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ABSTRACT 
Security-critical applications at the highest Evaluation Assurance 
Levels (EAL) require formal proofs of correctness in order to 
achieve certification.  To support secure application development 
at the highest EALs, we have developed techniques to largely 
automate the process of producing proofs of correctness of 
machine code.  As part of the Secure, High-Assurance 
Development Environment program, we have produced in ACL2 
an executable formal model of the Rockwell Collins AAMP7G 
microprocessor at the instruction set level, in order to facilitate 
proofs of correctness about that processor’s machine code.  The 
AAMP7G, currently in use in Rockwell Collins secure system 
products, supports strict time and space partitioning in hardware, 
and has received a U.S. National Security Agency (NSA) 
Multiple Independent Levels of Security (MILS) certificate based 
in part on a formal proof of correctness of its separation kernel 
microcode.  Proofs of correctness of AAMP7G machine code are 
accomplished using the method of “compositional cutpoints”, 
which requires neither traditional clock functions nor a 
Verification Condition Generator (VCG).  In this paper, we will 
summarize the AAMP7G architecture, detail our ACL2 model of 
the processor, and describe our development of the compositional 
cutpoint method into a robust machine code proof framework. 

Categories and Subject Descriptors 
B.1.2 [Control Structures and Microprogramming]: Control 
Structure Performance Analysis and Design Aids – formal 
models, simulation; D.2.4 [Software Engineering]: 
Software/Program Verification – correctness proofs, formal 
methods, reliability. 

General Terms 
Reliability, Security, Verification. 

Keywords 
ACL2, high-assurance, certification, cryptography, processor 
modeling, symbolic simulation, theorem proving. 

1. INTRODUCTION 
Security-critical applications developed for use by the U.S. 
government must be certified according to the Common Criteria 
at high Evaluation Assurance Levels [2].  At the highest EAL, 
EAL7, the application must be formally specified, and the 
application must be proven to implement its specification.  This 
can be a very expensive and time-consuming process.  One of the 
main research goals of the Secure, High-Assurance Development 
Environment (SHADE) program is to improve secure system 
evaluation -- measured in terms of completeness, human effort 
required, time, and cost -- through the use of highly automated 
formal methods.  In support of this goal, we have developed 
practical techniques for creating executable formal computing 
platform models that can both be proved correct, and also 
function as high-speed simulators [4], [7].  This allows us to both 
verify the correctness of the models, as well as validate that the 
formalizations accurately model what was actually designed and 
built. 

In this paper, we will present a code proof framework for highly 
secure applications targeting the Rockwell Collins AAMP7G 
embedded microprocessor [1], [13], built upon an executable 
formal instruction set model of the AAMP7G written in ACL2 
[8].  The AAMP7G is of particular interest because it supports 
strict time and space partitioning in hardware, and has received an 
NSA MILS certificate to handle Unclassified through Top Secret 
codeword information concurrently, based in part on a formal 
proof of correctness of its separation kernel microcode. 

We will begin by describing the formally verified partitioning 
features of the AAMP7G.  We will introduce the AAMP7G 
instruction level model, and describe how it has been validated 
through the execution of AAMP binaries.  The model has also 
been informally validated by using the same user interface to 
control the AAMP7G model that is also used to control the actual 
AAMP7G chip.   We will then summarize the compositional 
cutpoint code proof technique, and show how it is coupled with 
ACL2’s efficient symbolic simulation support to produce a robust 
code proof framework for highly secure applications that are 
compiled to AAMP7G machine code.  This secure application 
code can be generated from a number of sources, including 
traditional compilers, but also including a certifying compiler for 
the µCryptol cryptographic programming language [14].  The 
certifying compiler for µCryptol generates correctness statements 
for intermediate transformations of the compiler that are then 
checked automatically by a theorem prover [11]. 
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2. THE AAMP7G 
The AAMP7G is the latest in the line of Collins Adaptive 
Processing System (CAPS) processors and AAMP 
microprocessors developed by Rockwell Collins, Inc. (RCI) for 
use in military and civil avionics since the early 1970s [1].  Over 
the years, RCI has been able to tailor each implementation to 
embedded avionics and communication product requirements, 
accruing size, weight, power, cost, and specialized feature 
advantages over alternate solutions.  Each new AAMP makes use 
of the same multi-tasking stack-based instruction set, while 
adding state of the art technology in the design of each new CPU 
and peripheral set.  AAMP7G adds built-in partitioning 
technology among other improvements. 

AAMP processors feature a stack-based architecture with 32-bit 
segmented, as well as linear, addressing.  AAMP supports 16/32-
bit integer and fractional, as well as 32/48-bit floating point 
operands.  The lack of user-visible registers improves code 
density (many instructions are a single byte), which is significant 
in embedded applications where code typically executes directly 
from slow Read-Only Memory.  AAMP provides a unified call 
and operand stack, and the architecture defines both user and 
executive modes, with separate stacks for each user “thread”, as 
well as a separate stack for executive mode operation.  The 
transition from user to executive mode occurs via traps; these 
traps may be programmed, or may occur as the result of erroneous 
execution (illegal instruction, stack overflow, etc.).   The AAMP 
architecture also provides for exception handlers that are 
automatically invoked in the context of the current stack for 
certain computational errors (divide by zero, arithmetic overflow).  
The AAMP instruction set is of the CISC variety, with over 200 
instructions, supporting a rich set of memory data types and 
addressing modes. 

2.1 AAMP7G Intrinsic Partitioning 
The transition from multiple CPUs to a single multi-function CPU 
is shown in Figure 1.  On the left, three federated processors 
provide three separate functions, A, B, and C.  It is 
straightforward to show that these three functions have no 
unintended interaction. 

 

Figure 1.  Transition to Multi-Function CPU. 
On the right of Figure 1, an integrated processor provides for all 
three functions.  The processor performs code from A, B, and C; 
its memory contains all data and I/O for A, B, and C.  A partition 
is a container for each function on a multi-function partitioned 

CPU like the AAMP7G.  AAMP7G follows two rules to ensure 
partition independence: 

1. TIME PARTITIONING.  Each partition must be 
guaranteed a time slice to execute the intended function. 

2. SPACE PARTITIONING.  Each partition must have 
exclusive-use space for storage. 

2.1.1 Time Partitioning 
Each partition must be guaranteed a time slice to execute the 
intended function.  The AAMP7G uses strict time partitioning to 
ensure this requirement.  Each partition is allotted certain time-
slices during which time the active function has exclusive use and 
control of the CPU and related hardware. 

For the most secure systems, time slices are allocated at system 
design time and not allowed to change.  For dynamic 
reconfiguration, a "privileged" partition may be allowed to set 
time slices.  AAMP7G supports both of these cases, as determined 
by the system designer.  

The asynchronous nature of interrupts poses interesting 
challenges for time partitioned systems.  AAMP7G has partition-
aware interrupt capture logic.  Each interrupt is assigned to a 
partition; the interrupt is only recognized during its partition's 
time slice.  Of course, multiple interrupts may be assigned to a 
partition.  In addition, an interrupt may be shared by more than 
one partition if needed. 

System-wide interrupts, like power loss imminent or tamper 
detect, also need to be addressed in a partitioned processor.  In 
these cases, AAMP7G will suspend current execution, abandon 
the current list of partition control, and start up a list of partition 
interrupt handlers.  Each partition's interrupt handler will run 
performing finalization or zeroization as required by the 
application. 

2.1.2 Space Partitioning 
Each partition must have exclusive-use space for storage.  The 
AAMP7G uses memory management to enforce space 
partitioning.  Each partition is assigned areas in memory that it 
may access.  Each data and code transfer for that partition is 
checked to see if the address of the transfer is legal for the current 
partition.  If the transfer is legal, it is allowed to complete 
posthaste.  If the transfer is not legal, the AAMP7G Partition 
Management Unit (PMU) disallows the CPU from seeing read 
data or code fetch data; the PMU also preempts write control to 
the addressed memory device. 

CPU Mem I/O 

Memory address ranges may overlap, in order to enable inter-
partition communication.  In this case, interaction between 
partitions is allowed since it is intended by system design.  For 
maximum partition independence, overlapping access ranges 
should be kept to a minimum. 

As with time slices, memory ranges may be allocated at system 
design time and not allowed to change.  Or, for dynamic 
reconfiguration, a "privileged" partition may be allowed to set 
memory ranges.  AAMP7G supports both of these cases, as 
determined by the system designer. 
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2.2 Partition Control 
Only a small amount of data space is needed for partition control 
structures.  The data space is typically not intended to be included 
in any partition's memory access ranges.  Each partition's control 
includes time allotment, memory space rights, and initial state, 
stored in ROM.  Each partition's saved state is stored in RAM.  
Partition control blocks are linked together defining a partition 
activation schedule.  AAMP7G partition initialization and 
partition switching are defined entirely by these structures and 
performed entirely in microcode.  Thus, no software access is 
needed for AAMP7G partitioning structures.  This limits 
verification of AAMP7G partitioning to proving that the 
partitioning microcode performs the expected function and no 
other microcode accesses the partitioning structures. 

3. AAMP7G PARTITIONING 
MICROCODE PROOFS 
Rockwell Collins has performed a formal verification of the 
AAMP7G partitioning system using the ACL2 theorem prover.  
This work was part of an evaluation effort which led the 
AAMP7G to receive a MILS Certificate from NSA in May 2005, 
enabling a single AAMP7G to concurrently process Unclassified 
through Top Secret codeword information.  We first established a 
formal security policy, as described in [6].  We produced an 
abstract model of the AAMP7G’s partitioning system, as well as a 
low-level model that directly corresponded to the AAMP7G 
microcode.  We used ACL2 to automatically produce the 
following: 

1. Proofs validating the security model 
2. Proof that the abstract model enforces the security 

policy 
3. Proof that the low-level model corresponds to the 

abstract model. 
Richards et al. [12] discuss the use of ACL2 to meet high-
assurance Common Criteria requirements.  One interpretation of 
the requirement for low-level design models is that the low-level 
design model be sufficiently detailed and concrete so that an 
implementation can be derived from them with no further design 
decisions.  Because there are no design decisions remaining, one 
can easily validate the model against the implementation.  In the 
case of the AAMP7G partitioning microcode, this validation was 
provided in the form of a code-to-spec review conducted by NSA 
evaluators.  Note that this low level of abstraction of a model, 
while making the code-to-spec review process easier, makes 
proofs about it more challenging. 

4. AAMP7G INSTRUCTION SET MODEL 
Having established the correctness of the AAMP7G’s partitioning 
system, we next wished to provide a formal model of the 
instruction set processing that occurs within a partition’s time 
slice.  Having such a model would enable us to perform machine 
code proofs of correctness that could be used in high-assurance 
evaluations.  The instruction set model and all the necessary 
support books consists of some 100,000 lines of ACL2 code.  The 
architecture of the AAMP7G instruction set model is shown in 
context in Figure 2.   The layers identified in italics in Figure 2 
are those that we explicitly model.  We begin with a concrete 
instruction model, written in a sequential manner that reflects how 

the machine actually operates.  The AAMP memory model is 
based on the linear address space book previously used in the 
AAMP7G partitioning proofs [5], which in turn is built on a bags 
library described in [16].  The AAMP7G machine state, including 
the architecturally-defined registers, is represented as an ACL2 
single-threaded object (stobj) for performance reasons.  

 

Figure 2.  AAMP7G instruction set model architecture. 

We prove correspondence between the concrete model and a more 
abstract model, which is described in detail below.  Sequences of 
abstract instruction steps form basic blocks; a machine code 
subroutine is made up of a collection of basic blocks.  Subroutine 
invocations are performed in the context of an AAMP thread, and 
multiple user threads plus the executive mode constitute an 
AAMP7G partition.  Our model supports the entire context 
switching machinery defined by the AAMP architecture, 
including traps, outer procedure returns, executive mode error 
handlers, and so on. 

4.1 Running AAMP7G Machine Code 
Since we model the AAMP7G instruction set in its entirety, we 
can analyze AAMP7G machine code from any source.  This 
includes traditional compilers and assemblers, but also notably 
includes a certifying compiler for the µCryptol cryptographic 
programming language, also developed under the SHADE 
program. Since we directly model memory, we merely translate 
the binary file for a given AAMP7G machine code program into a 
list of (address, data) pairs that can be loaded into ACL2.  We 
load the code, reset the model, and the execution of the machine 
code then proceeds, under the control of an Eclipse-based [3] user 
interface that was originally written to control the actual 
AAMP7G, as shown in Figure 3. 

4.2 Model Validation 
We validate the AAMP7G instruction set model by executing the 
same instruction set diagnostics on the model that are used for 
AAMP processor acceptance testing.  A typical diagnostic 
exercises each instruction, plus context switching, exception 
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handling, etc., and can run to many thousands of AAMP7G 
instructions each. 

 

4.3 Instruction Abstraction and Symbolic 
Simulation 
The goal of proving properties of AAMP7G programs requires an 
ACL2 formalization of the AAMP7G operation semantics 
amenable to formal analysis.  When we began this work, the 
available formalization had been adapted from the model of the 
Rockwell AAMP5 and was designed to be executable and faithful 
to the operation-level semantics.  However, it was far from 
friendly to formal analysis [17]. 

In particular, the semantics is defined in terms of a complex 
macro mechanism that embeds in ACL2 a simple assembly like 
language.  On its face, this notation provides an extremely 
perspicuous characterization of the semantics.  For example, 

below is the definition of the ADDU instruction, which takes two 
16-bit unsigned values from the top of the stack, adds them using 
modular unsigned integer arithmetic, and pushes the result back 
onto the stack. 

(AAMP *state->state* 
        (POP ux) 
        (POP uy) 
        (PUSH (UWord16 (+ ux uy))) 
        st) 
 

Here, AAMP is a macro defined within ACL2 that interprets its 
arguments as follows: The first argument specifies that this 
function is a state to state (as opposed to a value-returning) 
transformation.  The effect on the state is equivalent to executing 
the listed pseudo-instructions in sequence.  Local variables such 
as ux and uy are introduced where needed.  Finally, the resulting 
state is returned. 

 

Figure 3.  Eclipse-based user interface to ACL2 model of the AAMP7G. 



This form belies the underlying complexity of the model.  For 
example, the semantics must check that any of several anomalous 
conditions relating to resets, traps, interrupts, and memory 
violations have not been signaled in the current state; and that the 
AAMP7G Partition Management Unit (PMU) is configured to 
allow fetching the current code byte, reading the top two locations 
on the stack, and writing the second location on the stack. 

Each potential “error” leads to a different state being returned.  In 
addition, the semantics assumes that there is no overlap between 
the code and data segments referenced by the operation.  The 
simple expression above macro-expands into a complex Lisp 
expression of around 125 lines (or over 1000 lines when the 
nested LET structure is fully expanded).  ADDU is a particularly 
simple operation, not involving any of the exception conditions 
that arise, for example, with signed integer addition.  Certain 
AAMP7G operations expand into expressions that are literally 
thousands of lines of almost incomprehensible Lisp code. 

Moreover, because ACL2 is an applicative language, expansion 
of the macro emulates this imperative notation by translating it 
into an applicative form.  The result is a set of nested updates to a 
system state stobj with some two dozen fields.  Because the 
macro emulates sequential computation, many of these updates 
are redundant, cumulative, or offsetting. 

We manage this complexity in several steps: 

We identify a set of preconditions adequate to eliminate most 
execution paths corresponding to anomalous conditions not 
expected to arise in a typical execution. 

We rewrite the nest of state updates to reorder them, combine 
multiple updates to the same state component, and eliminate 
redundant or offsetting updates. 

After rewriting has stabilized, we enable a new set of rewrite rules 
that replace commonly occurring locutions by more intuitive 
abstractions.  For example, the expression  

(read-data-word (nth *aamp.denvr* st) 
                (+ 3 (nth *aamp.tos* st)) 
                (nth *aamp.ram* st)) 
 
rewrites to  
 
(get-stack-word 3 st). 
 
Finally, we package the resulting state into a very readable macro 
form, which is merely syntactic sugar for a set of updates on the 
state. 

The completed abstraction of the ADDU instruction is given 
below: 

(defun op-addu-preconditions (st) 
  (and  
    (standard-preconditions st) 
    (allowed-to-fetch-current-code-byte st) 
    (allowed-to-read-top-n-stack-words 2 st) 
    (allowed-to-write-second-word-on- 
      stack st))) 
 

(defun vm-addu-expected-result (st) 
  (modify st 
    :pc (inc-pc 1 st) 
    :tos (inc-tos 1 st) 
    :memtmp8 *addu-opcode* 
    :memtmp (get-stack-word 1 st) 
    :ram (modify-ram st 
                   :stack-word 1  
                   (+ (get-stack-word 0 st) 
                      (get-stack-word 1 st)) 
          ))) 
 
(defthm vm-addu-rewrite 
  (implies  
    (equal (current-op st) *addu-opcode*) 
    (equal (aamp_vm st) 
           (if (op-addu-preconditions st) 
               (vm-addu-expected-result st) 
             (aamp_vm-you-shouldnt-see-this  
               st))))) 
 
The function OP-ADDU-PRECONDITIONS collects those 
conditions that need to hold for “normal” execution of the ADDU 
operation.  VM-ADDU-EXPECTED-RESULT gives the expected 
output state as a modification of the input state.  Unlike the earlier 
‘assembly’ language form, this doesn't characterize the steps of 
the computation, but rather the result in a very compact and 
readable form. 

Finally, proving the theorem VM-ADDU-REWRITE establishes 
that stepping the AAMP virtual machine on this instruction will 
yield exactly the expected result, assuming the preconditions are 
satisfied.  If not, the result is characterized by AAMP_VM-YOU-
SHOULDNT-SEE-THIS, which is defined to be exactly 
AAMP_VM.  That is, in all non-normal cases the operation 
simply does whatever it does, but we don't need to look at it.  If 
the instruction semantics involves interesting exceptions, such as 
overflow or divide-by-zero, these are characterized by additional 
expected result functions and additional branches in the right hand 
side of this rewrite rule. 

We have treated each of 192 instructions from the AAMP7G 
processor model similarly.  Assuming that we can relieve the 
preconditions at each step, this allows us efficiently to 
symbolically step through even very long sequences of AAMP7G 
instructions.  After each step, the rewriter effectively 
canonicalizes the result into a very compact and readable form. 

5. COMPOSITIONAL CODE PROOF 
INFRASTRUCTURE 
Our verification of AAMP7G programs is done compositionally.  
That is, we verify programs one subroutine at a time.  We try to 
ensure that, after we verify a subroutine, we never have to analyze 
it again.  Thus, the correctness theorem (or theorems) for a routine 
R must be strong enough to support the verification of any routine 
that calls R, without the need to analyze R again. 

Before we verify a subroutine R, we must verify all of the 
routines that R calls.  Thus, the order in which we verify a 



program's subroutines is a topological order on its call graph.  
Clearly, this scheme does not work for recursive routines, so we 
handle recursion specially. (A further complication arises in the 
case of mutual recursion, which we do not yet handle.  The 
solution will be to verify one mutually-recursive clique of 
routines at time.) 

To prove the correctness theorem for a subroutine we use a proof 
methodology called "compositional cutpoints." Our method 
borrows parts of the method put forth in [9]; both methods are 
improvements of an earlier method described by those same 
authors. 
Cutpoint proofs require annotating the subroutine to be verified 
by placing assertions at some of its program locations; those 
locations are called "cutpoints".  Every cutpoint has a 
corresponding assertion which is taken to apply to those states 
that arise just before the instruction at the cutpoint is executed. 
Consider the AAMP7G subroutine FACT-ITER (see Figure 4), 
which iteratively computes the low 32 bits of the factorial of its 
argument.  We verify a subroutine F by giving it a precondition 
and a postcondition.  Roughly speaking, the correctness theorem 
for a subroutine F will say: 

"If we are about to start executing F, and if the precondition 
holds, then if F eventually returns, the post-condition will be true 
upon return from F." 

This is a partial correctness result, because it has a hypothesis that 
asserts that F eventually returns.  We could extend the partial 
correctness result to a total correctness result by proving 
separately that F terminates, and we believe such a termination 
proof can be done using a "compositional cutpoints" method 
similar to the one we use for partial correctness.  However, we 
have yet to implement the proof machinery for termination (this is 
current work in progress).  In the rest of this paper we will 
consider only partial correctness. 

The precondition of a subroutine R applies to its "prestate," that 
is, the state just after a frame was pushed onto the call stack on 
behalf of  R and just before the first instruction of R is executed. 

Among the assertions typically found in the precondition of 
routine R are: 

1. that the expected code for R is indeed loaded at the 
correct address. 

2. that the arguments to R satisfy some constraints (e.g., 
"argument x is a positive integer") 

3. that the machine is in a "normal" state (e.g., no memory 
access violations have occurred) 

4. that there is enough space on the call stack for any 
frames that will be pushed by R or its callees. 

5. that the AAMP7G Partition Management Unit (PMU) is 
setup to give permission for all the memory accesses 
performed by R and its callees. 

This list is not exhaustive.  The precondition for FACT-ITER is 
given in Figure 5. 

 
 

 

     #x04           ;; Proc Header --  

     #x00           ;; 4 words of locals 

;  

     #x10            ;; LIT4 0 

     #x11            ;; LIT4 1 

; local0 is a counter from 1 up to N 

     #xc0            ;; ASNDL 0 

; local2 is initialized to 1 

     #x10            ;; LIT4 0 

     #x11            ;; LIT4 1 

     #xc2            ;; ASNDL 2 

; L2: loop top -------------------- CUTPOINT 

     #x30            ;; REFDL 0 

     #x34            ;; REFDL 4 

; if local0 > N, goto L 

     #xa5 

     #x0e            ;; GRUD 

     #x5b            ;; SKIPNZI 

     #x0e            ;;  L (+14) 

; local2 = local2 * local0 

     #x30            ;; REFDL 0 

     #x32            ;; REFDL 2 

     #xa5 

     #x2a            ;; MPYUD 

     #xc2            ;; ASNDL 2 

; increment local0 

     #x30            ;; REFDL 0 

     #x10            ;; LIT4 0 

     #x11            ;; LIT4 1 

     #xa5 

     #x28            ;; ADDUD 

     #xc0            ;; ASNDL 0 

; go to L2 

     #x19            ;; LIT8N   

     #x13            ;;  L2 (-20) 

     #x59            ;; SKIP 

; L: return local2 

     #x32            ;; REFDL 2 

     #x16            ;; LIT4 6 

     #x5f            ;; RETURN 

 
 

Figure 4.   AAMP7G machine code for 32-bit unsigned 
factorial. 

The postcondition of a routine applies  to its "poststate," that is, 
the state that results when the stack frame for the routine is 
popped off at the end of the routine's execution.  Typically a 
postcondition will specify the value returned by the routine (e.g,  



that the routine returns the low 32 bits of the factorial of the 
input).  However, specifying the return value alone is rarely 
sufficient.  Recall that the correctness theorem for a routine R 
must be sufficient to verify any routine that calls R.  Often R's 
callers will rely on many properties of R in addition to its return 
value.  For example, R's callers will typically need to know that R 
doesn't modify memory that it shouldn’t, and that R doesn't cause 
any traps or memory access violations.   

Since we don't want to re-analyze R again after verifying it, R's 
correctness theorem must capture these "frame conditions".  
Writing a predicate that explicitly lists all of the frame conditions 
for R (including all the state components and memory ranges that 
R leaves unchanged) can be tedious.  Instead we phrase R's 
postcondition using an equality; we specify that the poststate is 
equal to some modification of the initial state.  The modification 
can be phrased using the MODIFY macro.  The modification 
typically involves popping off a stack frame, pushing on a return 
value, and perhaps making changes to memory.  This equality 
formulation is quite strong; for the equality to hold, any state 
component not explicitly mentioned in the call to MODIFY must 
remain unchanged.  In keeping with this approach, the user 
usually supplies a postcondition that includes a "poststate".  The 
poststate for FACT-ITER is given in Figure 6. 

A typical correctness theorem for a subroutine F is: 

 
(defthm f-correct 
  (implies  
    (and  
      (f-precondition s0) 
      (equal (program-counter s0) 
             (f-starting-program-counter)) 
      (eventually-returns s0)) 
    (equal (run-until-return s0) 
           (f-poststate s0)))) 
 
 
Here, F-STARTING-PROGRAM-COUNTER indicates the 
location of the beginning of the code for F.  F-CORRECT 
corresponds to the rough English-language correctness 
specification given above. 

One objection to requiring a poststate rather than a postcondition 
is that a poststate is "too strong".  Perhaps there are parts of the 
poststate that the user doesn't care to specify.  For example, 
FACT-ITER changes the AAMP's "memory temporary" registers 
and leaves “garbage” above the stack pointer.  No caller of 
FACT-ITER will rely on any of those values, and it would be 
tedious to specify them exactly as a function of FACT-ITER’s 
prestate.  The solution is to characterize the poststate in terms of 
the prestate and the poststate itself.  This seems counter-intuitive 
but allows one to easily make trivially-true characterizations of 
unimportant state components.   

For example, we specify the MEMTMP component of FACT-
ITER's poststate by just saying that it equals the MEMTMP 
component of FACT-ITER's poststate!  This allows us to enjoy 
the strength of phrasing postconditions in terms of equality with a 
poststate but without the tedium of specifying uninteresting 
components.  We call this approach "wormhole abstraction" or 
"don't care specification".   

With wormhole abstraction, the correctness theorem for a 
subroutine F is: 

 
(defthm f-correct 
  (implies  
    (and  
      (f-precondition s0) 
      (equal (program-counter s0) 
             (f-starting-program-counter)) 
      (eventually-returns s0)) 
    (equal  
      (run-until-return s0) 
      (f-poststate s0  
        (run-until-return-wormhole s0)))))  

 
(defun fact-iter-max-words-of-operand-stack () (declare (xargs :guard t)) 4)  
;from analysis of the code 
 
(defund fact-iter-precondition (s) 
    (declare (xargs :non-executable t)) 
    (and (standard-precondition (fact-iter-address)  
                                (fact-iter-code) 
                                (fact-iter-max-words-of-operand-stack) 
                                s)  
         ;; The routine doesn't work if the argument is the maximum 32-bit  
         ;; unsigned value, since in that case the loop never terminates: 
         (not (equal 4294967295 (aamp::read-two-local-words 4 s))))) 
 

 

Figure 5.  Precondition specification for factorial subroutine. 

 
 

Note that F-POSTSTATE now takes two arguments, the initial 
state, S0, and (run-until-return-wormhole s0).  Here 
RUN-UNTIL-RETURN-WORMHOLE is just RUN-UNTIL-
RETURN, renamed to prevent F-CORRECT from causing a 
rewrite loop. 



 
 
;; Factorial, defined in the traditional recursive style 

(defun fact (n)  
  (if (zp n) 1 
    (* n (fact (1- n))))) 
 
 
(defun fact-iter-words-of-locals-and-args () (declare (xargs :guard t)) 6)  
;from dealloc count pushed just before return 
 
(defun fact-iter-words-of-return-values () (declare (xargs :guard t)) 2)  
;from height of operand stack just before return 
 
 
(defun fact-iter-poststate (s0 s) 
    (declare (xargs :non-executable t)) 
    (standard-poststate ((0 ;; top return value 
                          2 ;; takes up 2 words 
                          ;;the mathematical factorial of the argument: 
                          (fact (gacc::read-data-words 2 (aamp::aamp.denvr s0)  
                                                         (+ 4 (aamp::aamp.lenv s0)) 
                                                         (aamp::aamp.ram s0))) 
                          )) 
                        (fact-iter-max-words-of-operand-stack) 
                        (fact-iter-words-of-locals-and-args) 
                        (fact-iter-words-of-return-values) 
                        s0 
                        s)) 
 

 

Figure 6.  Poststate for factorial subroutine. 

Figure 7 shows the main command invoked as part of the proof of 
the correctness theorem for FACT-ITER, FACT-ITER-
CORRECT.  The prove-it macro causes ACL2 to attempt a 
"cutpoint to cutpoint" proof for the subroutine and then appeals to 
a generic result that states that the "cutpoint to cutpoint" property 
is sufficient to ensure partial correctness.  The remainder of this 
section describes the process in more detail.  

The prove-it macro automatically considers a routine's starting 
program location to be a cutpoint, with the routine's precondition 
as its corresponding assertion.  In addition the user can specify a 
set of "user cutpoints," each paired with a corresponding 
assertion.  User cutpoints often correspond to the continuation 
tests of loops. 

The resulting full set of cutpoints is sufficient if it "cuts every 
loop," that is, if every cycle in the routine's control flow graph 
contains a cutpoint.  We need not consider cycles in the code of 
called subroutines; any subroutine call should either be a call to 
an already-verified routine, or be a recursive call (which we 
handle separately, as described below). 

For code emitted by a compiler for an imperative language with 
standard looping constructs like "for" and "while," it is usually 
sufficient to put a cutpoint at the continuation test of each loop, 
even in the presence of break and continue statements.  
Sometimes we can do even better.  For example, a single cutpoint 
sometimes suffices to verify a program with two nested loops. 

A routine with no loops typically requires no user cutpoints; that 
is, the starting program location usually sufficies as the only 
cutpoint.  This is true even if the routine contains branches or 
subroutine calls, including recursive calls. 

If the set of cutpoints for a routine is insufficient to cut all the 
loops in its control flow graph, the symbolic simulation described 
below may loop forever -- in which case the proof will fail. The 
"cutpoint to cutpoint" proof for a routine involves symbolic 
simulation of the machine model.  The simulation starts at a 
cutpoint and assumes that the assertion for that cutpoint holds.  
We simulate the machine until it either reaches another cutpoint 
or exits by executing a return instruction.  At the resulting state, 
we must show that the corresponding assertion holds.  Recall that 
each cutpoint has a corresponding assertion. The corresponding 
assertion for a state in which the routine has just exited is the 
routine's postcondition.  (The above description is a bit of an 
oversimplification because the simulation from a cutpoint may 
encounter a conditional branch.  In such a case the simulation will 
split into several simulation branches.  What we really must prove 
is that the state at the end of every simulation branch satisfies its 
corresponding assertion.) 

The proof proceeds by symbolic simulation using several 
symbolic simulation rules, which are described fully in [15]. 

Among the rules are ones that: 



 

 (prove-it  
  fact-iter ;the name of the routine 
  :wormhole t 
  :subroutine-calls nil ;makes for faster proofs 
  :user-cutpoints  
  ;; List of (PC byte offset . assertion) pairs 
  ((6 . (and 
            ;; First comes an equality claim about the current state, s,  
            ;; in terms of the initial state, s0. 
            (equal s 
                (standard-cutpoint-state  
                    :pc 6  
                    :locals ( 
                        (4 2 (aamp::read-two-local-words 4 s0)) 
                        (2 2 (fact (+ -1 (gacc::read-data-words 2 
                                             (aamp::aamp.denvr s0) 
                                             (aamp::aamp.lenv s0) 
                                             (aamp::aamp.ram s)))))))) 
                                                                                    
         ;; We claim that the precondition held at state s0. 
         ;; So, roughly speaking, any state component (e.g., the code)  
         ;; still unchanged from s0 to s still satisfies whatever the  
         ;; precondition said about it. 
         (fact-iter-precondition s0)  
          
         ;; Asserts that the loop counter at local slot 0 is at most one more   
         ;; than the input argument, N (accessed on the AAMP stack at local slot 4) 
         (<= (aamp::read-two-local-words 0 S)  
             (+ 1 (aamp::read-two-local-words 4 S))) 
          
         ;; Asserts that the loop counter is positive  
         ;; (it starts at 1 and goes upward). 
         (< 0 (aamp::read-two-local-words 0 S))  
         ))) <hints elided>) 
 
 

Figure 7.   Assertions at cutpoint. 

• Step the state when neither a cutpoint nor a subroutine 
exit has been reached.   

• Stop the simulation when such a point has been reached. 

• Handle subroutine calls. 

The simulation process is fairly natural. It does not require the 
user to write a special-purpose program to do the simulation.  
Rather, the symbolic simulation rules drive ACL2's normal 
rewriter to do the simulation when the prove-it macro generates a 
carefully crafted theorem. 

The full "cutpoint to cutpoint" proof requires doing the above 
symbolic simulation for every cutpoint.  Once we show that an 
execution starting from any cutpoint is well-behaved, we can 
conclude that the routine is partially correct.  The prove-it macro 
automates that reasoning. 

As noted above, we handle recursion separately; the full details 
are given in [15]. Essentially we wrap the "cutpoint to cutpoint" 
proof inside an induction, on the variable n, of the claim "All calls 
which terminate within n steps are correct."  Thus, when 

simulation encounters a recursive call we can assume from the 
inductive hypothesis the call operates correctly. (Since the caller 
terminates, the callee must also terminate, and it must do so in 
fewer steps.) 

In Figure 7 we specify one user cutpoint for the non-recursive 
routine FACT-ITER, namely the location which is 6 bytes past 
the first instruction.  We pair the cutpoint with a loop invariant 
whose most interesting part says that the top stack element is the 
factorial of one less than the loop index. 

The prove-it macro does most of the heavy lifting of the proof, 
allowing the user to focus on the interesting part: formulating a 
set of assertions that is inductively strong, and proving helper 
lemmas about the notions with which the specific program deals.  
Typically, prove-it proceeds automatically, without very many 
hints, due in part to a large and growing library of general-
purpose lemmas about the AAMP7G. 



6. CONCLUSION 
We have presented a code proof framework for highly secure 
applications targeting the Rockwell Collins AAMP7G embedded 
microprocessor, built upon an executable formal instruction set 
model of the AAMP7G written in ACL2.  We have presented the 
formally verified partitioning features of the AAMP7G, and 
shown how the AAMP7G instruction level model is validated 
through the execution of AAMP binaries.  The model is 
controlled using the same user interface that is used to control the 
actual AAMP7G chip.  We summarized the compositional 
cutpoint code proof technique, and showed how it is coupled with 
ACL2’s efficient symbolic simulation support to produce a robust 
code proof framework for AAMP7G machine code.  This code 
can be generated from a number of sources, including traditional 
compilers, but also including a certifying compiler for the 
µCryptol cryptographic programming language. 
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