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Abstract—Recently, there has been significant research interest
in leveraging social networks to defend against Sybil attacks.
While much of this work may appear similar at first glance, ex-
isting social network-based Sybil defense schemes can be divided
into two categories: Sybil detection and Sybil tolerance. These
two categories of systems both leverage global properties of the
underlying social graph, but they rely on different assumptions
and provide different guarantees: Sybil detection schemes are
application-independent and rely only on the graph structure
to identify Sybil identities, while Sybil tolerance schemes rely on
application-specific information and leverage the graph structure
and transaction history to bound the leverage an attacker can
gain from using multiple identities. In this paper, we take a
closer look at the design goals, models, assumptions, guarantees,
and limitations of both categories of social network-based Sybil
defense systems.

I. INTRODUCTION

Multiple identity, or Sybil [1], attacks pose a fundamental

problem in web-based and distributed systems. In a Sybil

attack, a malicious user creates multiple (Sybil) identities and

takes advantage of the combined privileges associated with

these identities to attack the system. For example, in online

auction systems like eBay, a fraudulent user can continue to

use the system by creating a new user account whenever her

existing accounts have acquired a bad reputation. Similarly,

in social networking sites like Digg or YouTube, where

content is rated based on user feedback, an attacker can create

multiple identities to cast bogus votes and manipulate content

popularity.

Recently, there has been significant research interest in

leveraging social networks to defend against Sybil attacks [2]–

[11]. In this paper, we focus on the design of such social

network-based Sybil defense schemes.

There are two categories of social network-based Sybil

defense schemes. The first category, called Sybil detection

schemes, operate by detecting identities that are likely to be

Sybils [3]–[8]. In contrast, the second category, called Sybil

tolerance schemes, do not attempt to label identities as Sybil or

non-Sybil. Instead, they try to bound the leverage an attacker

can gain by using multiple Sybil identities [2], [9]–[11]. Sybil

detection and tolerance represent two different approaches

towards achieving the higher-level goal of Sybil defense,

which is to prevent attackers from gaining an advantage by

creating and using multiple identities.

In this paper, we explore how Sybil detection and tolerance

differ in the assumptions they make, the guarantees they

offer, their limitations and the challenges they pose in real-

world deployment scenarios. While our exploration of the

design space of Sybil defenses is not exhaustive and many

open questions still remain, our work highlights the need

to recognize the fundamental differences between existing

Sybil defense designs and the trade-offs they offer. Much

of the recent work surveying or analyzing social network-

based Sybil defense schemes, including our own, tends toward

an overly general characterization of all social network-based

Sybil defense schemes based on the study of a few [12], [13].

In the remainder of this paper we discuss both Sybil

detection and Sybil tolerance to better understand the design

goals, models, assumptions, guarantees, and limitations of

each. We close with a discussion of the issues and trade-offs

when deploying the schemes in practice.

II. SYBIL DETECTION

Sybil detection schemes have been designed for identity-based

social systems. Each user is intended to have a single identity,

and users establish friendship links to the identities of other

users they recognize in the system, thereby building a social

network. Sybil detection uses this social network as a basis for

identifying users with multiple identities. We call a user with

multiple identities a Sybil user and each identity she uses a

Sybil identity. The goal of Sybil detection is to label identities

in the system as either Sybil (‘untrustworthy’) or non-Sybil

(‘trustworthy’) with high accuracy. The system or individual

users in the system can then take an appropriate action to978-1-4673-0298-2/12/$31.00 c© 2012 IEEE
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Fig. 1. Sybil detection relies on the small edge cut between the fast mixing
non-Sybil region and the Sybil region.

handle identities labeled as Sybil. For example, they could

block all detected Sybil identities from interacting with other

identities in the system.

A. Common assumptions and system model

Social network-based Sybil detection schemes rely on the the

assumption that although the attacker can create an arbitrary

number of Sybil identities in the social network, he or she

cannot establish an arbitrarily number of social connections

to non-Sybil identities in the network [12]. Intuitively, this

assumption is rooted in the observation that establishing new

social links with honest users’ identities takes some effort,

because honest users are unlikely to accept a friend invitation

from an identity they do not recognize.

Effectively, existing social network-based Sybil detection

schemes work by analyzing the structure of the social net-

work. To identify Sybils, all schemes make three common

assumptions:

1) The non-Sybil region of the network is densely con-

nected (or fast-mixing [14]), meaning random walks in

the non-Sybil region quickly reach a stationary distribu-

tion.

2) Although an attacker can create an arbitrary number of

Sybil identities in social network, she cannot establish

an arbitrary number of social connections to non-Sybil

identities, i.e., the attacker cannot easily infiltrate the

densely connected non-Sybil network.

3) The system is given the identity of at least one trusted

non-Sybil.1

These three assumptions, together, form the basis of Sybil

detection. Since the non-Sybil region of the network is densely

connected (assumption 1), and the Sybil region of the network

is attached by a limited number of links (assumption 2), exist-

ing detection schemes look for resulting topological features

to partition the network into Sybil and non-Sybil regions (see

Figure 1). They then look for the partition that contains the

known non-Sybil identity (assumption 3) to decide which is

the non-Sybil region.

1This assumption is necessary, as if the systems didn’t make this assump-
tion, the Sybil identities could form an identical network to the non-Sybil
region, and the system could not distinguish between the two.

Fig. 2. Diagram of converting partitionings into a ranking of identities.
Different parameter settings (α, β, γ) cause increasingly large partitions to
be marked as Sybils, thereby inducing a ranking.

B. Example systems

We now give a brief overview of existing social network-based

Sybil detection systems. Our goal here is to illustrate that

while the precise algorithms used vary greatly between these

systems, they all rely on analyzing the network structure to

identify Sybil identities.

SybilGuard [3] and SybilLimit [4] are among the first

Sybil detection schemes to be proposed. SybilGuard uses the

intersections between modified random walks to determine

whether identities should be accepted. SybilLimit improves on

SybilGuard’s bound by using multiple walks, accepting fewer

Sybil identities per attack edge. Both of these schemes can be

implemented in a centralized or decentralized fashion.

SybilInfer [5] is a centralized protocol that assumes full

knowledge of the social graph. It uses a Bayesian inference

technique to assign a probability of being Sybil to each

identity. Unlike SybilGuard and SybilLimit, SybilInfer does

not provide any analytical bounds on the number of Sybil

identities accepted per attack edge.

GateKeeper [6] is a decentralized Sybil detection protocol that

improves over the guarantees provided by SybilLimit. It uses a

variant of the ticket distribution algorithm used in SumUp [2]

from multiple random identities in the graph to detect Sybils.

MobID [7] is a Sybil detection system proposed for mobile

settings. MobID defends against Sybil attacks on in-range

portable devices using two social networks: a network of

friends and a network of foes (or suspicious devices). MobID

uses network centrality measures to analyze the social network

structure and flag identities as Sybil or non-Sybil.

Whānau [8] is a DHT routing protocol built in conjunction

with a Sybil identity detection scheme. Whānau only selects

nodes for routing if they meet certain random walk intersection

criteria over a social network.

C. Understanding Sybil detection

Each of the Sybil detection schemes discussed so far uses

different graph analysis algorithms to search for cuts in the

social network that mark the boundary between the non-Sybil

and Sybil identities. We now turn our focus to the these graph

algorithms behind the schemes. Recent work [13] has shown



that, although existing Sybil detection proposals use seemingly

different mechanisms, they all work in a similar manner when

partitioning the identities in the network graph into Sybils and

non-Sybils from the perspective of a single trusted identity.

In more detail, at their core, all Sybil defense schemes

can be modeled as, first, inducing a ranking on all the

identities from the perspective of the trusted identity and,

second, applying a cut-off on the ranking that is determined

by scheme-specific parameters. Nodes ranked before the cut-

off are marked as non-Sybil; identities ranked after the cut-off

are marked as Sybil. This process is illustrated in Figure 2.

It has been observed that the different algorithms behind the

proposals yield similar rankings of the nodes for a given

trusted identity. Thus, the primary challenge when applying

Sybil detection schemes lies in configuring their parameters

as they crucially determine the position of the cut-off point

separating non-Sybils and Sybils in the node rankings.

Moreover, node rankings have been shown to depend on

certain properties of the social network—in particular, the

community structure of the network [13]. Nodes that are

tightly connected to the trusted identity are more likely to

be ranked higher. In particular, when the trusted identity is

located in a densely connected community of identities, with

a clear boundary between this community and the rest of

the network, the identities in the local community around

the trusted identity are ranked before others. So community

boundaries offer a natural cut-off point for separating trusted

(non-Sybil) and untrusted (Sybil) nodes.

Thus, the performance of these schemes is heavily de-

pendent on the size and characteristics of the community

surrounding the trusted identity: If it includes the whole

non-Sybil region, then they will perform quite well; if it is

relatively small and localized, the schemes will only be able

to reliably classify the small fraction of the non-Sybil identities

within the local community as trustworthy. However, in many

computer systems, it is necessary for users to interact with

others who are outside of this small set of trusted identities.

For example, the usefulness of communication systems like

email and online marketplaces like eBay would be drastically

reduced if users could only interact with local community

members.

In summary, for Sybil detection schemes to work efficiently

it is crucial that non-Sybils in real-world social networks form

one tightly-knit community devoid of sparse internal cuts.

Sybils would find it hard to infiltrate such a densely connected

non-Sybil community as it would require establishing a large

number of links.

D. Challenges in building Sybil detection systems

Sybil detection schemes are quite appealing to system de-

signers because they do not rely on any application-specific

details and they can be easily integrated into existing systems

and applications. To defend against Sybil attacks in distributed

systems, designers only need to block all identities declared

as Sybils by the detection schemes. Further, some Sybil

detection schemes [3], [4] have been designed for deployment

Fig. 3. Non-Sybils are hollow and Sybils filled. The trusted identity cannot
distinguish between the non-Sybil community and the Sybil community.

in decentralized systems (and decentralized social networks)

like Diaspora* [15].

However, by relying solely on analyzing the social net-

work structure, detection schemes are highly vulnerable to

misclassifying users as Sybils or non-Sybils, when a real-world

network’s structure does not conform to the assumptions the

schemes make. Specifically, lets examine the requirement that

all non-Sybil users form one tightly-knit community, devoid

of small internal cuts, holds in practice.

Studies analyzing the structures of large-scale real-world

social networks [16], [17] have found that such networks

have a significant fraction of nodes on the fringes that are

sparsely connected to the rest of the network. These nodes

often have low degrees (few friend links) and they constitute

the ’heavy-tail’ in the power-law node degree distributions

observed in these networks. A recent study examining the

community structures in these real-world networks [18], found

that nodes in the periphery are often organized into small,

tightly-knit clusters that connect to the rest of the network

via small cuts. As a result, when Sybil detection schemes

are run over real-world graphs, the honest identities on either

sides of cuts are likely be blocked from interacting with each

other [13]. These observations are further corroborated by

some recent findings [19] that the mixing time for many real-

world networks is substantially lower than was previously

thought, implying that the networks are actually not fast

mixing as previously expected.

Further, users in some small to medium-scale real-world so-

cial networks, such as collaboration networks for research [20]

or software development [21], have been observed to organize

themselves into strong local communities that are sparsely

interconnected. In such social networks, all nodes have high

degrees (lots of friend links), but the non-Sybil region still

possesses sparse internal cuts, causing identities within one

community to mistake non-Sybil identities in another com-

munity for Sybils. Furthermore, an attacker may be able to

disguise Sybil identities as just another community in the net-

work by establishing a small number of carefully targeted links

to the community containing the trusted identity. Consider the

topology in Figure 3, where the trusted identity will not be able

to distinguish between the non-Sybil community (hollow) and

the Sybil community (filled) outside its local community. In



this situation, the trusted identity can either conservatively ac-

cept only those identities in the local community and mark the

rest of the identities as being Sybil (thus wrongly classifying

several non-Sybil identities as Sybils) or accept everyone in

the network (thus wrongly classifying Sybil identities as being

non-Sybil) [13].
In summary, Sybil detection schemes impose strong require-

ments on the structure of the underlying social network. Many

real-world social networks fail to conform to the requirements,

limiting the potential deployment scenarios for Sybil defense

schemes, despite the ease with which they could be integrated

with any application.

III. SYBIL TOLERANCE

We now examine Sybil tolerance approaches, which also

defend against Sybil attacks, but do so without attempting

to explicitly label identities as Sybil or non-Sybil. A number

of schemes exist for different applications [2], [9]–[11], [22],

[23]; we briefly discuss three of them.

Ostra [10] limits unwanted communication (or spam) sent by

users who create Sybil accounts. Ostra uses a social network,

with credit values assigned to links. When a message is sent,

Ostra finds a path with available credit from the sender to the

receiver. If no such path is found, the message is blocked. If a

path is found, credit is transferred from each user to the next

along the path.

Bazaar [9] protects buyers and sellers in online marketplaces

like eBay by limiting the reputation manipulation that is

possible through the creation of Sybil accounts. It uses max

flow-based techniques to estimate the reputation of users

involved in a transaction and flags fraudulent transactions.

SumUp [2] secures online voting against users who create

Sybil accounts and vote multiple times. SumUp chooses a vote

collector in the network and distributes tokens (or credits) on

the links in the network inside a voting envelope. Voters must

find a path to the vote collector with available credit in order

to cast a vote.

We now demonstrate that this class of schemes, which

we refer to as Sybil tolerance, shares a common underlying

approach.

A. Common assumptions, model, and goals

Similar to the model of Sybil detection described in Sec-

tion II, each of these schemes is designed to be applied

to an existing identity-based system (e.g., a communication

system, an online marketplace, or a content-rating system) and

assumes the existence of a network connecting the identities.

This network may be derived from an external social network

(in the case of Ostra and SumUp), or built internally by

the system itself (in the case of Bazaar). The schemes make

no assumptions about the cost of creating identities, but do

assume that an attacker cannot establish an arbitrary number of

links to non-Sybil identities (assumption 2 from Section II-A).
Tolerance schemes rely on assumptions about the structure

of the network as well as the workload the system experiences.

A B
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2

Fig. 4. Simplified credit network between two nodes A and B, with credit
available cab and cba shown. In this example, A has 5 credits available from
B, and B has 2 credits available from A.

In particular, they assume that users perform pairwise trans-

actions (e.g., sending a message, purchasing an item, casting

a vote). They achieve a defense against Sybils by assigning

credits to the network links, and then allowing actions only

if paths with sufficient credit exist between the source and

destination of an action. In Ostra, a message can only sent if

a path with at least one credit exists between the source and

destination; in Bazaar, a item can only be purchased if a path

with the item’s price in credits exists between the buyer and

seller; in SumUp, a user can only vote if a path with at least

one credit exists between the voter and vote collector.

The Sybil tolerance schemes we consider all run alongside

an existing system S, reason about a network connecting S’s

identities (e.g., a social network), and provide a single method

transaction(a, b, c ∈ {R > 0}) → {0, 1}

that decides whether identity a is allowed to initiate a transac-

tion with identity b costing c credits. Thus, to take advantage

of Sybil tolerance, S simply queries the Sybil tolerance system

when two users are about to interact, and, depending on the

result, either denies the transaction or allows it to proceed.

The goal of Sybil tolerance, then, is to ensure that the

number of transactions that a (human) user can initiate is

independent of the number of identities she possesses. Do-

ing so would remove the creation of multiple accounts as

an attack vector, thereby making the application tolerant of

Sybils. In comparison to Sybil detection—where the system

reasons about guarantees concerning the ability to identify

Sybil identities—Sybil tolerance schemes reason about the

impact (in terms of transactions) that identities have on one

another. As a result, a certain pair of identities may be allowed

to participate in certain transactions and not others, and may be

allowed to interact at certain times and not others, depending

on the state of the system.

B. Understanding credit network-based Sybil tolerance

In this section, we describe how existing Sybil tolerance

schemes are implemented using credit networks. We first

provide some background on credit networks and discuss the

Sybil tolerant nature of credit networks.

1) Credit networks: Credit networks [11], [24], [25] were

first introduced in electronic commerce to build transitive trust

protocols in an environment where there are only pairwise trust

accounts and no central trusted entities. In a credit network,

identities (nodes) trust each other by offering pairwise credit

(links) up to a certain limit. Nodes can use the credit to pay

for services they receive from each other. The credit network
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Fig. 5. More complex credit network, with credit available (cij) shown
for each link. In this example, A can transfer 1 credit to D along the path
A → B → C → D. Note that, for simplicity, the links not on this path are
only shown as dashed lines.

can be used for payments between nodes that do not directly

extend credit to each other. For this purpose, nodes can route

credit to a node via network paths that traverse over links with

available credit. (See Figures 4 and 5.)

Formally, a credit network is a directed graph G = (V, E)
where V is the set of nodes and E is the set of labeled edges.

Each directed edge (a, b) ∈ E is labeled with a dynamic scalar

value cab, called the credit available, and is initialized to Cab.

Intuitively, Cab represents the initial credit allocation that b

gives to a, and cab represents the amount of unconsumed credit

that b has extended to a. Note that cab ≥ 0 at all times.

Transactions between two nodes in a credit network are

contingent upon the availability of credit along network paths

connecting the nodes. If a node a wishes to obtain a favor or

resource from b, then a path

a → u1 → ... → un → b

(which could just be a → b) must exist where credits are

available on each (i, j) link (i.e., cij > 0). If so, the credit

available on each directed edge cij on the path from a to b is

decreased and the credit available on each directed edge cji

on the reverse path is increased. As a result of this action,

each node “pays” credits to its successor on the path to b, in

exchange for the favor or service a obtains from b.

2) Credit networks from social networks: One can build

a credit network from a social network as follows: For each

identity in the social network, we generate a node in the credit

network. For each edge between a pair of identities in the

social network, we generate an edge in the credit network

between nodes corresponding to the users. Undirected edges in

the social network (e.g., Facebook friend links) are replaced by

two directed edges, one in each direction, between the nodes

adjacent to the edges. Because social networks are known to

be richly connected [16], [26], credit networks inherit the rich

connectivity they require for liquidity [24].

Further, each directed edge, (a, b), is assigned an initial

credit allocation Cab by the destination node b. The system

must exercise care when assigning credit allocations. For

instance, when a new social link is created, the requesting

node should be required to grant the accepting node some

initial credit but not vice-versa, to prevent an attacker from

obtaining credit by initiating social links.
3) Sybil tolerant nature of credit networks: Next, we show

that credit networks built from social networks are naturally
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Fig. 6. Credit networks leading to Sybil tolerance. User X can create any
number of identities (X1, X2, X3) and arbitrarily assign the credit available
between them. However, does not enable any additional available credit with
nodes in the rest of the network.

tolerant to Sybil attacks. Specifically, we argue that a Sybil

attacker cannot increase the credit available to her from the

rest of the network.

An attacker can mount a Sybil attack by creating many

different identities in the social network, each corresponding

to a different node in the credit network. However, per our

assumptions about credit assignment to links, having many

user accounts does not by itself allow the attacker to obtain

additional available credit with other users (though she can

create an arbitrary number of links with arbitrary credit

between her Sybil identities).

As shown in Figure 6, the total amount of credit available

to a single user is the sum of the credit available on her links

to other (human) users. An attacker with an arbitrary number

of Sybil identities has exactly the same available credit as

the attacker with just one identity; in this case, the relevant

set of edges is the cut between the subgraph consisting of

the attacker’s Sybil identities and the rest of the network.

Any credit available on edges between the attacker’s Sybil

identities does not matter, because it does not enable additional

“purchases” from legitimate nodes. Thus, available credit in a

credit network is resilient to Sybil attacks [27].

C. Challenges building credit network-based Sybil tolerance

We now discuss the key challenges associated with building

credit network-based Sybil tolerance systems. This includes

Well-behaved nodes Misbehaving (possibly Sybil) nodes

Edge cut

3

8

2

7

Fig. 7. Edge cut between well-behaved nodes (hollow) and misbehaving
nodes (solid). The total credit available to the misbehaving nodes is 5 (3+2),
regardless of the number of Sybil identities created. Note that the links that
are not along the edge cut are shown as dashed lines, for simplicity.



Edge cut

Fig. 8. Edge cut internal to the well-behaved nodes.

two main challenges: fundamental credit network design chal-

lenges and practical implementation/deployment challenges.

1) Credit network challenges: The credit network plays a

fundamental role in the operation of Sybil tolerance schemes.

Thus, a system designer wishing to apply Sybil tolerance in

a given application must make careful choices concerning

the initialization of starting credits on links, the adjustments

to credits after each transaction, and the replenishment of

credits over time. The key goals are to maintain liquidity in

the credit network such that (1) most attacker transactions

are disallowed, (2) most legitimate transactions are allowed,

and (3) the credit network does not introduce any denial-of-

service attacks on legitimate users. The challenge is to design

a credit-network based mechanism that encourages legitimate

transactions and discriminates against unwanted transactions.

We discuss these goals in more detail using a Ostra as an

example.

Bounding undesirable transactions As discussed earlier in

Section III-B3, credit networks built from social networks

are Sybil tolerant by nature. In the attack topology shown in

Figure 7, the imbalance in transactions between the spammers

and legitimate users (i.e., the spam in our messaging system) is

always bounded by the aggregate credit (the sum of the credit

balances on the links) available on the edge cut separating

spammers from legitimate users. This is true regardless of

the number of Sybil identities the spammers use or the credit

balances on the links between the spammers’ identities. Thus,

the credit network naturally bounds the number of spam

transactions, regardless of the number of identities the attacker

possesses.

Allowing legitimate transactions The system designer must

also ensure that the chosen mechanism does not block legit-

imate transactions in the common case. So next, we focus

on the case when all nodes in our messaging system are

legitimate. Consider an edge cut that divides legitimate users

into two groups, as shown in Figure 8. Our credit adjustment

mechanism would bound the credit imbalance between the two

groups to the credit each of the groups make available to the

other. If the identities in one group are interested in sending a

disproportionately large number of messages to the identities

in the other group, the credit along the edge cut could be

exhausted, preventing further transactions. This is essentially

a liquidity problem, where a subset of the legitimate nodes

Malicious node

Well-behaved node

Edge cut

Fig. 9. Diagram of the resilience of credit networks to credit exhaustion
attacks by malicious nodes (shown as filled nodes). In real-world social
networks, the min cut between nodes occurs at the nodes themselves, rather
than in the middle of the network, preventing malicious nodes from exhausting
credit between well-behaved nodes

have insufficient liquidity with another subset.

Thus, in the long-term, any subset of legitimate nodes must

receive messages from the rest of the legitimate nodes as

often as it sends messages to those nodes.2 The mechanisms

should be chosen so that the statistics of a legitimate workload

distribution would ensure an approximate long-term trade

balance. If not, the use of techniques like credit replenishment

(where credits are periodically readjusted by the system) can

be used [10]. A number of credit-network mechanism have

been designed and evaluated for specific applications [2],

[9]–[11], [22], [23]. Designing appropriate mechanisms for

many more applications in a principled way remains an open

problem.

Vulnerability to attacks on network liquidity Finally, the

system designer must ensure that the credit network mech-

anism does not introduce new vulnerabilities. For example,

can a few attacker nodes exhaust the credit along an edge

cut separating legitimate identities, thereby preventing the

legitimate identities from interacting with each other? For

example, consider a small cut A through the network where

there are both attacker and legitimate identities on either

side. If the attackers have, in aggregate, more credit with the

legitimate identities than exists along cut A, it is feasible that

the attackers could exhaust the credit along A (e.g., by sending

messages to each other, affecting the credit values on A).

Fortunately, the topology of social networks (upon which our

credit networks are often built) make this scenario unlikely.

First, social networks are sufficiently well connected that

the min-cut between any pair of nodes tends to be adjacent to

either of the nodes [10]. It follows that a single misbehaving

node will run out of credit before the credit on any other cut in

the network is exhausted (see Figure 9). Second, assumption 2

indicates that a group of Sybils controlled by an attacker will

tend to have a small cut to the rest of the network (because

the attacker is unable to create an arbitrary number of links to

other real users). Therefore, a group of Sybils is also likely to

run out of credit before the before the group can exhaust the

credit on any larger cut in the network.

Regardless, a full exploration of the necessary connectivity

2Short-term imbalances can be absorbed by setting appropriate initial credit
allocations.



of credit networks and the relationship with the transaction

workload remains future work.

2) Implementation/deployment challenges: Credit network-

based Sybil tolerance schemes face scalability challenges

when applied to large social networks. In particular, the

scheme must often search for a specified amount of available

credit between two identities; this is essentially the maximum

flow problem [28], which is known to be a computationally ex-

pensive operation. The most efficient algorithms for the max-

imum flow problem run in O(V 3) [29] or O(V 2 log(E)) [30]

time. Also, techniques that pre-calculate the all-pairs maxi-

mum flow (e.g., Gomory-Hu trees [31]) can not be applied

to Sybil tolerance schemes, as these techniques assume a

static network and impose a large, upfront pre-calculation

cost (credit networks are constantly changing due to credit

manipulations as well as new users and links). Furthermore,

techniques for modifying existing pre-calculations as the graph

changes [32] often end up being as expensive as simply

starting the pre-calculation from scratch.

For example, Bazaar can take over 6 seconds [9] to de-

termine whether sufficient flow exists over a network with

3.3 million links, and Ostra can require over 3.7 seconds [10]

over a network with 3.4 million links. Given that both of these

are intended to be run in an online fashion, this introduces a

significant delay in the processing of transactions.

In order to address this problem, it is worth investigating

techniques that can more quickly determine whether sufficient

credit exists in very large credit networks. Approximation

algorithms [33], [34] represent a promising technique, and

hold the potential to be a favorable trade-off between speed

and accuracy.

IV. DISCUSSION: DETECTION VS. TOLERANCE

Having examined the design trade-offs offered by social

network-based Sybil detection and tolerance schemes sepa-

rately, we now compare them from the perspective of an

operator wishing to deploy these schemes to defend her system

from Sybil attacks.

Conceptually, Sybil detection schemes offer a simple model

that is easy to integrate with any application. For instance, the

system can simply deactivate identities that are classified as

likely Sybils and allow all activity from identities classified as

non-Sybils. However, this simplicity and ease of application

comes at a high cost for misclassifying an identity as Sybil

or non-Sybil. An innocent user who is misclassified (false

positive) is denied all service, while a misclassified attacker

identity (false negative) is not limited in its malicious activity.

Furthermore, existing Sybil detection schemes rely solely on

the network structure to identify non-Sybil and Sybil identi-

ties, ignoring other relevant information about the activity of

identities.

To achieve accuracy, Sybil detection requires the underlying

social network to satisfy certain constraints, such as the

absence of small cuts within the non-Sybil region (i.e., non-

Sybil region should be fast-mixing). Unfortunately, there is

mounting evidence that many real-world social networks fail to

meet these requirements, either because a significant fraction

of their nodes are sparsely connected or their users orga-

nize themselves into small tightly-knit communities that are

sparsely interconnected. When applied to such networks, Sybil

detection schemes suffer from a high rate of misclassified

identities.

Credit network-based Sybil tolerance schemes, on the other

hand, allow or deny individual transactions among users based

on the prevailing system state. This state reflects the history of

transactions among users as well as the social graph structure.

Thus, Sybil tolerance schemes are deeply embedded in the

operation of the system and have to be tailored for each

application; they are limited to applications for which an

appropriate mechanism is known that lends Sybil tolerance

to the relevant system properties.

Sybil tolerance schemes leverage both social network struc-

ture and the transaction history, which enables high classi-

fication accuracy. Moreover, they allow or deny individual

transactions, which leads to a graceful degradation in the

presence of false positives or false negatives. It is highly

unlikely that all of a legitimate identity’s transactions would be

blocked due to false positives, or that all of a Sybil identity’s

transactions would be allowed due to false negatives.

To illustrate these points, consider applying Sybil detection

and tolerance schemes to the problem of email spam. Sybil

detection schemes would generate a blacklist and whitelist of

Sybil and non-Sybil identities. Any sparsely connected nodes

in the fringes of the social network would be blacklisted, while

any whitelisted attacker node can send unlimited spam. Sybil

tolerance, on the other hand, bounds the rate of spam mes-

sages that legitimate users receive from spammers. Sparsely

connected legitimate nodes at the fringe of the social network

would at worst be limited in the rate at which they can send

legitimate messages. Simultaneously, no user has the ability

to send an unlimited number of spam messages.

V. CONCLUSION

In conclusion, this paper considers social-network based Sybil

defenses and divides existing proposals into two categories,

namely, Sybil detection and Sybil tolerance. Sybil detection

is conceptually simple, application-independent, and easy to

apply. However, it relies on strong assumptions about the

social graph structure. Moreover, misclassifications are poten-

tially costly, because they can ban a legitimate user from the

system, or allow an attacker identity free reign. A detailed

understanding of the effectiveness of Sybil detection on real

social networks remains an open problem.

Sybil tolerance, on the other hand, allows or denies individ-

ual transactions between users, which enables its performance

to degrade gracefully in the presence of false positives or

negatives. Tolerance schemes can potentially achieve higher

accuracy because they consider the pattern and history of

user transactions, in addition to the social graph structure,

as the basis for allowing transactions. However, Sybil tol-

erance schemes require application-specific mechanisms that

distinguish attack activity from legitimate activity, without



making the system vulnerable to denial-of-service attacks. To

date, such mechanisms have been designed and evaluated for

specific applications. A general understanding of the class of

applications that lend themselves to Sybil tolerance, a system-

atic design methodology for appropriate mechanisms, efficient

implementations of credit networks on social networks at

scale, and a study of the social dynamics that would shape

the combined social graph/credit network in a Sybil tolerant

system all remain open problems.
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