2 x))

(bv0 (acl2-lbitn (* 2 nm) x))

(bv1 (acl2-lbitn (+ (* 2 nm) -1) x))

(bv2 (acl2-lbitn (+ (* 2 nm) -2) x)))

(cond

((and (not bv0) bv1 bv2)

;; x = 3

(* y (expt 2 (+ -1 (* 2 nm)))))

((and (not bv0) (or bv1 bv2))

;; x = 2 or x = 1

(* y (expt 2 (+ -2 (* 2 nm)))))

((or (not bv0) (and bv1 bv2))

;; x = 0 or x = -1 mod 8

0)

((or bv1 bv2)

;; x = -2 mod 8 or x = -3 mod 8

(- (* y (expt 2 (+ -2 (* 2 nm))))))

(t

;; x = -4 mod 8

(- (* y (expt 2 (+ -1 (* 2 nm)))))))))
(defun acl2-ll-booth-mult (nm x-size x y)

(if (or (not (integerp nm))

(< (floor (+ 2 x-size) 2) nm))

0

(+ (acl2-ll-booth-vector nm x y)

(acl2-ll-booth-mult (1+ nm) x-size x y))))
The main difference between the low-level Booth encoder
and the high-level one is that the high-level encoder shifts
x on each iteration of acl2-booth-mult1, whereas the low-
level encoder passes x unmodified to the Booth vector func-
tion, acl2-ll-booth-vector. Instead of using the least sig-
nificant three bits of x, acl2-ll-booth-vector uses an ac-
cessor function acl2-lbitn to obtain the appropriate three
bits for Booth selection. The following is the key lemma
used to prove the equivalence of the low-level and high-level
Booth encoders:
(defthm acl2-ll-booth-vector-equiv

(implies

(and (integerp n)

(natp x)

(natp y)

(<= 1 n))

(equal (acl2-ll-booth-vector n x y)

(* (expt 4 (1- n))

(acl2-booth-vector

(mod (floor (* 2 x)

(expt 4 (1- n)))

8)

y)))))

where (expt 4 (1- n)) produces 4n−1. The mod term cor-
responds to the three bits used to select Booth vector. The
entire lemma states that the high-level acl2-booth-vector
and low-level acl2-ll-booth-vector are the same vector
after shifting appropriately.

Our final Booth encoding model, which we call the BV
model, uses the following definition to define Booth vectors:

(defun booth-vector (total-n n x x-size y y-size)

(let* ((x (bv&& x (pad0 1)))

(x-size (1+ x-size))

(b0 (lbitn (* 2 (- total-n n)) x x-size))

(b1 (lbitn (+ (* 2 (- total-n n)) -1)

x x-size))

(b2 (lbitn (+ (* 2 (- total-n n)) -2)

x x-size)))

(bv-cond

((b-and (b-not b0) (b-and b1 b2)) ;case 3

(bv&& (pad0 (+ 1 (* 2 n)))

y

(pad0 (+ -1 (* 2 (- total-n n))))))

((b-and (b-not b0) (b-ior b1 b2)) ;case 1 or 2

(bv&& (pad0 (+ 2 (* 2 n)))

y

(pad0 (+ -2 (* 2 (- total-n n))))))

((b-ior (b-not b0) (b-and b1 b2)) ;case 0 or 7

(pad0 (+ (* 2 total-n) y-size)))

((b-ior b1 b2) ;case 5 or 6

(bv-neg

(bv&& (pad0 (+ 2 (* 2 n)))

y

(pad0 (+ -2 (* 2 (- total-n n)))))))

(*b1* ;case 4

(bv-neg

(bv&& (pad0 (+ 1 (* 2 n)))

y

(pad0 (+ -1 (* 2 (- total-n n))))))))))
where lbitn is defined as:
(defun lbitn (n x x-size)

(bitn (- (1- x-size) n) x)).
The booth-vector function has a similar structure as the
function acl2-ll-booth-vector, but is considerably more
verbose. The input total-n represents the total number of
Booth vectors in our encoding, 27 for our system; the input
x-size represents the size of the bit vector x, which is 54
for our system; and the input y-size represents the size of
y, which is 53 for our system.

The main difference between the low level model and the
BV model is that the low-level model acl2-ll-booth-vector
uses Boolean, arithmetic, and bit vector operations, while
BV model booth-vector are purely constructed of bit-vector
operations. These bit vector operators include the function
bv-cond, which is similar to cond but uses a bit rather than
a Boolean for each condition; bv&&, which concatenates bit
vectors; bv-neg, which negates a bit vector; *b1*, which is
a bit constant 1; b-not, b-ior and b-and, which perform
bit logical operations; and pad0, which produces a bit vec-
tor of zeros. It is necessary for these properties to contain
only bit-vector operations so that they can be translated to
VHDL and input to SixthSense.

Yet another difference between the two models is that the
low-level model uses indexing starting from the right end
of the bit vector, while the BV model indexes from the left.
Furthermore, the BV model is only designed to model Booth
encodings where the size of x is an even number.

The following is the key lemma relating the low-level Booth
vector model, acl2-ll-booth-vector, to the BV model,
booth-vector:

(defthm bv-booth-ll-vector-equiv

(implies

(and (equal (mod x-size 2) 0)

(natp n)

(integerp total-n)

(<= 1 total-n)

(< n total-n)

(bvp x)

(bvp y)

(equal (* 2 total-n) (bv-size x))

(< 0 (bv-size x))

(< 0 (bv-size y))

(not (neg-bvp x))

(equal x-size (bv-size x))

(equal y-size (bv-size y)))

(equal

(bv-val (booth-vector total-n

n

x x-size

y y-size))

(mod (acl2-ll-booth-vector (- total-n n)

(bv-val x)

(bv-val y))

(expt 2 (+ (* 2 total-n) y-size))))))
Here, bv-val is used to convert a bit vector into a natural
number, and neg-bvp is used to determine if the most sig-
nificant bit of a bit-vector is high. This lemma shows that
booth vector defined in the low-level model as integer is
equivalent to the BV-model’s Booth vector defined in terms
of bit vectors.

Since the BV model can be compiled into VHDL we can
use SixthSense to compare the BV model to the actual
VHDL design. To do this we verify 27 equivalence theorems,
each relating the signals representing the Booth encoding in
the design to the BV model’s booth-vector function. Most
of these theorems follow a repetitive structure that can be
generated with a macro. For example, our macro produces
the following theorem relating the 24th Booth vectors:

(defthm booth-row-24

(implies

(and (integerp n)

(<= 3 n))

(equal

(vhdl-booth-vector 24 n 1)

(bv+all

(booth-vector-imp-24

(A-input (1- n) 2)

(C-input (1- n) 2))

(bv&& (pad0 47)

(pad1 2)

(pad0 59))

(bv&& (pad0 105)

(b2bv (vhdl-booth-sign 25 n 1))

(pad0 2))

(bv-neg

(bv&& (pad0 103)

(b2bv (vhdl-booth-sign 24 n 1))

(pad0 4))))))

:hints

((‘‘Goal’’

:external

(acl2six

((:cycle-expr n)

(:ignore-init-cycles 3)

(:config_file "equiv_check.config"))))))
Here vhdl-booth-vector and vhdl-booth-sign use sigbit

and sigvec to obtain the value corresponding to the given
Booth vector in the design and its sign bit. The macro
(booth-vector-imp-24 x y) expands into a term equal to
(booth-vector 27 24 x 54 y 53).

The theorem is verified by translating it into VHDL and
running SixthSense. The booth-row-24 theorem states that
the 24th Booth vector in hardware is equal to the 24th Booth
vector of the BV model, plus 259, plus the 25th Booth vec-
tor’s sign bit, and minus the 24th Booth vector’s sign bit.

The addition of the sign bits and constants are an opti-
mization implemented in the hardware that minimizes the
size of the design. When all 27 Booth vectors are added
together these sign bits and constants cancel to zero. This
cancellation is verified using the ACL2 theorem prover, by
referring to theorems such as the following:
(defthmd reorder-bv+-3

(implies

(and (syntaxp (not (lower-booth-signals x y)))

(bvp x)

(bvp y)

(bvp z)

(equal (bv-size x) (bv-size y)))

(equal (bv+ x (bv+ y z))

(bv+ y (bv+ x z)))))
This theorem relies on the commutativity of bv+ to reorder
elements in a summation. Here lower-booth-signals re-
turns true if x is smaller than y by a syntactic measure. By
forcing elements with this measure to be close together the
sign bits are canceled with their negations and constants are
combined, eventually adding to zero. The resulting sum is
therefore equal to the BV model, which is in turn equal to
the multiplication of the inputs.

Verifying the Booth encoding requires a significant amount
of theorem proving effort. The great majority of this effort,
however, simply involved producing a verified Booth encod-
ing that can be compiled to VHDL. This VHDL then be-

comes a verification artifact used by SixthSense to compare
against the actual implementation. By using SixthSense we
are able to verify the actual Booth encoding implementa-
tion while reasoning only about the simpler, less efficient
BV model. We therefore avoid reasoning about the inter-
nals of the implementation. Any change to the design that
does not affect the value of the Booth vectors will not affect
the proof, since we can reuse the BV model.

5. VERIFYING THE 5 STAGE COMPRES-
SION ALGORITHM

We next verify the 5 stage compression algorithm, which
reduces 27 bit-vectors to 2 bit-vectors while preserving their
sums. This theorem can be easily expressed as an ACL2 the-
orem that can be translated into VHDL. However, the verifi-
cation of even the stage 1 in Figure 3, which is implemented
by nine 3:2 compressor carry-save-adders in parallel, is too
much for SixthSense to handle all at once. Instead we ver-
ify each individual compressor carry-save-adder separately.
For example, the following theorem verifies the correctness
of one of the Stage 1 compressors:
(defthm stage1-row8-help

(implies

(and (integerp n)

(<= 4 n))

(equal

(bv+all (stage1-sum8 n 2)

(stage1-car8 n 2))

(bv+all (vhdl-booth-vector 26 n 1)

(vhdl-booth-vector 25 n 1)

(vhdl-booth-vector 24 n 1))))

:hints

((‘‘Goal’’

:external

(acl2six

((:cycle-expr n)

(:ignore-init-cycles 4)

(:config_file "equiv_check.config"))))))
Here the macros stage1-sum8 and stage1-car8 use sigvec

to produce the values of the VHDL signals input into the
eighth compressor. This theorem is proved directly with
SixthSense, with the assistance of the same configuration
file used previously.

To compose the nine theorems about stage 1 carry-save-
adders, we first convert the above theorem to a rewriting
rule of different form, just like:
(defthm stage1-row8

(implies

(and (integerp n)

(<= 4 n))

(equal

(stage1-sum8 n 2)

(bv+all (vhdl-booth-vector 26 n 1)

(vhdl-booth-vector 25 n 1)

(vhdl-booth-vector 24 n 1)

(bv-neg (stage1-car8 n 2))))))
Here we have simply moved the stage1-car8 term to the
right-hand side of the equality and negated it. However, this
forms of rewriting rule helps the proof of the entire stage 1
compressor.

The proof rewrites the summation of stage1-sumn terms
and stage1-carn terms for all 0 ≤ n ≤ 8 into the sum of 27
Booth vectors. The rewriting rule stage1-rowm replaces all

the stage1-sumn terms to vhdl-booth-vector terms and
the negation of stage1-carn terms. After applying as-
sociativity and commutativity rules of bv+, stage1-carn
terms and its negations cancel out, and the summation of 27
vhdl-booth-vector terms remain, which verifies the equiv-
alence of the summation.

The same technique is used to compose the stage2, stage
3, stage 4, and stage 5 compressor theorems. We therefore
obtain a proof that the summation of the original 27 inputs
to stage 1 is equivalent to the summation of the two outputs
of stage 5.

The verification of the compression algorithm is left al-
most entirely to SixthSense. The theorem prover is only
used to compose the theorems about the compressor sub-
units and to compose the resulting stage input and output
equivalence theorems. This composition relies merely on
lemmas involving bv+ and bv-neg. We have avoided the in-
ternals of the VHDL module almost entirely; only signals
from the top-level multiplier module are visible within the
theorem prover.

6. ANALYSIS
We ultimately verify the ACL2 theorem in Section 3, which

states that the product of the inputs to the multiplier is
equal to the sum of its outputs after 7 cycles. This theo-
rem is proven by reducing it into a series of properties that
can be verified by our integration of ACL2 and SixthSense.
Each of these properties is translated into VHDL proper-
ties involving the final implementation, which SixthSense
formally verifies are valid.

The entire verification effort required about a month, 21
eight hour work days, of human effort from a single ex-
perienced ACL2 user. About one third of this time was
spent finding properties that could be verified by Sixth-
Sense and writing the necessary configuration files. This
time likely would decrease significantly on future efforts due
to increased experience with the SixthSense system. The
remaining two third of the time was spent developing the
necessary ACL2 proof. No bugs in the design were discov-
ered, but we were able to greatly increase the assurance that
the design is correct. Furthermore, the proof, which requires
about 50 minutes to run, should become a valuable tool for
finding bugs in any future modifications to the design.

We found that the proof of the multiplier compressor went
smoothly, by combining the power of SixthSense and the
clever application of ACL2 rewriting rules. However, the
proof of the Booth encoder was more time consuming. This
was due to the large difference between the high-level Booth
multiplier and the Booth multiplier that operates on bit
vectors. It is a part of future work to improve this part
of the proof.

7. RELATED WORK
There have been many integrations between model-checking

and theorem proving tools. Most notably, the PVS theorem
prover was built with model checking as a primitive proof
engine [9]. The SyMP model prover uses a more general
approach to integrating the two techniques [1]. Within the
ACL2 theorem prover, numerous model-checking inspired
engines such as UCLID [7] have been integrated. What
makes our system unique is the fact that we are verifying,
in a scalable manner, industrial RTL-level designs written

in an HDL.
Within the ACL2 theorem proving community there are

three systems of which we know that verify RTL-level de-
signs in HDL: AMD’s system that translates Verilog to ACL2
[11], Hunt and Reeber’s system that translates Verilog to
DE2 [4], and Borrione’s system that translates VHDL to
ACL2 [10]. All of these use the embedding of HDL in
ACL2 logic, making our approach unique. And of these
only AMD’s system captures a broad enough range of the
RTL to capture many industrial designs.

Outside the ACL2 theorem proving community, the only
system of which we know that verifies designs within a broad
range of industrial RTL is at Intel. Intel’s system, FORTE,
uses a custom theorem prover, based on HOL, built on top
of a high-performance symbolic trajectory evaluator (STE)
[3]. Our work may be similar, but we were able to avoid
building a custom theorem prover by creating the general-
purpose extension to ACL2. Also our example here shows
the relatively heavy use of theorem prover for the proof of
arithmetic components.

8. CONCLUSION
We have verified a multiplier used in an industrial FPU,

implemented in VHDL. In particular we verified a Booth
encoding implementation and a design that compresses the
summation of the resulting 27 vectors into a summation
of two vectors. By using SixthSense we were able to hide
the low-level details of the design from the theorem prover
and achieve a greater degree of automation than previously
present.

Our use of the :external hint mechanism shows the ad-
vantages of a general-purpose link between ACL2 and ex-
ternal tools. Building such an external tool link within the
standard ACL2 system will enable ACL2 to be extended
with SixthSense, as well as other external tools. We do not
have to modify the source code of ACL2 for every individual
extension. We only need to write an ACL2 program-mode
function to interface with each tool.

We believe the combination of ACL2 and SixthSense will
scale well to much larger designs. For example, the verifica-
tion of the entire FPU, relative to the IEEE-754 standard,
seems reasonable within our system. The divide and square
root verification [14, 12], which require rich arithmetic anal-
ysis, may also be a good target for our system.

8.1 Acknowledgments
We would like to acknowledge Sandip Ray, for building the

initial prototype of the acl2six system; Matt Kaufmann, for
helping design the :external extension of ACL2; and Jason
R. Baumgartner, Hari Mony, and Viresh Paruthi, for their
help with the SixthSense tool.

9. REFERENCES
[1] S. Berezin. Model Checking and Theorem Proving: A

Unified Framework. PhD thesis, Carnegie Mellon
University, 2002.

[2] Institute of Electrical and Electronic Engineers. IEEE
Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Std 754-1985.

[3] R. B. Jones, J. W. O’Leary, C.-J. H. Seger,
M. Aagaard, and T. F. Melham. Practical Formal
Verification in Microprocessor Design. IEEE Design &
Test of Computers, 18(4):16–25, 2001.

[4] W. A. H. Jr. and E. Reeber. Formalization of the DE2
Language. In CHARME, pages 20–34, 2005.

[5] M. Kaufmann, P. Manolios, and J. S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Press, 2000.

[6] M. Kaufmann and J. S. Moore. ACL2: A
Computational Logic for Applicative Common Lisp.
URL:http://www.cs.utexas.edu/users/moore/acl2/-
acl2-doc.html.

[7] P. Manolios and S. K. Srinivasan. Automatic
Verification of Safety and Liveness for XScale-Like
Processor Models Using WEB Refinements. In DATE,
pages 168–175, 2004.

[8] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman,
and A. Kuehlmann. Scalable Automated Verification
via Expert-System Guided Transformations. In A. J.
Hu and A. K. Martin, editors, Formal Methods in
Computer-Aided Design: Third International
Conference FMCAD 2004, volume 3312 of Lecture
Notes in Computer Science, pages 217–233.
Springer-Verlag, 2000.

[9] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and
M. K. Srivas. PVS: Combining Specification, Proof
Checking, and Model Checking. In CAV, pages
411–414, 1996.

[10] V. M. Rodrigues, D. Borrione, and P. Georgelin.
Using the ACL2 Theorem Prover to Reason about
VHDL Components. RITA, 7(1):129–148, 2000.

[11] D. Russinoff. A Mechanically Checked Proof of IEEE
Compliance of a Register-Transfer-Level Specification
of the AMD K7 Floating Point Multiplication,
Division and Square Root Instructions. LMS Journal
of Computation and Mathematics, 1:148–200, 1998.

[12] D. Russinoff. A Mechanically Checked Proof of IEEE
Compliance of a Register-Transfer-Level Specification
of the AMD-K7 Floating-Point Multiplication,
Division, and Square Root Instructions. London
Mathematical Society Journal of Computation and
Mathematics, 1:148–200, December 1998.

[13] J. Sawada. ACL2VHDL Translator: A Simple
Approach to Fill the Semantic Gap. In Proceedings of
the Fifth International Workshop of the ACL2
Theorem Prover and its Applications (ACL2-2004),
2004.

[14] J. Sawada and R. Gamboa. Mechanical Verification of
a Square Root Algorithm Using Taylor’s Theorem. In
Formal Methods in Computer Aided Design
(FMCAD ’02), volume 2517 of LNCS, pages 274–291.
Springer Verlag, 2002.

[15] J. Sawada and E. Reeber. ACL2SIX : A Hint used to
Integrate a Theorem Prover and an Automated
Verification Tool. In To appear in FMCAD 2006.

