
Parameterized Congruences in ACL2

David Greve
Rockwell Collins Advanced Technology Center

Cedar Rapids, IA
dagreve@rockwellcollins.com

ABSTRACT
Support for congruence-based rewriting is built into ACL2.
This capability allows ACL2 to treat certain predicate rela-
tions ”just like equality” under appropriate conditions and
allows specific theorems involving those equivalence rela-
tions to be used as rewrite rules to guide the simplification
process. Although this has proven to be an extremely pow-
erful capability, it comes with limitations. One significant
limitation is that equivalence relations cannot be parame-
terized. This precludes one very natural application of con-
gruences: their use in reasoning about arbitrary modulus
arithmetic. We have developed a technique for emulating
parameterized congruence-based rewriting on a stock ACL2
system using binding hypotheses and bind-free. We have
also developed a library (nary) that provides a means of ex-
pressing and utilizing such congruences with a high degree
of automation. We demonstrate the application of this li-
brary to problems in modular arithmetic and other similar
domains.

1. CONGRUENCE-BASED REWRITING
Support for congruence-based rewriting is built into ACL2.
We provide an overview of this capability here, although the
curious reader is encouraged to review the ACL2 documen-
tation on this subject under congruence[3]. Congruence-
based rewriting allows ACL2 to treat certain predicate rela-
tions ”just like equality” under appropriate conditions, and
allows specific theorems involving those equivalence rela-
tions to be used as rewrite rules to guide the simplification
process. The power of congruence-based rewriting in ACL2
is that it enables the user to construct simple rules that per-
form context sensitive simplifications and then chain those
rules together to simplify expressions of arbitrary depth.

Consider the challenge of writing rules to normalize expres-
sions for a list-based implementation of sets in which order
and multiplicity are irrelevant. Assuming cons is a valid set
constructor, one useful simplification rule for this library
might be:

(defthm member-cons-duplicates

(iff (member a (cons x (cons x y)))

(member a (cons x y))))

Because duplicates are ignored we are able to simplify mul-
tiple conses of the same item into a single cons of that item
in the context of the second argument of member. Look-
ing closely at the member-cons-duplicates rule we see that
the effect of the rule is to replace the second argument of
member, (cons x (cons x y)), with a new value, (cons x

y). While these terms are not equal they behave in the same
way in the context of the second argument of member so we
are free to replace one with the other. To normalize such
expressions, one might conclude that a class of rules that re-
place any occurrence of (cons x (cons x y)) with (cons

x y) within nested cons terms appearing in the second ar-
gument of member would be useful.

Unfortunately simple rewrite rules are not sufficiently pow-
erful to accomplish this task. The member-cons-duplicates
rule will not generally simplify a term of the form (member a

(cons w (cons x (cons x y)))). While another rule spe-
cific to this term could be defined, one quickly discovers
that no finite set of simple rewrite rules will ever simplify
all possible occurrences of (cons x (cons x y)) appearing
in such a context.

More elegant approaches to the immediate problem, employ-
ing such syntactic techniques as :meta rules or bind-free,
while more powerful, have limited scalability. They provide
only point solutions, specific to a particular set of functions
and are difficult to extend to user defined functions in the
domain of interest.

Congruence-based rewriting is more powerful than simple
rewrite rules and more scalable than other syntactic tech-
niques. Employing congruence-based rewriting in ACL2 re-
quires three basic steps: defining rewriting contexts, prov-
ing driver rules that simplify expressions within those con-
texts, and establishing congruence rules that identify when
the rewriter can enter new contexts.

Rather than expressing a context in terms of, say, the sec-
ond argument of member, ACL2 generalizes the notion of
rewriting context and requires the formalization of the es-
sential properties of this argument position with an equiva-
lence relation. The equivalence relation is expected to cap-
ture the minimal set of properties that must be preserved by



an argument in order to preserve the essential properties of
that function. ACL2 then associates rewriting contexts with
these equivalence relations. New rewriting contexts can be
defined by defining and flagging new equivalence relations.
An equivalence relation may be any function of two argu-
ments that ”acts like equal” in the sense that it satisfies
the following property, stated in terms of the equivalence
relation set-equiv:

(and

(booleanp (set-equiv x y))

(set-equiv x x)

(implies (set-equiv x y)

(set-equiv y x))

(implies (and (set-equiv x y)

(set-equiv y z))

(set-equiv x z)))

Both equal and iff are examples of equivalence relations
that are built-in to the ACL2 system, but any function in
ACL2 satisfying the above properties can be flagged as an
equivalence relation using defequiv:

(defequiv set-equiv)

This event will associate a new rewriting context with the
given relation and will cause ACL2 to treat the equivalence
relation just like equality in appropriate contexts. In par-
ticular, this means that a theorem of the form:

(defthm set-equiv-cons-cons-driver

(set-equiv (cons a (cons a x)) (cons a x))

is treated as a rewrite rule that rewrites (cons a (cons a

x)) into (cons a x) in a set-equiv context, rather than
as a rule that rewrites (set-equiv (cons a (cons a x))

(cons a x)) into true. This rule is an example of a set-equiv
driver rule. Such rules greatly enhance the user’s ability
to automate the production of normalized representations.
While there are no specific restrictions on the form of driver
rules, they are applied by ACL2 only in appropriate con-
texts. Those contexts are established by congruence rules.
A congruence rule tells ACL2 exactly when it is sound to use
certain types of equivalence relations during simplification.
An example congruence rule is:

(defthm set-equiv-implies-iff-in-2

(implies

(set-equiv x y)

(iff (member a x) (member a y))))

:rule-classes (:congruence))

This theorem tells ACL2 that when it attempts to simplify
calls of member in an iff (Boolean) context, it is free to
simplify the second argument of member in a set-equiv con-
text. When we say “a set-equiv context”, we mean that
it is sound for ACL2 to apply rewrite rules that employ the
set-equiv equivalence relation. The form of congruence

rules is quite restrictive, applying only to a single function
instance (member, in this example) and having no hypothe-
ses except a single equivalence relation over one argument
of the function. The ACL2 defcong macro simplifies the
specification of congruence relations. Here we reformulate
set-equiv-implies-iff-in-2 using defcong and also ex-
press a set-equiv congruence for cons :

(defcong set-equiv iff (member a x) 2)

(defcong set-equiv set-equiv (cons a x) 2)

ACL2’s ability to remember that it is in a particular context
while performing simplification allows the user to write con-
cise collections of driver rules. ACL2’s ability to chain from
one rewriting context to another (via congruence rules) ex-
tends the applicability of the driver rules even to arbitrarily
nested terms. The set-equiv events presented so far are
sufficient to program ACL2 to simplify any occurrence of
the expression (cons x (cons x y)) among nests of conses
in the second argument of member. This demonstrates the
power of such rules. These same basic techniques are also
scalable. They can be applied locally to each new function
in the domain and applied globally, in the context of other
functions in the domain.

2. MODULAR ARITHMETIC
Having seen the benefit of congruence-based rewriting in the
domain of a set library, let us now consider how one might
attempt to extend these techniques to a similar problem in
modular arithmetic. In modular arithmetic, two numbers
are congruent “mod N” if they have the same residue, or
remainder, when divided by N. The value of N is called the
modulus. The residue of a value x, mod N, can be computed
as (mod x N). Consider the following useful simplification
rule:

(defthm mod-+-mod-1

(equal (mod (+ (mod x N) y) N)

(mod (+ x y) N)))

Because mod distributes over addition and because mod is
idempotent in its first argument, applications of the same
modulus nested inside of + operations can be removed. Look-
ing closely at the mod-+-mod-1 rule we see that the effect of
the rule is to replace the first argument of +, (mod x N),
with a new value, x. While these two expressions are not
generally equal they behave in the same way in the context
of the outermost mod operator so we are free to replace one
with the other. To normalize such expressions, one might
conclude that a class of rules that replace any occurrence of
(mod x N) with x within nested + terms appearing in the
first argument of (mod * N) would be useful.

Unfortunately simple rewrite rules are not sufficiently pow-
erful to accomplish this task. The mod-+-mod-1 rule will not
simplify a term of the form (mod (+ w (mod x N) y) N).
While another rule specific to this term could be defined,
one quickly discovers that no finite set of simple rewrite
rules will ever simplify all possible occurrences of (mod x

N) appearing in such a context.



There are other approaches to the immediate problem, em-
ploying such syntactic techniques as :meta rules or bind-free,
which are more powerful than simple rewrite rules. The
arithmetic-3 library, for example, has a number of bind-
free lemmas for simplifying expressions of exactly this form.
Such solutions, however, have limited scalability. They pro-
vide point solutions that are specific to a particular set of
functions and difficult to extend to user defined functions in
the domain of interest.

It was at this point in our discussion of the list-set library
that congruence-based rewriting was proposed as a possible
solution. The first step in this solution was to establish a
rewriting context that captured the essential properties of
interest. In this case, the property that we wish to preserve
is “mod N”. Expressing this property as an equivalence re-
lation, as required by the ACL2 implementation, one might
be tempted to define:

(defun mod-equiv (x y N)

(equal (mod x N) (mod y N))

ACL2, however, does not support parameterized equivalence
relations. It is possible to encapsulate the modulus as a
nullary function, (N), and then define mod-equiv as:

(defun mod-equiv (x y)

(equal (mod x (N)) (mod y (N)))

This version of mod-equiv is a binary relation and it can
be used as an equivalence relation to prove congruence (and
possibly even driver) rules. Automating the application of
these rules in a specific domain, however, requires that the
user functionally instantiate (N) for each specific modulus
value of interest, potentially making the use of such rules
tedious.

We conclude then that, while congruence-based rewriting
is an extremely powerful technique, its applicability is lim-
ited by the fact that equivalence relations in ACL2 cannot
be easily parameterized. This fact inhibits one very natu-
ral application of congruences: their use in reasoning about
arbitrary modulus arithmetic.

3. PARAMETERIZATION
The nary library was developed specifically to address the
need to perform automated reasoning with parameterized
congruences in ACL2. With the nary library, like in ACL2
itself, employing parameterized congruence-based rewriting
requires three steps: defining parameterized rewriting con-
texts, proving parameterized driver rules that simplify ex-
pressions in those contexts, and establishing parameterized
congruence rules that identify when the rewriter can enter
new contexts.

3.1 Parameterized Contexts
In the ACL2 implementation rewriting context is determined
by the equivalence relations currently active in the genequiv
data structure. The genequiv data structure is passed as
an argument to the rewriter and it identifies the “active”

equivalence relations. Driver rules are allowed to fire if the
equivalence relation they preserve is in the genequiv data
structure. Congruence rules control modifications to the
genequiv data structure, constructing new genequiv data
structures as the rewriter dives into the arguments of the
various functions it encounters based on the current context
and any congruence rules associated with those functions.

One possible solution to the problem of parameterized equiv-
alence relations would involve extending the genequiv data
structure to include, along with each equivalence relation, a
number of terms reflecting the parameters of that relation.
While such an extension may be possible it would require
substantial changes to the ACL2 code base.

The nary library enables the emulation of such an extended
rewriting context on a stock ACL2 system through the care-
ful application of binding hypotheses and bind-free. While
traditional rewriting contexts are identified by equivalence
relations, parameterized rewriting contexts in the nary li-
brary are identified primarily by context (or fixing) func-
tions. In modular arithmetic, for example, the context func-
tion is mod.

The implicit assumption here is that the desired parametric
equivalence relation can be expressed as a simple binary
equivalence between two parameterized context functions.
For example, a 5-ary equivalence between 2 variables, x and
y, “modulo” the three parameters a1, a2, and a3, might be
expressed as:

(equal (nary-equiv x y a1 a2 a3)

(equiv (nary-ctx x a1 a2 a3)

(nary-ctx y a1 a2 a3)))

Note that the context functions separate the interaction be-
tween each equated term and the parameters from the rela-
tive interaction between the two equated terms themselves.
It is in this sense that context functions define (or capture)
the parameterized rewriting context.

Context functions serve two primary purposes in the nary li-
brary and those purposes mirror the purposes of the genequiv
data structure in ACL2. First, context functions act as a
method for imposing a rewriting context on a specific term.
Causing a term to be rewritten in a parametric context is
as simple as wrapping that term in its context function and
simplifying it. Rewriting the term x in a “mod N” context,
for example, is simply a matter of simplifying the term (mod

x N). By analogy, ACL2 causes a term to be rewritten in
an “equiv” context by adding “equiv” to the genequiv data
structure and calling the rewriter on that term.

Context functions also act as triggers for driver rules. Which
is to say that driver rules for the nary library are simply
rewrite rules whose left-hand side’s leading function symbol
is a context function. The nary library effectively “acti-
vates” such rules when it wraps terms as described above.
For example, when rewriting the term x in a “mod N” con-
text, the driver rules include any those active rewrite rules
whose left-hand side is an instance of (mod x N). This be-
havior is comparable to how ACL2 activates certain rewrite



rules based on equivalence relations found in the current
genequiv data structure.

3.2 Parameterized Driver Rules
As we saw in the list-set example above it is driver rules that
perform the actual work of term simplification in congruence-
based rewriting. Parameterized driver rules are nothing
more than rewrite rules whose leading function symbol is
a parameterized context function. For example, the simple
rule:

(defthm mod-N-N

(implies

(and (integerp N)

(not (equal N 0)))

(equal (mod N N) 0)))

is a perfectly good driver rule for modular arithmetic. Note
that it is possible to combine standard congruence-based
rewriting with parameterized congruence-based rewriting.
This means it is possible to use traditional equivalence re-
lations to construct driver rules for parameterized context
functions.

3.3 Parameterized Congruences
The primary purpose of a traditional congruence rule is to
cause ACL2 to simplify a selected argument of a targeted
function in a new rewriting context whenever that function
symbol is encountered in an appropriate rewriting context.
While the form of a simple congruence rule resembles that of
a rewrite rule, it is not treated as such by ACL2. Consider
for example:

(defthm set-equiv-cons

(implies

(set-equiv a x)

(set-equiv (cons v a)

(cons v x)))

:rule-classes (:congruence))

The conclusion of the congruence rule dictates the context
in which the rule will fire and the hypothesis suggests the
context in which the simplification of the argument will take
place.

The result of applying nary congruence rules is very similar
in effect to that of traditional congruence rules. Unlike tra-
ditional congruence rules, however, nary congruence rules
are treated by ACL2 as simple rewrite rules. Like tradi-
tional congruence rules, the conclusion of the rule dictates
the context in which the rule will fire. However, because
nary congruence rules are just rewrite rules, this context is
influenced by pattern matching. Also, as with traditional
congruence rules, the hypothesis of nary congruence rules
dictates the context in which the simplification of the func-
tion argument(s) will take place. The manner in which this
simplification is performed, however, is quite different. In
fact it is the hypotheses of nary congruence rules that house
nearly all of the complexity of the nary library. Following is

an example of a parameterized congruence rule for modular
arithmetic1:

(defthm mod-+-cong-1

(implies

(and

;; -- Guard Hypotheses --

(integerp N)

(not (equal N 0))

(integerp a)

(integerp b)

;; -- Congruence Machinery --

(equal wrap (mod a N))

(bind-free

(mod_unfix wrap N ’wrap? ’x)

(wrap? x))

(if wrap? (equal wrap (mod x N))

(equal wrap x))

(syntaxp (not (equal a x)))

;; -- Check Hypotheses --

(integerp x))

(equal (mod (+ a b) N)

(mod (+ x b) N))))

The primary purpose of congruence rules is to induce ACL2
to simplify function arguments in a specified context. The
rule above induces ACL2 to simplify the first argument of +
in a “mod N” context when + itself is encountered in a “mod
N” context. In order to see this, consider what is going on
in the hypotheses of this rule. The first four hypotheses in
this rule are simply guard hypotheses that dictate when this
congruence rule is valid.

(integerp N)

(not (equal N 0))

(integerp a)

(integerp b)

The ability to guard congruence rules in this way illus-
trates one significant difference between traditional congru-
ence based rewriting in ACL2 and the capabilities provided
by the nary library.

The next four hypotheses are referred to as the congruence

machinery hypotheses since they perform the heavy lifting
of parameterized congruence based rewriting. An expression
of the form (equal x term) appearing in the hypothesis of
a rewrite rule, where x is a free variable and all variables
appearing in the right-hand side term are bound, is called
a binding expression2. The effect of a binding expression
is to bind the free variable to the result of simplifying the
term on the right-hand side. Thus, the effect of the fifth
hypothesis of our rule is to bind to the variable wrap the

1The exact form of this rule has been simplified for the pur-
pose of illustration.
2The term (equiv x (double-rewrite y)) is also a bind-
ing expression for x if equiv is a recognized equivalence
relation and all the variables appearing in y are bound.
This fact allows nary congruence rules to leverage standard
congruence-based rewriting as a part of the simplification
process.



result of simplifying the first argument of the + function, a,
in a “mod N” context:

(equal wrap (mod a N))

Note that the simplification of (mod a N) may involve the
application of some number of nary driver rules (such as
mod-N-N, above) that trigger off of the nary context function
(mod, in this case).

The sixth hypothesis in our theorem is a bind-free term
that calls the function mod unfix:

(bind-free

(mod_unfix wrap N ’wrap? ’x)

(wrap? x))

The mod unfix function is defined as follows:

(defun mod_unfix (wrap N wrap? x)

(if (and (consp wrap)

(equal (car wrap) ’mod)

(equal (caddr wrap) N))

(list (cons wrap? ‘(quote t))

(cons x (cadr wrap)))

(list (cons wrap? ‘(quote nil))

(cons x wrap))

This function binds two variables, wrap? and x. The vari-
able wrap? is bound to true when the term bound to wrap

is of the form (mod P N). If wrap? is true x is bound to P

(we call this the “unwrapped” value of wrap) otherwise it is
bound to wrap.

There is no logical mechanism that we can use to verify a
priori the correctness of the syntactic transformation per-
formed by mod unfix. We are thus obligated to prove that
it unwrapped wrap correctly. This check takes place in the
seventh hypothesis:

(if wrap?

(equal wrap (mod x N))

(equal wrap x))

This check ensures that the value of x has the property that
it is the result of simplifying a in a “mod N” context (ie:
(mod a N)). If the result of that simplification was of the
form (mod P N), x is equal to P and, if not, x is just equal to
the simplification of (mod a N). Note that in computing x,
our replacement for a, we are taking some care not to pro-
duce a term of the form (mod P N). This feature of the rule
helps to ensure that we do not litter our expressions with
(mod * N) terms. Our eighth hypothesis mitigates looping
and ensures and that we have, in fact, accomplished some-
thing in this process:

(syntaxp (not (equal a x))))

The final hypothesis is a logical check on the type of our
replacement for a, the value x. Such checks may be required
because, again, we have no assurance that mod unfix did
the right thing.

(integerp x)

It is worth observing that, because nary congruence rules
are just rewrite rules, they are strictly more expressive (flex-
ible) than ACL2 congruence rules. ACL2 congruence rules
work only with simple, non-parameterized equivalence re-
lations, they apply only to individual functions, and they
cannot have guarding hypotheses. Congruence rules defined
using nary enable parameterization, can be made to pattern
match on arbitrary terms and can be guarded by arbitrary
hypotheses.

4. PARAMETRIC SUPPORT IN NARY
While the theorems and functions presented so far may im-
plement parameterized congruence based reasoning, they are
simply too complex to write by hand. To address this issue,
a number of macros are provided by the nary library to sim-
plify the process of specifying parameterized congruences.
Here we provide an overview of those macros and some ex-
amples of their use.

4.1 defcontext

The defcontext macro is analogous to ACL2’s defequiv

macro in that it is used to establish new parameterized
rewriting contexts and paves the way for parametric congru-
ence lemmas to be proven later on. The form of a defcontext
event is:

(defcontext (mod x n) 1)

The macro accepts a single function expression and a nu-
meric designator. The function provided can henceforth be
used to designate a rewriting context. The numeric des-
ignator identifies which argument to the function is to be
treated as the context argument. The effect of this macro
is to define the set of auxiliary functions used in expressing
congruence rules. The mod unfix function encountered in
the example above was generated by this macro.

4.2 defcong+

The defcong+ macro is analogous to ACL2 defcong macro.
The following is an example of using the defcong+ macro
in its most general form. It also illustrates how one might
program ACL2 to apply the distributivity of mod over plus.

(defcong+ mod-+-cong

(mod (+ a b) N)

:hyps (and (rationalp N)

(rationalp a)

(rationalp b)

(not (equal N 0)))

:cong ((a (equal x (mod a N)))

(b (equal y (mod b N))))

:check (and (rationalp x)



(rationalp y))

:equiv equal

:hints (("goal" :in-theory

(enable mod-+-fixpoint-helper))))

This expanded form of this macro is very similar to mod-+-cong-1,
presented above, except that this theorem will cause the sim-
plification of both arguments of + rather than just the first.
This theorem says that we can rewrite both arguments to +

in a “mod N” context when + itself is in a “mod N” context
and a, b and N are rational and N is not zero.

The first argument to the macro is the name of the con-
gruence theorem. The second argument defines the target
(left hand side) of the rule and can be an arbitrary term ex-
pression. In this example, we will be simplifying expressions
of the form (mod (+ a b) N). The :hyps argument corre-
sponds to a guarding hypothesis and defines the conditions
under which the theorem should be applied. The :cong term
accepts a list of substitutions to be performed on the target
expression. Each substitution must be of the form (var1

(equiv var2 expr)), where var1 is a variable appearing in
the target, equiv is a valid equivalence relation, var2 is a
new, unique variable name, and expr is a term whose lead-
ing function symbol has been defined (using defcontext)
as an nary context3. The :cong term in this example di-
rects ACL2 to rewrite (mod (+ a b) N) into (mod (+ x y)

N) by replacing the “a” term of (mod (+ a b) N) with x,
the result of simplifying a in the context (mod a N), and
replacing the “b” term with y, the result of simplifying b in
the context (mod b N). Because x and y are, from a logical
perspective, plucked out of thin air, the :check term may be
required to ensure that they are of an appropriate type. The
:equiv keyword is used to specify the equivalence relation
used to state the conclusion of the theorem. The default
value is equal. Finally, :hints can be provided to guide the
proof of the congruence theorem. All of the macro keywords
are optional except the :cong keyword, which must specify
at least one substitution.

4.3 bind-context

There are circumstances in which it is convenient to have
access to the congruence machinery hypotheses without all
the trappings of the defcong+ macro. To support this,
the nary library provides the bind-context macro. The
bind-context macro accepts a list of substitutions and gen-
erates the associated congruence machinery hypotheses. Us-
ing bind-context, the defcong+ example from above could
be reformulated as:

(defthm mod-+-cong

(implies

(and (rationalp N)

(rationalp a)

(rationalp b)

(not (equal N 0)))

(bind-context ((a (equal x (mod a N))))

3These substitutions are converted into binding expressions
like we saw earlier in the congruence machinery hypotheses.
If the equivalence relation specified in the substitution is
not equal, it will generate a binding expression of the form
(equiv var2 (double-rewrite expr)).

(b (equal y (mod a N)))))

(rationalp x)

(rationalp y))

(equal (mod (+ a b) N)

(mod (+ x y) N)))

4.4 Parametric Examples
Consider functions foo1 and foo2 with the following prop-
erties:

(defthm foo1-prop

(equal (mod (foo1 x n) n) (mod x n)))

(defcong+ foo2-cong

(mod (foo2 x) n)

:cong ((x (equal a (mod x n)))))

Having defined mod as a parametric rewriting context (us-
ing defcontext) and having proven the mod-+-cong theorem
presented above, we can now, in conjunction with the stan-
dard arithmetic-3/floor-mod/floor-mod book and prop-
erties such as those above, automate simplifications such as:

(defthm mod-+-normalization-example

(implies

(and

(integerp n)

(not (equal n 0))

(rationalp-guard a b c d e))

(equal (mod (+ a

(mod b n)

(foo1 c n)

(foo2 (+ (mod d n)

(mod e n))))

n)

(mod (+ a b c (foo2 (+ d e))) n))))

Modular arithmetic, however, is not the only domain that
benefits from parameterized congruence-based reasoning. An-
other potential domain includes functions operating on data
structures such as those defined by defstobj. Of concern in
such examples is the use set of the functions in the domain.
We define a “use set” context as:

(defun copy-nth* (list st1 st2)

(if (null list) st2

(update-nth (car list)

(nth (car list) st1)

(copy-nth* (cdr list) st1 st2)))

(defun use (list st)

(copy-nth* list st nil))

(defthm use-over-update-nth

(implies

(not (member (nfix b) list))

(equal (use list (update-nth b v st))

(use list st))))

(defcontext (use list st) 2)



With use we are able to prove the following congruence rule
for update-nth:

(defcong+ use-update-nth-cong

(use list (update-nth a v x))

:cong ((x (equal z (use list x)))))

Now consider a function, foo, that updates selected fields
in a stobj with values from selected other fields of that
stobj. The list of fields updated by foo are exactly those in
(foo-defs) and the list of fields used by foo in that process
are exactly (foo-use). We can then define a congruence
rule for foo:

(defcong+ nth-foo-use

(nth a (foo st))

:cong ((st (equal z (use (foo-use) st))))

:hyps (member (nfix a) (foo-def)))

This theorem tells us that, if we are accessing field a of the
stobj computed by foo from st and field a is a member
of the fields updated by foo, then we need only consider
those fields of st listed in (foo-use). This rule is useful
because it, in conjunction with use-update-nth-cong, al-
lows us to use the rule use-over-update-nth to normalize
state expressions appearing as arguments to foo by remov-
ing superfluous state updates from within an arbitrary nest
of state updates. For example, if field 0 is in (foo-def) and
field 3 is not in (foo-use), our congruence rules cause the
following simplification to take place:

(defthm test-nth-foo

(equal (nth 0 (foo (update-nth a w

(update-nth 3 v st))))

(nth 0 (foo (update-nth a w st)))))

While we have not yet applied such “use set” rules in prac-
tice we see this as one very appealing use of this technology.
The nary library has been used successfully to prove param-
eterized congruences involving the ihs library loghead func-
tion and those congruences have been used to greatly sim-
plify proofs about a variety of software programs running on
a model of the Rockwell Collins AAMP7 microprocessor[1].

5. ISSUES AND FUTURE DIRECTIONS
The primary issue currently facing the nary library is effi-
ciency. The conclusions of nary congruence rules are often
of the form (equal (fix a) (fix x)). Note that the right
hand side of this rule matches the left hand side, so as soon
as ACL2 applies this rule it immediately attempts to apply
it again. This leads to inefficiencies which can be measured
using accumulated persistence. While nary congruence rules
are designed to minimize the performance impact of this
double application, it would be ideal if this second applica-
tion could somehow be prevented altogether.

An interesting connection exists between congruence based
rewriting and the nu-rewriter[2] in ACL2. Both employ
information about rewriting context in order to perform

their tasks and both profit from outside-in rewriting. The
nu-rewriter embodies an under-the-hood implementation of
simple parameterization, carrying with it the index of the
nth function as it dives into terms. This connection suggests
the possibility of generalizing the nu-rewriter capabilities to
apply to a broader range of function symbols and domains
such as those found in this library.

6. ACKNOWLEDGMENTS
I would like to thank Matt Kaufmann for providing substan-
tial input on the form and content of this report. I would
also like to thank the ACL2 workshop referees for their help-
ful reviews of this work.

7. CONCLUSION
We have developed an ACL2 library (nary) that supports
parameterized congruence-based rewriting on a stock ACL2
system. This library provides a means of expressing and
utilizing parameterized congruences with a high degree of
automation and we have demonstrated the application of
this library to problems in modular arithmetic and other
similar domains.

8. REFERENCES
[1] David Greve, Raymond Richards, and Matthew

Wilding. A Summary of Intrinsic Partitioning
Verification. In ACL2 Workshop 2004, November 2004.

[2] J Moore. Rewriting for Symbolic Execution of State
Machine Models. In Computer Aided Verification, 2001.

[3] J Moore and Matt Kaufmann. ACL2 Documentation.
http://www.cs.utexas.edu/users/moore/acl2.


